# Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Basics for Insight into EHM Using CSMs

#### 2.1. CSMs and the EHM Paradigm

#### 2.2. Some Highlights from the EHM Experiment-Theory Connection

## 3. Nucleon Resonance Electrocouplings and Their Impact on the Insight into EHM

#### 3.1. Extraction of Electrocouplings from Exclusive Meson Electroproduction Data

#### 3.2. Insights into the Dressed-Quark Mass Function from the ${\gamma}_{v}p{N}^{*}$ Electrocouplings

#### 3.3. Novel Tests of CSM Predictions

## 4. Studies of ${\mathit{N}}^{*}$ Structure in Experiments with CLAS12 and Beyond

## 5. Conclusions and Outlook

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

CM | center-of-mass |

CSM | continuum Schwinger function method |

DCSB | dynamical chiral symmetry breaking |

$d.p.$ | data point |

EHM | emergence of hadron mass |

EIC | Electron-Ion Collider (at Brookhaven National Laboratory) |

EicC | Electron-ion collider China |

HB | Higgs boson |

JLab | Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) |

JM | JLab-Moscow State University |

lQCD | lattice-regularized quantum chromodynamics |

NG (mode/boson) | Nambu-Goldstone (mode/boson) |

PDFs | Particle Distribution Functions |

PDG | Particle Data Group (and associated publications) |

pQCD | perturbative QCD |

QCD | quantum chromodynamics |

RMS | root mean square |

RPP | Review of Particle Properties (and associated publications) |

sQCD | strong QCD |

SM | Standard Model of particle physics |

## References

- Brodsky, S.J.; Burkert, V.D.; Carman, D.S.; Chen, J.P.; Cui, Z.F.; Döring, M.; Dosch, H.G.; Draayer, J.; Elouadrhiri, L.; Glazier, D.I.; et al. Strong QCD from Hadron Structure Experiments. Int. J. Mod. Phys. E
**2020**, 29, 2030006. [Google Scholar] [CrossRef] - Binosi, D.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J. Process-Independent Strong Running Coupling. Phys. Rev. D
**2017**, 96, 054026. [Google Scholar] [CrossRef][Green Version] - Cui, Z.F.; Zhang, J.L.; Binosi, D.; de Soto, F.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodríguez-Quintero, J.; Segovia, J.; Zafeiropoulos, S. Effective Charge from Lattice QCD. Chin. Phys. C
**2020**, 44, 083102. [Google Scholar] [CrossRef] - Deur, A.; Burkert, V.; Chen, J.P.; Korsch, W. Experimental Determination of the QCD Effective Charge α
_{g1}(Q). Particles**2022**, 5, 171–179. [Google Scholar] [CrossRef] - Eichmann, G.; Sanchis-Alepuz, H.; Williams, R.; Alkofer, R.; Fischer, C.S. Baryons as Relativistic Three-Quark Bound States. Prog. Part. Nucl. Phys.
**2016**, 91, 1–100. [Google Scholar] [CrossRef][Green Version] - Fischer, C.S. QCD at Finite Temperature and Chemical Potential from Dyson–Schwinger Equations. Prog. Part. Nucl. Phys.
**2019**, 105, 1–60. [Google Scholar] [CrossRef][Green Version] - Qin, S.X.; Roberts, C.D. Impressions of the Continuum Bound State Problem in QCD. Chin. Phys. Lett.
**2020**, 37, 121201. [Google Scholar] [CrossRef] - Roberts, C.D.; Schmidt, S.M. Reflections upon the Emergence of Hadronic Mass. Eur. Phys. J. ST
**2020**, 229, 3319–3340. [Google Scholar] [CrossRef] - Roberts, C.D. Empirical Consequences of Emergent Mass. Symmetry
**2020**, 12, 1468. [Google Scholar] [CrossRef] - Roberts, C.D. On Mass and Matter. AAPPS Bull.
**2021**, 31, 6. [Google Scholar] [CrossRef] - Roberts, C.D.; Richards, D.G.; Horn, T.; Chang, L. Insights into the Emergence of Mass from Studies of Pion and Kaon Structure. Prog. Part. Nucl. Phys.
**2021**, 120, 103883. [Google Scholar] [CrossRef] - Binosi, D. Emergent Hadron Mass in Strong Dynamics. Few Body Syst.
**2022**, 63, 42. [Google Scholar] [CrossRef] - Papavassiliou, J. Emergence of Mass in the Gauge Sector of QCD. Chin. Phys. C
**2022**, 46, 112001. [Google Scholar] [CrossRef] - Ding, M.; Roberts, C.D.; Schmidt, S.M. Emergence of Hadron Mass and Structure. Particles
**2023**, 6, 57–120. [Google Scholar] [CrossRef] - Ferreira, M.N.; Papavassiliou, J. Gauge Sector Dynamics in QCD. Particles
**2023**, 6, 312–363. [Google Scholar] [CrossRef] - Blum, T.; Boyle, P.A.; Christ, N.H.; Frison, J.; Garron, N.; Hudspith, R.J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; et al. Domain Wall QCD with Physical Quark Masses. Phys. Rev. D
**2016**, 93, 074505. [Google Scholar] [CrossRef][Green Version] - Boyle, P.A.; Christ, N.H.; Garron, N.; Jung, C.; Jüttner, A.; Kelly, C.; Mawhinney, R.D.; McGlynn, G.; Murphy, D.J.; Ohta, S.; et al. Low Energy Constants of SU(2) Partially Quenched Chiral Perturbation Theory from N
_{f}= 2 + 1 Domain Wall QCD. Phys. Rev. D**2016**, 93, 054502. [Google Scholar] [CrossRef][Green Version] - Boyle, P.A.; Del Debbio, L.; Jüttner, A.; Khamseh, A.; Sanfilippo, F.; Tsang, J.T. The Decay Constants
**f**_{D}and**f**_{Ds}in the Continuum Limit of**N**_{f}=**2**+**1**Domain Wall Lattice QCD. JHEP**2017**, 12, 008. [Google Scholar] [CrossRef][Green Version] - Gao, F.; Qin, S.X.; Roberts, C.D.; Rodríguez-Quintero, J. Locating the Gribov Horizon. Phys. Rev. D
**2018**, 97, 034010. [Google Scholar] [CrossRef][Green Version] - Oliveira, O.; Silva, P.J.; Skullerud, J.I.; Sternbeck, A. Quark Propagator with Two Flavors of O(a)-Improved Wilson Fermions. Phys. Rev. D
**2019**, 99, 094506. [Google Scholar] [CrossRef][Green Version] - Boucaud, P.; De Soto, F.; Raya, K.; Rodríguez-Quintero, J.; Zafeiropoulos, S. Discretization Effects on Renormalized Gauge-Field Green’s Functions, Scale Setting, and the Gluon Mass. Phys. Rev. D
**2018**, 98, 114515. [Google Scholar] [CrossRef][Green Version] - Zafeiropoulos, S.; Boucaud, P.; De Soto, F.; Rodríguez-Quintero, J.; Segovia, J. Strong Running Coupling from the Gauge Sector of Domain Wall Lattice QCD with Physical Quark Masses. Phys. Rev. Lett.
