# Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles

## Abstract

**:**

## 1. Introduction

## 2. Lifshitz Theory and the Hamaker Constant

## 3. Finite-Size Effects

## 4. Results

## 5. Discussion

## 6. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Jones, M.R.; Macfarlane, R.J.; Lee, B.; Zhang, J.; Young, K.L.; Senesi, A.J.; Mirkin, C.A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mat.
**2010**, 9, 913–917. [Google Scholar] [CrossRef] [PubMed] - Macfarlane, R.J.; Lee, B.; Jones, M.R.; Harris, N.; Schatz, G.C.; Mirkin, C.A. Nanoparticle superlattice engineering with DNA. In Spherical Nucleic Acids. Volume 2; Mirkin, C.A., Ed.; Jenny Stanford Publishing/Taylor & Francis Group: New York, NY, USA, 2020; Chapter 23. [Google Scholar] [CrossRef]
- Wu, C.; Han, D.; Chen, T.; Peng, L.; Zhu, G.; You, M.; Qiu, L.; Sefah, K.; Zhang, X.; Tan, W. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J. Am. Chem. Soc.
**2013**, 135, 18644–18650. [Google Scholar] [CrossRef] [PubMed][Green Version] - Genix, A.C.; Oberdisse, J. Nanoparticle self-assembly: From interactions in suspension to polymer nanocomposites. Soft Matt.
**2018**, 14, 5161–5179. [Google Scholar] [CrossRef] [PubMed] - Mendes, A.C.; Baran, E.T.; Reis, R.L.; Azevedo, H.S. Self-assembly in nature: Using the principles of nature to create complex nanobiomaterials. WIREs (Wiley Interdiscip. Rev.) Nanomed. Nanobiotechnol.
**2013**, 5, 582–612. [Google Scholar] [CrossRef] [PubMed] - Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol.
**2020**, 8, 127. [Google Scholar] [CrossRef] [PubMed][Green Version] - Verwey, E.J.W. Theory of the stability of lyophobic colloids. J. Phys. Chem.
**1947**, 51, 631–636. [Google Scholar] [CrossRef][Green Version] - Birdi, K.S. Handbook of Surface and Colloid Chemistry; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Jose, N.A.; Zeng, H.C.; Lapkin, A.A. Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructures. Nat. Comm.
**2018**, 9, 1–12. [Google Scholar] [CrossRef][Green Version] - French, R.H.; Parsegian, V.A.; Podgornik, R.; Rajter, R.F.; Jagota, A.; Luo, J.; Asthagiri, D.; Chaudhury, M.K.; Chiang, Y.M.; Granick, S.; et al. Long range interactions in nanoscale science. Rev. Mod. Phys.
**2010**, 82, 1887–1944. [Google Scholar] [CrossRef] - Trokhymchuk, A.; Henderson, D. Depletion forces in bulk and in confined domains: From Asakura–Oosawa to recent statistical physics advances. Curr. Opin. Colloid Interface Sci.
**2015**, 20, 32–38. [Google Scholar] [CrossRef] - Hamaker, H.C. The London—van der Waals attraction between spherical particles. Physica
**1937**, 4, 1058–1072. [Google Scholar] [CrossRef] - Vinogradov, E.A.; Dorofeev, I.A. Thermally stimulated electromagnetic fields of solids. Phys.-Usp.
**2009**, 52, 425–459. [Google Scholar] [CrossRef] - Lifshitz, E.M. The theory of molecular attractive forces between solids. Sov. Phys. JETP
**1956**, 2, 73–83. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/2/1/p73?a=list (accessed on 1 March 2023). - Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. General theory of Van der Waals’ forces. Sov. Phys. Usp.
**1961**, 4, 153–176. [Google Scholar] [CrossRef] - Young, K.L.; Jones, M.R.; Zhang, J.; Macfarlane, R.J.; Esquivel-Sirvent, R.; Nap, R.J.; Wu, J.; Schatz, G.C.; Lee, B.; Mirkin, C.A. Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proc. Nat. Acad. Sci. USA
**2012**, 109, 2240–2245. [Google Scholar] [CrossRef][Green Version] - Munkhbat, B.; Canales, A.; Küçüköz, B.; Baranov, D.G.; Shegai, T.O. Tunable self-assembled Casimir microcavities and polaritons. Nature
**2021**, 597, 214–219. [Google Scholar] [CrossRef] [PubMed] - Esteso, V.; Carretero-Palacios, S.; Míguez, H. Casimir–Lifshitz force based optical resonators. J. Phys. Chem. Lett.
**2019**, 10, 5856–5860. [Google Scholar] [CrossRef] - Tadmor, R. The London-van der Waals interaction energy between objects of various geometries. J. Phys. Cond. Matt.
**2001**, 13, L195–L202. [Google Scholar] [CrossRef] - Dantchev, D.; Valchev, G. Surface integration approach: A new technique for evaluating geometry dependent forces between objects of various geometry and a plate. J. Colloid Interface Sci.
**2012**, 372, 148–163. [Google Scholar] [CrossRef] - Rusanov, A.I.; Brodskaya, E.N. Dispersion forces in nanoscience. Russ. Chem. Rev.
**2019**, 88, 837–874. [Google Scholar] [CrossRef] - Gao, B.; Arya, G.; Tao, A.R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotech.
**2012**, 7, 433–437. [Google Scholar] [CrossRef] - Langbein, D. Normal modes at small cubes and rectangular particles. J. Phys. A Math. Gen.
**1976**, 9, 627–644. [Google Scholar] [CrossRef] - Parsegian, V.A. Van der Waals Forces. A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- De Rocco, A.G.; Hoover, W.G. On the interaction of colloidal particles. Proc. Nat. Acad. Sci. USA
**1960**, 46, 1057–1065. [Google Scholar] [CrossRef] [PubMed][Green Version] - French, R.H. Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc.
**2000**, 83, 2117–2146. [Google Scholar] [CrossRef][Green Version] - Pinto, F. Computational considerations in the calculation of the Casimir force between multilayered systems. Int. J. Mod. Phys. A
**2004**, 19, 4069–4084. [Google Scholar] [CrossRef] - Esquivel-Sirvent, R.; Svetovoy, V. Nonlocal thin films in calculations of the Casimir force. Phys. Rev.
**2005**, 72, 045443. [Google Scholar] [CrossRef][Green Version] - Mochán, W.L.; Villarreal, C.; Esquivel-Sirvent, R. On Casimir forces for media with arbitrary dielectric properties. Rev. Mex. Fis.
**2002**, 48, 339–342. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2002000400010 (accessed on 1 March 2023). - Roth, C.M.; Lenhoff, A.M. Improved parametric representation of water dielectric data for Lifshitz theory calculations. J. Colloid Interface Sci.
**1996**, 179, 637–639. [Google Scholar] [CrossRef] - Fiedler, J.; Walter, M.; Buhmann, S.Y. Effective screening of medium-assisted van der Waals interactions between embedded particles. J. Chem. Phys.
**2021**, 154, 104102. [Google Scholar] [CrossRef] - Nunes, R.O.; Spreng, B.; de Melo e Souza, R.; Ingold, G.L.; Maia Neto, P.A.; Rosa, F.S.S. The Casimir interaction between spheres immersed in electrolytes. Universe
**2021**, 7, 156. [Google Scholar] [CrossRef] - Pinchuk, A.O. Size-dependent Hamaker constant for silver nanoparticles. J. Phys. Chem. C
**2012**, 116, 20099–20102. [Google Scholar] [CrossRef] - Esquivel-Sirvent, R.; Schatz, G.C. Spatial nonlocality in the calculation of Hamaker coefficients. J. Phys. Chem. C
**2012**, 116, 420–424. [Google Scholar] [CrossRef] - Reid, M.H.; Rodriguez, A.W.; White, J.; Johnson, S.G. Efficient computation of Casimir interactions between arbitrary 3D objects. Phys. Rev. Lett.
**2009**, 103, 040401. [Google Scholar] [CrossRef] [PubMed]