**2019**, 122, 162002. [Google Scholar] [CrossRef] [PubMed][Green Version] - Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodríguez-Quintero, J. Infrared Facets of the Three-Gluon Vertex. Phys. Lett. B
**2021**, 818, 136352. [Google Scholar] [CrossRef] - Aguilar, A.C.; Ambrósio, C.O.; De Soto, F.; Ferreira, M.N.; Oliveira, B.M.; Papavassiliou, J.; Rodríguez-Quintero, J. Ghost Dynamics in the Soft Gluon Limit. Phys. Rev. D
**2021**, 104, 054028. [Google Scholar] [CrossRef] - Pinto-Gómez, F.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodríguez-Quintero, J. Lattice Three-Gluon Vertex in Extended Kinematics: Planar Degeneracy. arXiv
**2022**, arXiv:2208.01020. [Google Scholar] [CrossRef] - Aznauryan, I.G.; Bashir, A.; Braun, V.M.; Brodsky, S.J.; Burkert, V.D.; Chang, L.; Chen, C.; El-Bennich, B.; Cloët, I.C.; Cole, P.L.; et al. Studies of Nucleon Resonance Structure in Exclusive Meson Electroproduction. Int. J. Mod. Phys. E
**2013**, 22, 1330015. [Google Scholar] [CrossRef][Green Version] - Horn, T.; Roberts, C.D. The Pion: An Enigma within the Standard Model. J. Phys. G.
**2016**, 43, 073001. [Google Scholar] [CrossRef][Green Version] - Burkert, V.D.; Roberts, C.D. Colloquium: Roper Resonance: Toward a Solution to the Fifty-Year Puzzle. Rev. Mod. Phys.
**2019**, 91, 011003. [Google Scholar] [CrossRef][Green Version] - Burkert, V.D. Nucleon Resonances and Transition Form Factors. arXiv
**2022**, arXiv:2212.08980. Available online: https://arxiv.org/abs/2212.08980 (accessed on 1 March 2023). - Beričič, J.; Correa, L.; Benali, M.; Achenbach, P.; Gayoso, C.A.; Bernauer, J.C.; Blomberg, A.; Böhm, R.; Bosnar, D.; Debenjak, L.; et al. New Insight in the Q
^{2}-Dependence of Proton Generalized Polarizabilities. Phys. Rev. Lett.**2019**, 123, 192302. [Google Scholar] [CrossRef][Green Version] - Blomberg, A.; Atac, H.; Sparveris, N.; Paolone, M.; Achenbach, P.; Benali, M.; Beričič, J.; Böhm, R.; Correa, L.; Distler, M.O.; et al. Virtual Compton Scattering Measurements in the Nucleon Resonance Region. Eur. Phys. J. A
**2019**, 55, 182. [Google Scholar] [CrossRef][Green Version] - Mihovilovič, M.; Weber, A.B.; Achenbach, P.; Beranek, T.; Beričič, J.; Bernauer, J.C.; Böhm, R.; Bosnar, D.; Cardinali, M.; Correa, L.; et al. First Measurement of Proton’s Charge Form Factor at Very Low Q
^{2}with Initial State Radiation. Phys. Lett. B**2017**, 771, 194–198. [Google Scholar] [CrossRef] - Friščić, I.; Achenbach, P.; Gayoso, C.A.; Baumann, D.; Böhm, R.; Bosnar, D.; Debenjak, L.; Denig, A.; Ding, M.; Distler, M.O.; et al. Measurement of the p(e,e
^{′}π^{+})n Reaction Close to Threshold and at Low Q^{2}. Phys. Lett. B**2017**, 766, 301–305. [Google Scholar] [CrossRef] - Bernauer, J.C.; Distler, M.O.; Friedrich, J.; Walcher, T.; Achenbach, P.; Gayoso, C.A.; Böhm, R.; Bosnar, D.; Debenjak, L.; Doria, L.; et al. Electric and Magnetic Form Factors of the Proton. Phys. Rev. C
**2014**, 90, 015206. [Google Scholar] [CrossRef][Green Version] - Sparveris, N.; Stave, S.; Achenbach, P.; Gayoso, C.A.; Baumann, D.; Bernauer, J.; Bernstein, A.M.; Bohm, R.; Bosnar, D.; Botto, T.; et al. Measurements of the γ
^{*}p→Δ Reaction at Low Q^{2}. Eur. Phys. J. A**2013**, 49, 136. [Google Scholar] [CrossRef][Green Version] - Bevan, A.J.; Golob, B.; Mannel, T.; Prell, S.; Yabsley, B.D.; Aihara, H.; Anulli, F.; Arnaud, N.; Aushev, T.; Beneke, M.; et al. The Physics of the B Factories. Eur. Phys. J. C
**2014**, 74, 3026. [Google Scholar] [CrossRef][Green Version] - Kou, E.; Urquijo, P.; Altmannshofer, W.; Beaujean, F.; Bell, G.; Beneke, M.; Bigi, I.I.; Bishara, F.; Blanke, M.; Bobeth, C.; et al. The Belle II Physics Book. PTEP
**2019**, 2019, 123C01, Erratum in PTEP**2020**, 2020, 029201. [Google Scholar] [CrossRef][Green Version] - Burkert, V.D. Jefferson Lab at 12 GeV: The Science Program. Ann. Rev. Nucl. Part. Sci.
**2018**, 68, 405–428. [Google Scholar] [CrossRef] - Barabanov, M.Y.; Bedolla, M.A.; Brooks, W.K.; Cates, G.D.; Chen, C.; Chen, Y.; Cisbani, E.; Ding, M.; Eichmann, G.; Ent, R.; et al. Diquark Correlations in Hadron Physics: Origin, Impact and Evidence. Prog. Part. Nucl. Phys.
**2021**, 116, 103835. [Google Scholar] [CrossRef] - Accardi, A.; Afanasev, A.; Albayrak, I.; Ali, S.F.; Amaryan, M.; Annand, J.R.M.; Arrington, J.; Asaturyan, A.; Atac, H.; Avakian, H.; et al. An Experimental Program with High Duty-Cycle Polarized and Unpolarized Positron Beams at Jefferson Lab. Eur. Phys. J. A
**2021**, 57, 261. [Google Scholar] [CrossRef] - Aguilar, A.C.; Ahmed, Z.; Aidala, C.; Ali, S.; Andrieux, V.; Arrington, J.; Bashir, A.; Berdnikov, V.; Binosi, D.; Chang, L.; et al. Pion and Kaon Structure at the Electron-Ion Collider. Eur. Phys. J. A
**2019**, 55, 190. [Google Scholar] [CrossRef] - Khalek, R.A.; Accardi, A.; Adam, J.; Adamiak, D.; Akers, W.; Albaladejo, M.; Al-bataineh, A.; Alexeev, M.G.; Ameli, F.; Antonioli, P.; et al. Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl. Phys. A
**2022**, 1026, 122447. [Google Scholar] [CrossRef] - Arrington, J.; Gayoso, C.A.; Barry, P.C.; Berdnikov, V.; Binosi, D.; Chang, L.; Diefenthaler, M.; Ding, M.; Ent, R.; Frederico, T. Revealing the Structure of Light Pseudoscalar Mesons at the Electron–Ion Collider. J. Phys. G
**2021**, 48, 075106. [Google Scholar] [CrossRef] - Chen, X.; Guo, F.K.; Roberts, C.D.; Wang, R. Selected Science Opportunities for the EicC. Few Body Syst.
**2020**, 61, 43. [Google Scholar] [CrossRef] - Anderle, D.P.; Bertone, V.; Cao, X.; Chang, L.; Chang, N.; Chen, G.; Chen, X.; Chen, Z.; Cui, Z.; Dai, L.; et al. Electron-Ion Collider in China. Front. Phys. (Beijing)
**2021**, 16, 64701. [Google Scholar] [CrossRef] - Quintans, C. The New AMBER Experiment at the CERN SPS. Few Body Syst.
**2022**, 63, 72. [Google Scholar] [CrossRef] - Mokeev, V.I.; Carman, D.S. Photo- and Electrocouplings of Nucleon Resonances. Few Body Syst.
**2022**, 63, 59. [Google Scholar] [CrossRef] - Carman, D.S.; Joo, K.; Mokeev, V.I. Strong QCD Insights from Excited Nucleon Structure Studies with CLAS and CLAS12. Few Body Syst.
**2020**, 61, 29. [Google Scholar] [CrossRef] - Aznauryan, I.; Burkert, V. Electroexcitation of Nucleon Resonances. Prog. Part. Nucl. Phys.
**2012**, 67, 1–54. [Google Scholar] [CrossRef][Green Version] - Villano, A.N.; Stoler, P.; Bosted, P.E.; Connell, S.H.; Dalton, M.M.; Jones, M.K.; Kubarovsky, V.; Adams, G.S.; Ahmidouch, A.; Arrington, J.; et al. Neutral Pion Electroproduction in the Resonance Region at High Q
^{2}. Phys. Rev. D**2009**, 80, 035203. [Google Scholar] - Dalton, M.M.; Adams, G.S.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, R.; Baker, O.K.; Benmouna, N.; Bertoncini, C.; Boeglin, W.U.; et al. Electroproduction of η Mesons in the S
_{11}(1535) Resonance Region at High Momentum Transfer. Phys. Rev. C**2009**, 80, 015205. [Google Scholar] [CrossRef][Green Version] - Anikin, I.V.; Braun, V.M.; Offen, N. Electroproduction of the N
^{*}(1535) Nucleon Resonance in QCD. Phys. Rev. D**2015**, 92, 014018. [Google Scholar] [CrossRef][Green Version] - Giannini, M.M.; Santopinto, E. The Hypercentral Constituent Quark Model and its Application to Baryon Properties. Chin. J. Phys.
**2015**, 53, 020301. [Google Scholar] - Braun, V.M. Hadron Wave Functions from Lattice QCD. Few Body Syst.
**2016**, 57, 1019. [Google Scholar] [CrossRef] - Aznauryan, I.G.; Burkert, V.D. Electroexcitation of Nucleon Resonances in a Light-Front Relativistic Quark Model. Few Body Syst.
**2018**, 59, 98. [Google Scholar] [CrossRef][Green Version] - Qin, S.X.; Roberts, C.D.; Schmidt, S.M. Poincaré-Covariant Analysis of Heavy-Quark Baryons. Phys. Rev. D
**2018**, 97, 114017. [Google Scholar] [CrossRef][Green Version] - Ramalho, G. Quark Model Calculations of Transition Form Factors at High Photon Virtualities. EPJ Web Conf.
**2020**, 241, 02007. [Google Scholar] [CrossRef] - Lyubovitskij, V.E.; Schmidt, I. Nucleon Resonances with Higher Spins in Soft-Wall AdS/QCD. Phys. Rev. D
**2020**, 102, 094008. [Google Scholar] [CrossRef] - Raya, K.; Gutiérrez-Guerrero, L.X.; Bashir, A.; Chang, L.; Cui, Z.F.; Lu, Y.; Roberts, C.D.; Segovia, J. Dynamical Diquarks in the γ
^{(*)}p→N(1535)${\frac{1}{2}}^{-}$ Transition. Eur. Phys. J. A**2021**, 57, 266. [Google Scholar] [CrossRef] - Liu, L.; Chen, C.; Roberts, C.D. Wave Functions of (I,J
^{P}) = ($\frac{1}{2}$, ${\frac{3}{2}}^{\mp}$) Baryons. arXiv**2022**, arXiv:2208.12353. [Google Scholar] [CrossRef] - Liu, L.; Chen, C.; Lu, Y.; Roberts, C.D.; Segovia, J. Composition of Low-Lying J = 3/2
^{±}Δ-Baryons. Phys. Rev. D**2022**, 105, 114047. [Google Scholar] [CrossRef] - Blin, A.N.H.; Melnitchouk, W.; Mokeev, V.I.; Burkert, V.D.; Chesnokov, V.V.; Pilloni, A.; Szczepaniak, A.P. Resonant Contributions to Inclusive Nucleon Structure Functions from Exclusive Meson Electroproduction data. Phys. Rev. C
**2021**, 104, 025201. [Google Scholar] [CrossRef] - Hiller Blin, A.N.; Mokeev, V.; Albaladejo, M.; Fernández-Ramírez, C.; Mathieu, V.; Pilloni, A.; Szczepaniak, A.; Burkert, V.D.; Chesnokov, V.V.; Golubenko, A.A.; et al. Nucleon Resonance Contributions to Unpolarised Inclusive Electron Scattering. Phys. Rev. C
**2019**, 100, 035201. [Google Scholar] [CrossRef][Green Version] - Klimenko, V. Inclusive Electron Scattering in the Resonance Region from a Hydrogen Target with CLAS12. 2023, in progress.
- Wilson, D.J.; Cloet, I.C.; Chang, L.; Roberts, C.D. Nucleon and Roper Electromagnetic Elastic and Transition Form Factors. Phys. Rev. C
**2012**, 85, 025205. [Google Scholar] [CrossRef][Green Version] - Segovia, J.; Chen, C.; Cloet, I.C.; Roberts, C.D.; Schmidt, S.M.; Wan, S.L. Elastic and Transition Form Factors of the Δ(1232). Few Body Syst.
**2014**, 55, 1–33. [Google Scholar] [CrossRef][Green Version] - Mokeev, V.I.; Burkert, V.D.; Carman, D.S.; Elouadrhiri, L.; Fedotov, G.V.; Golovatch, E.N.; Gothe, R.W.; Hicks, K.; Ishkhanov, B.S.; Isupov, E.L.; et al. New Results from the Studies of the N(1440)1/2
^{+}, N(1520)3/2^{−}, and Δ(1620)1/2^{−}Resonances in Exclusive ep→e^{′}p^{′}π^{+}π^{−}Electroproduction with the CLAS Detector. Phys. Rev. C**2016**, 93, 025206. [Google Scholar] [CrossRef][Green Version] - Segovia, J.; Cloet, I.C.; Roberts, C.D.; Schmidt, S.M. Nucleon and Δ Elastic and Transition Form Factors. Few Body Syst.
**2014**, 55, 1185–1222. [Google Scholar] [CrossRef][Green Version] - Segovia, J.; El-Bennich, B.; Rojas, E.; Cloet, I.C.; Roberts, C.D.; Xu, S.S.; Zong, H.S. Completing the Picture of the Roper Resonance. Phys. Rev. Lett.
**2015**, 115, 171801. [Google Scholar] [CrossRef][Green Version] - Segovia, J.; Roberts, C.D. Dissecting Nucleon Transition Electromagnetic Form Factors. Phys. Rev. C
**2016**, 94, 042201(R). [Google Scholar] [CrossRef][Green Version] - Chen, C.; Lu, Y.; Binosi, D.; Roberts, C.D.; Rodríguez-Quintero, J.; Segovia, J. Nucleon-to-Roper Electromagnetic Transition Form Factors at Large Q
^{2}. Phys. Rev. D**2019**, 99, 034013. [Google Scholar] [CrossRef][Green Version] - Burkert, V.D.; Mokeev, V.I.; Ishkhanov, B.S. The Nucleon Resonance Structure from the π
^{+}π^{−}p Electroproduction Reaction off Protons. Moscow Univ. Phys. Bull.**2019**, 74, 243, Vestn. Mosk. Univ. Ser. III Fiz. Astron.**2019**, 74, 28–38. [Google Scholar] [CrossRef] - Roberts, C.D. Resonance Electroproduction and the Origin of Mass. EPJ Web Conf.
**2020**, 241, 02008. [Google Scholar] [CrossRef] - Lu, Y.; Chen, C.; Cui, Z.F.; Roberts, C.D.; Schmidt, S.M.; Segovia, J.; Zong, H.S. Transition Form Factors: γ
^{*}+ p→Δ(1232), Δ(1600). Phys. Rev. D**2019**, 100, 034001. [Google Scholar] [CrossRef][Green Version] - Mokeev, V.I. Two Pion Photo- and Electroproduction with CLAS. EPJ Web Conf.