**Figure 2.**The variation of ${E}_{r}$ as a function of the separation, L, of the two plates for different values of the thickness c of each as indicated, and $a=b=2000$ nm. Even for large enough values of c, the energy ratio is less than unity.

**Figure 3.**For two fixed separations between the plates, $L=50$ nm and $L=100$ nm, the ratio ${E}_{r}$ increases with increasing the value of the thickness c, leveling-off asymptotically to the value expected for half-spaces. The dimensions of the plate are $a=b=2000$ nm.

**Figure 4.**Energy ratio, ${E}_{r}$ between two cubes facing each other and for two tilted cubes, as a function of the separation L. The nanocubes have dimensions $a=b=c=80$ nm.

**Figure 5.**Energy ratio, ${E}_{r}$, between two tilted nanocubes of different sizes. The sizes considered are 20 nm (blue line), 80 nm (red line), and 150 nm (orange line). The maximum in each curve happens when the separation equals the size of the cube.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Esquivel-Sirvent, R.
Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles. *Physics* **2023**, *5*, 322-330.
https://doi.org/10.3390/physics5010024

**AMA Style**

Esquivel-Sirvent R.
Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles. *Physics*. 2023; 5(1):322-330.
https://doi.org/10.3390/physics5010024

**Chicago/Turabian Style**

Esquivel-Sirvent, Raul.
2023. "Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles" *Physics* 5, no. 1: 322-330.
https://doi.org/10.3390/physics5010024