**2020**, 241, 03003. [Google Scholar] [CrossRef] - Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; Amsler, C. Review of Particle Physics. PTEP
**2022**, 2022, 083C01. [Google Scholar] - Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. Natural Constraints on the Gluon-Quark Vertex. Phys. Rev. D
**2017**, 95, 031501(R). [Google Scholar] [CrossRef][Green Version] - Chang, L.; Cloet, I.C.; Roberts, C.D.; Schmidt, S.M.; Tandy, P.C. Pion Electromagnetic Form Factor at Spacelike Momenta. Phys. Rev. Lett.
**2013**, 111, 141802. [Google Scholar] [CrossRef][Green Version] - Cui, Z.F.; Chen, C.; Binosi, D.; de Soto, F.; Roberts, C.D.; Rodríguez-Quintero, J.; Schmidt, S.M.; Segovia, J. Nucleon Elastic Form Factors at Accessible Large Spacelike Momenta. Phys. Rev. D
**2020**, 102, 014043. [Google Scholar] [CrossRef] - Ripani, M.; Mokeev, V.; Anghinolfi, M.; Battaglieri, M.; Fedotov, G.; Golovach, E.; Ishkhanov, B.; Osipenko, M.; Ricco, G.; Sapunenko, V.; et al. A Phenomenological Description of π
^{−}Δ^{++}Photoproduction and Electroproduction in Nucleon Resonance Region. Nucl. Phys. A**2000**, 672, 220–248. [Google Scholar] [CrossRef][Green Version] - Burkert, V.D.; Mokeev, V.I.; Shvedunov, N.V.; Boluchevskii, A.A.; Battaglieri, M.; Golovach, E.N.; Elouardrhiri, L.; Joo, K.; Isupov, E.L.; Ishkhanov, B.S.; et al. Isobar Channels in the Production of π
^{+}π^{−}Pairs on a Proton by Virtual Photons. Phys. Atom. Nucl.**2007**, 70, 427. [Google Scholar] [CrossRef] - Mokeev, V.I.; Burkert, V.D.; Lee, T.S.H.; Elouadrhiri, L.; Fedotov, G.V.; Ishkhanov, B.S. Model Analysis of the pπ
^{+}π^{−}Electroproduction Reaction on the Proton. Phys. Rev. C**2009**, 80, 045212. [Google Scholar] [CrossRef][Green Version] - Mokeev, V.I.; Biselli, A. Experimental Study of the P
_{11}(1440) and D_{13}(1520) Resonances from CLAS Data on ep→e^{′}π^{+}π^{−}p^{′}. Phys. Rev. C**2012**, 86, 035203. [Google Scholar] [CrossRef][Green Version] - Roberts, C.D.; Williams, A.G. Dyson-Schwinger Equations and their Application to Hadronic Physics. Prog. Part. Nucl. Phys.
**1994**, 33, 477–575. [Google Scholar] [CrossRef][Green Version] - Maris, P.; Roberts, C.D. π- and K Meson Bethe-Salpeter Amplitudes. Phys. Rev. C
**1997**, 56, 3369. [Google Scholar] [CrossRef][Green Version] - Cornwall, J.M. Dynamical Mass Generation in Continuum QCD. Phys. Rev. D
**1982**, 26, 1453. [Google Scholar] [CrossRef] - Schwinger, J.S. Gauge Invariance and Mass. Phys. Rev.
**1962**, 125, 397. [Google Scholar] [CrossRef] - Schwinger, J.S. Gauge Invariance and Mass. 2. Phys. Rev.
**1962**, 128, 2425. [Google Scholar] [CrossRef] - Aguilar, A.C.; Binosi, D.; Papavassiliou, J. Gluon and Ghost Propagators in the Landau Gauge: Deriving Lattice Results from Schwinger-Dyson Qquations. Phys. Rev. D
**2008**, 78, 025010. [Google Scholar] [CrossRef][Green Version] - Boucaud, P.; Leroy, J.P.; Le-Yaouanc, A.; Micheli, J.; Pene, O.; Rodríguez-Quintero, J. The Infrared Behaviour of the Pure Yang-Mills Green Functions. Few Body Syst.
**2012**, 53, 387–436. [Google Scholar] [CrossRef][Green Version] - Aguilar, A.C.; Binosi, D.; Papavassiliou, J. The Gluon Mass Generation Mechanism: A Concise Primer. Front. Phys. China
**2016**, 11, 111203. [Google Scholar] [CrossRef][Green Version] - Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J. Exploring Smoking-Gun Signals of the Schwinger Mechanism in QCD. Phys. Rev. D
**2022**, 105, 014030. [Google Scholar] [CrossRef] - Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Pinto-Gómez, F.; Roberts, C.D.; Rodríguez-Quintero, J. Schwinger Mechanism for Gluons from Lattice QCD. arXiv
**2022**, arXiv:2211.12594. Available online: https://arxiv.org/abs/2211.12594 (accessed on 1 March 2023). - Grunberg, G. Renormalization Scheme Independent QCD and QED: The Method of Effective Charges. Phys. Rev. D
**1984**, 29, 2315. [Google Scholar] [CrossRef] - Grunberg, G. On Some Ambiguities in the Method of Effective Charges. Phys. Rev. D
**1989**, 40, 680. [Google Scholar] [CrossRef] - Bjorken, J.D. Applications of the Chiral U(6) × (6) Algebra of Current Densities. Phys. Rev.
**1966**, 148, 1467. [Google Scholar] [CrossRef] - Bjorken, J.D. Inelastic Scattering of Polarized Leptons from Polarized Nucleons. Phys. Rev. D
**1970**, 1, 1376. [Google Scholar] [CrossRef][Green Version] - Gell-Mann, M. A Schematic Model of Baryons and Mesons. Phys. Lett.
**1964**, 8, 214. [Google Scholar] [CrossRef] - Eichmann, G.; Ramalho, G. Nucleon Resonances in Compton Scattering. Phys. Rev. D
**2018**, 98, 093007. [Google Scholar] [CrossRef][Green Version] - Ding, M.; Raya, K.; Binosi, D.; Chang, L.; Roberts, C.D.; Schmidt, S.M. Symmetry, Symmetry Breaking, and Pion Parton Distributions. Phys. Rev. D
**2020**, 101, 054014. [Google Scholar] [CrossRef][Green Version] - Chen, C.; Roberts, C.D. Nucleon Axial Form Factor at Large Momentum Transfers. Eur. Phys. J. A
**2022**, 58, 206. [Google Scholar] [CrossRef] - Maris, P.; Roberts, C.D.; Tandy, P.C. Pion Mass and Decay Constant. Phys. Lett. B
**1998**, 420, 267–273. [Google Scholar] [CrossRef][Green Version] - Höll, A.; Krassnigg, A.; Roberts, C.D. Pseudoscalar Meson Radial Excitations. Phys. Rev. C
**2004**, 70, 042203(R). [Google Scholar] [CrossRef][Green Version] - Brodsky, S.J.; Roberts, C.D.; Shrock, R.; Tandy, P.C. Confinement Contains Condensates. Phys. Rev. C
**2012**, 85, 065202. [Google Scholar] [CrossRef][Green Version] - Qin, S.X.; Roberts, C.D.; Schmidt, S.M. Ward–Green–Takahashi Identities and the Axial-Vector Vertex. Phys. Lett. B
**2014**, 733, 202–208. [Google Scholar] [CrossRef][Green Version] - Nambu, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev.
**1960**, 117, 648. [Google Scholar] [CrossRef] - Goldstone, J. Field Theories with Superconductor Solutions. Nuovo Cim.
**1961**, 19, 154–164. [Google Scholar] [CrossRef][Green Version] - Roberts, C.D. Perspective on the Origin of Hadron Masses. Few Body Syst.
**2017**, 58, 5. [Google Scholar] [CrossRef][Green Version] - Flambaum, V.V.; Holl, A.; Jaikumar, P.; Roberts, C.D.; Wright, S.V. Sigma Terms of Light-Quark Hadrons. Few Body Syst.
**2006**, 38, 31–51. [Google Scholar] [CrossRef][Green Version] - Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.; Meißner, U.G. Extracting the σ-Term from Low-Energy Pion-Nucleon Scattering. J. Phys. G
**2018**, 45, 024001. [Google Scholar] [CrossRef][Green Version] - Aoki, S.; Aoki, Y.; Bečirević, D.; Blum, T.; Colangelo, G.; Collins, S.; Della Morte, M.; Dimopoulos, P.; Dürr, S.; Fukaya, H.; et al. FLAG Review 2019. Eur. Phys. J. C
**2020**, 80, 113. [Google Scholar] [CrossRef][Green Version] - Obukhovsky, I.T.; Faessler, A.; Fedorov, D.K.; Gutsche, T.; Lyubovitskij, V.E. Transition Form Factors and Helicity Amplitudes for Electroexcitation of Negative- and Positive Parity Nucleon Resonances in a Light-Front Quark Model. Phys. Rev. D
**2019**, 100, 094013. [Google Scholar] [CrossRef][Green Version] - Carman, D.S. Nucleon Resonance Structure Studies Via Exclusive KY Electroproduction. Few Body Syst.
**2016**, 57, 941–948. [Google Scholar] [CrossRef][Green Version] - Carman, D.S. CLAS N
^{*}Excitation Results from Pion and Kaon Electroproduction. Few Body Syst.**2018**, 59, 82. [Google Scholar] [CrossRef] - CLAS Physics Database. Available online: https://clasweb.jlab.org/physicsdb/ (accessed on 1 March 2023).
- Chesnokov, V.V.; Golubenko, A.A.; Ishkhanov, B.S.; Mokeev, V.I. CLAS Database for Studies of the Structure of Hadrons in Electromagnetic Processes. Phys. Part. Nucl.
**2022**, 53, 184–190. [Google Scholar] [CrossRef] - Aznauryan, I.G. Multipole Amplitudes of Pion Photoproduction on Nucleons up to 2-GeV Within Dispersion Relations and Unitary Isobar Model. Phys. Rev. C
**2003**, 67, 015209. [Google Scholar] [CrossRef][Green Version] - Aznauryan, I.G.; Burkert, V.D.; Fedotov, G.V.; Ishkhanov, B.S.; Mokeev, V.I. Electroexcitation of Nucleon Resonances at Q
^{2}= 0.65 (GeV/c)^{2}from a Combined Analysis of Single- and Double-Pion Electroproduction Data. Phys. Rev. C**2005**, 72, 045201. [Google Scholar] [CrossRef][Green Version] - Arndt, R.; Briscoe, W.; Strakovsky, I.; Workman, R. Partial-Wave Analysis And Spectroscopy: From πN Scattering To Pion-Electroproduction. eConf
**2007**, C070910, 166. [Google Scholar] - Drechsel, D.; Kamalov, S.S.; Tiator, L. Unitary Isobar Model - MAID2007. Eur. Phys. J. A
**2007**, 34, 69–97. [Google Scholar] [CrossRef][Green Version] - Aznauryan, I.G.; Burkert, V.D.; Biselli, A.S.; Egiyan, H.; Joo, K.; Kim, W.; Park, K.; Smith, L.C.; Ungaro, M.; Adhikari, K.P.; et al. Electroexcitation of Nucleon Resonances from CLAS Data on Single Pion Electroproduction. Phys. Rev. C
**2009**, 80, 055203. [Google Scholar] [CrossRef] - Tiator, L.; Drechsel, D.; Kamalov, S.S.; Vanderhaeghen, M. Electromagnetic Excitation of Nucleon Resonances. Eur. Phys. J. ST
**2011**, 198, 141–170. [Google Scholar] [CrossRef][Green Version] - Park, K.; Aznauryan, I.G.; Burkert, V.D.; Adhikari, K.P.; Amaryan, M.J.; Pereira, S.A.; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; et al. Measurements of ep→e
^{′}π^{+}n at W = 1.6 − 2.0 GeV and Extraction of Nucleon Resonance Electrocouplings at CLAS. Phys. Rev. C**2015**, 91, 045203. [Google Scholar] [CrossRef][Green Version] - Tiator, L.; Döring, M.; Workman, R.L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A. Baryon Transition Form Factors at the Pole. Phys. Rev. C
**2016**, 94, 065204. [Google Scholar] [CrossRef][Green Version] - Tiator, L.; Workman, R.L.; Wunderlich, Y.; Haberzettl, H. Amplitude Reconstruction from Complete Electroproduction Experiments and Truncated Partial-Wave Expansions. Phys. Rev. C
**2017**, 96, 025210. [Google Scholar] [CrossRef][Green Version] - Tiator, L. The MAID Legacy and Future. Few Body Syst.
**2018**, 59, 21. [Google Scholar] [CrossRef][Green Version] - Knochlein, G.; Drechsel, D.; Tiator, L. Photoproduction and Electroproduction of η Mesons. Z. Phys. A
**1995**, 352, 327–343. [Google Scholar] [CrossRef][Green Version] - Chiang, W.T.; Yang, S.N.; Tiator, L.; Drechsel, D. An Isobar Model for η Photoproduction and Electroproduction on the Nucleon. Nucl. Phys. A
**2002**, 700, 429–453. [Google Scholar] [CrossRef][Green Version] - Chiang, W.T.; Yang, S.N.; Drechsel, D.; Tiator, L. An Isobar Model Study of η Photoproduction and Electroproduction. PiN Newslett.
**2002**, 16, 299. [Google Scholar] - Aznauryan, I. Resonance Contributions to η Photoproduction on Protons Found Using Dispersion Relations and an Isobar Model. Phys. Rev. C
**2003**, 68, 065204. [Google Scholar] [CrossRef][Green Version] - Kamano, H. Electromagnetic N
^{*}Transition Form Factors in the ANL-Osaka Dynamical Coupled-Channels Approach. Few Body Syst.**2018**, 59, 24. [Google Scholar] [CrossRef] - Mai, M.; Döring, M.; Granados, C.; Haberzettl, H.; Hergenrather, J.; Meißner, U.G.; Rönchen, D.; Strakovsky, I.; Workman, R. Coupled-Channels Analysis of Pion and η Electroproduction within the Jülich-Bonn-Washington Model. Phys. Rev. C
**2022**, 106, 015201. [Google Scholar] [CrossRef] - Mai, M.; Döring, M.; Granados, C.; Haberzettl, H.; Meißner, U.G.; Rönchen, D.; Strakovsky, I.; Workman, R. Jülich-Bonn-Washington Model for Pion Electroproduction Multipoles. Phys. Rev. C
**2021**, 103, 065204. [Google Scholar] [CrossRef] - Hwang, S.; Ahn, J.K.; Bassalleck, B.; Fujioka, H.; Guo, L.; Han, Y.; Hasegawa, S.; Hicks, K.; Honda, R.; Hosomi, K.; et al. Measurement of 3-Body Hadronic Reactions with HypTPC at J-PARC. JPS Conf. Proc.
**2015**, 8, 022008. [Google Scholar] - Hicks, K.H.; Sako, H.; Imai, K.; Hasegawa, S.; Sato, S.; Shirotori, K.; Chandavar, S.; Goetz, J.; Tang, W.; Ahn, J.K.; et al. 3-Body Hadronic Reactions for New Aspects of Baryon Spectroscopy. Available online: https://j-parc.jp/researcher/Hadron/en/pac_1207/pdf/P45_2012-3.pdf (accessed on 1 March 2023).
- Mokeev, V.I. New Opportunities for Insight into the Emergence of Hadron Mass from Studies of Nucleon Resonance Electroexcitation. In Proceedings of the Fall 2022 Meeting of the APS Division of Nuclear Physics, New Orleans, LA, USA, 27–30 October 2022. [Google Scholar]
- Mokeev, V.I. Nucleon Resonance Electrocouplings and the Emergence of Hadron Mass. In Proceedings of the Baryons 2022—International Conference on the Structure of Baryons, Andalusia, Spain, 7–11 November 2022. [Google Scholar]
- Dugger, M.; Ritchie, B.G.; Ball, J.P.; Collins, P.; Pasyuk, E.; Arndt, R.A.; Briscoe, W.J.; Strakovsky, I.I.; Workman, R.L.; Amaryan, M.J.; et al. π
^{+}Photoproduction on the Proton for Photon Energies from 0.725 to 2.875 GeV. Phys. Rev. C**2009**, 79, 065206. [Google Scholar] [CrossRef][Green Version] - Aznauryan, I.G.; Burkert, V.D. Extracting Meson-Baryon Contributions to the Electroexcitation of the N(1675)${\frac{5}{2}}^{-}$ Nucleon Resonance. Phys. Rev. C
**2015**, 92, 015203. [Google Scholar] [CrossRef][Green Version] - Roberts, H.L.L.; Chang, L.; Cloet, I.C.; Roberts, C.D. Masses of Ground and Excited-state Hadrons. Few Body Syst.
**2011**, 51, 1. [Google Scholar] [CrossRef] - Chen, C.; Fischer, C.S.; Roberts, C.D.; Segovia, J. Nucleon Axial-Vector and Pseudoscalar Form Factors and PCAC Relations. Phys. Rev. D
**2022**, 105, 094022. [Google Scholar] [CrossRef] - Chang, L.; Cloet, I.C.; Cobos-Martinez, J.J.; Roberts, C.D.; Schmidt, S.M.; Tandy, P.C. Imaging Dynamical Chiral Symmetry Breaking: Pion Wave Function on the Light Front. Phys. Rev. Lett.
**2013**, 110, 132001. [Google Scholar] [CrossRef][Green Version] - Raya, K.; Chang, L.; Bashir, A.; Cobos-Martinez, J.J.; Gutiérrez-Guerrero, L.X.; Roberts, C.D.; Tandy, P.C. Structure of the Neutral Pion and its Electromagnetic Transition Form Factor. Phys. Rev. D
**2016**, 93, 074017. [Google Scholar] [CrossRef][Green Version] - Mokeev, V.I. Insight into EHM from Results on Electroexcitation of Δ(1600)3/2
^{+}Resonance. In Proceedings of the Workshop on perceiving the Emergence of Hadron Mass through AMBER @ CERN—VII, Geneve, Switzerland, 10–13 May 2022. [Google Scholar] - Isupov, E.L.; Burkert, V.D.; Carman, D.S.; Gothe, R.W.; Hicks, K.; Ishkhanov, B.S.; Mokeev, V.I. Measurements of ep→e
^{′}π^{+}π^{−}p^{′}Cross Sections with CLAS at 1.40 GeV < W < 2.0 GeV and 2.0 GeV^{2}< Q^{2}< 5.0 GeV^{2}. Phys. Rev. C**2017**, 96, 025209. [Google Scholar] - Trivedi, A. Measurement of New Observables from the π
^{+}π^{−}p Electroproduction Off the Proton. Few Body Syst.**2019**, 60, 5. [Google Scholar] [CrossRef] - Mokeev, V.I.; Burkert, V.D.; Carman, D.S.; Elouadrhiri, L.; Golovatch, E.; Gothe, R.W.; Hicks, K.; Ishkhanov, B.S.; Isupov, E.L.; Joo, K.; et al. Evidence for the N
^{′}(1720)3/2^{+}Nucleon Resonance from Combined Studies of CLAS π^{+}π^{−}p Photo- and Electroproduction Data. Phys. Lett. B**2020**, 805, 135457. [Google Scholar] [CrossRef] - Mokeev, V.I.; Carman, D.S. New Baryon States in Exclusive Meson Photo-/Electroproduction with CLAS. Rev. Mex. Fis. Suppl.
**2022**, 3, 0308024. [Google Scholar] [CrossRef] - Burkert, V.D.; Elouadrhiri, L.; Adhikari, K.P.; Adhikari, S.; Amaryan, M.J.; Anderson, D.; Angelini, G.; Antonioli, M.; Atac, H.; Aune, S.; et al. The CLAS12 Spectrometer at Jefferson Laboratory. Nucl. Instrum. Meth. A
**2020**, 959, 163419. [Google Scholar] [CrossRef] - Gothe, R.W.; Mokeev, V.; Burkert, V.D.; Cole, P.L.; Joo, K.; Stoler, P. Nucleon Resonance Studies with CLAS12. JLab Experiment E12-09-003. Available online: https://www.jlab.org/exp_prog/proposals/09/PR12-09-003.pdf (accessed on 1 March 2023).
- Carman, D.S.; Mokeev, V.I.; Burkert, V.D. Exclusive N
^{*}→KY Studies with CLAS12. JLab Experiment E12-06-108A. Available online: https://www.jlab.org/exp_prog/proposals/14/E12-06-108A.pdf (accessed on 1 March 2023). - D’Angelo, A.; Burkert, V.D.; Carman, D.S.; Golovatch, E.; Gothe, R.; Mokeev, V. A Search for Hybrid Baryons in Hall B with CLAS12. JLab Experiment E12-16-010. Available online: https://www.jlab.org/exp_prog/proposals/16/PR12-16-010.pdf (accessed on 1 March 2023).
- Carman, D.S.; d’Angelo, A.; Lanza, L.; Mokeev, V.I.; Adhikari, K.P.; Amaryan, M.J.; Armstrong, W.R.; Atac, H.; Avakian, H.; Gayoso, C.A.; et al. Beam-Recoil Transferred Polarization in K
^{+}Y Electroproduction in the Nucleon Resonance Region with CLAS12. Phys. Rev. C**2022**, 105, 065201. [Google Scholar] [CrossRef] - Burkert, V.D. N
^{*}Experiments and Their Impact on Strong QCD Physics. Few Body Syst.**2018**, 59, 57. [Google Scholar] [CrossRef][Green Version] - Aznauryan, I.; Burkert, V.; Lee, T.S.; Mokeev, V. Results from the N
^{*}Program at JLab. J. Phys. Conf. Ser.**2011**, 299, 012008. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Integral equations for the dressed quark and gluon two-point functions [84] (Section 2.2), drawn in terms of the Feynman diagrams that govern the emergence of gluon and quark quasiparticles from the partons used to express the QCD Lagrangian. (Total momentum k flows from left to right in each diagram, being conserved in passing through the loop integrals.) These quasiparticles are the active components in hadron structure at low resolving scales. Their parton content is revealed at higher resolutions. (Unbroken lines—quarks; spring-like lines—gluons; short-dashed lines—ghosts; filled circles—dressed propagators; open circles—two-point = self-energies and three/ four-point = dressed vertices. The vertices satisfy their own Dyson–Schwinger equations, involving higher n-point functions [84]).

**Figure 2.**(

**left**): CSM predictions for the momentum dependence of the dressed-gluon (blue solid) and quark (green dot-dashed) masses [9,10,11]. The associated like-colored bands express the uncertainties in the CSM predictions. (N.B. Since the Poincaré-invariant kinetic energy operator for a vector boson has mass–dimension two and that for a spin-half fermion has mass–dimension unity, then for ${m}_{p}^{2}/{k}^{2}\to 0$, ${M}_{0}\left(k\right)\propto 1/{k}^{2}$ and ${m}_{g}^{2}\left(k\right)\propto 1/{k}^{2}$, up to $ln{k}^{2}$ corrections). (

**Right**) CSM prediction [3] (magenta band) for the process-independent QCD running coupling $\widehat{\alpha}\left(k\right)$ compared with the empirical results [4] for the process-dependent effective charge defined via the Bjorken sum rule, which is prominent in deep inelastic scattering.

**Figure 3.**CSM predictions for observables of the structure for the ground state hadrons in comparison with experimental results (points with error bars) or comparable theory. (

**Upper left**)—pion valence quark PDF [100]; (

**Upper right**)—nucleon axial form factor ${G}_{A}$ [101]; (

**Lower left**)—pion elastic form factor [11]; and (

**Lower right**)—ratio of nucleon elastic electric and magnetic form factors [79]. Sources for comparison curves and points are listed in References [11,79,100,101].

**Figure 4.**Mass budgets for the proton (outermost annulus), $\rho $-meson, kaon, and pion (innermost annulus). Each annulus is drawn using a Poincaré-invariant decomposition. The separation is made at a renormalization scale $\zeta =2\phantom{\rule{0.166667em}{0ex}}$GeV, calculated using information from References [76,109,110,111].

**Figure 5.**Resonant and non-resonant amplitudes contributing to exclusive meson electroproduction channels in the resonance region.

**Figure 6.**$N\left(1440\right)1/{2}^{+}$ and $N\left(1520\right)3/{2}^{-}$ electrocouplings extracted from the $\pi N$ [121,123] and ${\pi}^{+}{\pi}^{-}p$ [67,83,136,137] electroproduction channels. The photocouplings from the Review of Particle Properties (RPP) [76] and from Reference [138] are shown by the blue squares and triangles, respectively.

**Figure 7.**Description of the results for the $N\to \Delta $ magnetic transition form factor G${}_{\mathrm{M}}^{*}$ (

**left**) and the electrocoupling amplitude ${A}_{1/2}$ for the $N\to N\left(1440\right)1/{2}^{+}$ (

**right**) achieved using CSMs [65,66,68,69]. Results obtained with a momentum-independent (frozen) dressed-quark mass [65,66] (dotted red curves) are compared with QCD-kindred results (solid blue curves) obtained with the momentum-dependent quark mass function in Figure 2. The electrocoupling data were taken from References [50,121,123]—$\pi N$ electroproduction, and References [67,83,136,137]—${\pi}^{+}{\pi}^{-}p$ electroproduction. The photocouplings for the $N\left(1440\right)1/{2}^{+}$ are from the RPP [76] and from Reference [138]—blue square and triangle, respectively. The ranges of ${Q}^{2}$ where the contributions from the meson–baryon cloud remain substantial are highlighted in gray.

**Figure 8.**Regarding extraction of $\Delta \left(1600\right)3/{2}^{+}$ electrocouplings, representative examples of the nine independent one-fold differential cross sections available from the ${\pi}^{+}{\pi}^{-}p$ measurements with CLAS [145,146] at two different ${Q}^{2}$ values, along with the data fits within the data-driven meson–baryon JM reaction model [75,82,83].

**Figure 9.**Preliminary $\Delta \left(1600\right)3/{2}^{+}$ electrocouplings with their assigned uncertainties, determined from independent analysis of the ${\pi}^{+}{\pi}^{-}p$ differential cross sections in three overlapping W intervals: 1.46–1.56 GeV (filled blue squares), 1.51–1.61 GeV (filled red triangles), and 1.56–1.66 GeV (filled black triangles) [136,137,144]. CSM predictions [74] are drawn as solid red curves.

**Figure 10.**(

**Top**) Momentum ranges accessible in the exploration of the momentum dependence of the dressed-quark mass function using results on the ${Q}^{2}$-evolution of ${\gamma}_{v}p{N}^{*}$ electrocouplings. The range of k covered by available data is mostly from experiments with CLAS, shown in yellow. The expected reach of CLAS12 experiments is shown in purple, and that achievable after a proposed increase of the JLab beam energy to 22 GeV in cyan. (

**Bottom**) Yields of representative exclusive meson electroproduction channels available from the experiments with the CLAS12 detector.

**Figure 11.**Luminosity versus CM energy in lepton–proton collisions for existing and foreseeable facilities capable of exploring hadron structure in measurements with large-acceptance detectors.

**Table 1.**Comparison between the measured masses of the proton and neutron, ${m}_{p,n}$, and the sum of the current-quark masses of their three u- and d-quark constituents [76]. (Current quark masses are listed at a scale of 2 GeV, but the comparison remains qualitatively unchanged if renormalization group invariant current masses are used.)

Proton | Neutron | |
---|---|---|

Measured masses (MeV) | 938.2720813 ± 0.0000058 | 939.5654133± 0.0000058 |

Sum of the current quark masses (MeV) | 8.09${}_{-0.65}^{+1.45}$ | 11.50${}_{-0.60}^{+1.45}$ |

Contribution of the current quark masses to the measured nucleon mass (%) | <1.1 | <1.4 |

**Table 2.**Summary of the results for the ${\gamma}_{v}p{N}^{*}$ electrocouplings from the $\pi N$, $\eta p$, and ${\pi}^{+}{\pi}^{-}p$ electroproduction channels measured with the CLAS detector in Hall B at JLab.

Meson Electroproduction Channels | Excited Proton States | ${\mathit{Q}}^{2}$ Ranges for Extracted ${\mathit{\gamma}}_{\mathit{v}}{\mathit{p}\mathit{N}}^{*}$ Electrocouplings, GeV${}^{2}$ |
---|---|---|

${\pi}^{0}p$, ${\pi}^{+}n$ | $\Delta \left(1232\right)3/{2}^{+}$ | 0.16–6 |

$N\left(1440\right)1/{2}^{+}$, $N\left(1520\right)3/{2}^{-}$ | 0.30–4.16 | |

$N\left(1535\right)1/{2}^{-}$ | 0.30–4.16 | |

${\pi}^{+}n$ | $N\left(1675\right)5/{2}^{-}$, $N\left(1680\right)5/{2}^{+}$ | 1.6-4.5 |

$N\left(1710\right)1/{2}^{+}$ | ||

$\eta p$ | $N\left(1535\right)1/{2}^{-}$ | 0.2–2.9 |

${\pi}^{+}{\pi}^{-}p$ | $N\left(1440\right)1/{2}^{+}$, $N\left(1520\right)3/{2}^{-}$ | 0.25–1.50 |

$\Delta \left(1600\right)3/{2}^{+}$, $\Delta \left(1620\right)1/{2}^{-}$ | 2.0–5.0 | |

$N\left(1650\right)1/{2}^{-}$, $N\left(1680\right)5/{2}^{+}$, | ||

$\Delta \left(1700\right)3/{2}^{-}$ | 0.50–1.50 | |

$N\left(1720\right)3/{2}^{+}$, ${N}^{\prime}\left(1720\right)3/{2}^{+}$ | 0.50-1.50 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Carman, D.S.; Gothe, R.W.; Mokeev, V.I.; Roberts, C.D.
Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass. *Particles* **2023**, *6*, 416-439.
https://doi.org/10.3390/particles6010023

**AMA Style**

Carman DS, Gothe RW, Mokeev VI, Roberts CD.
Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass. *Particles*. 2023; 6(1):416-439.
https://doi.org/10.3390/particles6010023

**Chicago/Turabian Style**

Carman, Daniel S., Ralf W. Gothe, Victor I. Mokeev, and Craig D. Roberts.
2023. "Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass" *Particles* 6, no. 1: 416-439.
https://doi.org/10.3390/particles6010023