# Pulsed Plasma Accelerator

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Operational Principle and Design of Pulsed Accelerator

## 3. Model of Plasma Bunch

^{3}–10

^{4}. Then, when condition (9) is satisfied, the substitution of (8) into (7) gives the following:

## 4. A Practical Example

## 5. Concluding Remarks

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Morozov, A.I.; Savelyev, V.V. Fundamentals of stationary plasma thruster theory. In Reviews of Plasma Physics; Kadomtsev, B.B., Shafranov, V.D., Eds.; Springer: Boston, MA, USA, 2000; Volume 21, pp. 203–291. [Google Scholar]
- Bathgate, S.N.; Bilek, M.M.M.; Mckenzie, D.R. Electrodeless plasma thruster for spacecraft: A review. Plasma Sci. Technol.
**2017**, 19, 083001. [Google Scholar] [CrossRef] - Smirnov, A.; Raitses, Y.; Fisch, N.J. Experimental and theoretical studies of cylindrical Hall thrusters. Phys. Plasmas
**2007**, 14, 057106. [Google Scholar] [CrossRef] - Goebel, D.M.; Katz, I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Mazouffre, S. Electric propulsion for satellites and spacecraft: Established technologies and novel approaches. Plasma Sources Sci. Technol.
**2016**, 25, 033002. [Google Scholar] [CrossRef] - Kim, V.P. Design features and operating procedures in advanced Morozov’s stationary plasma thrusters. Tech. Phys.
**2015**, 60, 362. [Google Scholar] [CrossRef] - Grishin, S.D.; Leskov, L.V.; Kozlov, H.P. Electric Rocket Engines; Mechanical Engineering: Moscow, Russia, 1975. (In Russian) [Google Scholar]
- Karimov, A.R.; Murad, P.A. Acceleration of rotating plasma flows in crossed magnetic fields. IEEE Trans. Plasma Sci.
**2017**, 45, 1710. [Google Scholar] [CrossRef] - Karimov, A.R.; Murad, P.A. Plasma thruster using momentum exchange in crossed magnetic fields. IEEE Trans. Plasma Sci.
**2018**, 46, 882. [Google Scholar] [CrossRef] - Vovchenko, E.D.; Karimov, A.R.; Kozlovskii, K.I.; Schikanov, A.E.; Plekhanov, A.A. Plasma Accelerator. Patent RF No. 2696975, 8 August 2019. [Google Scholar]
- Vovchenko, E.D.; Kozlovskii, K.I.; Schikanov, A.E.; Karimov, A.R.; Rashchikov, V.I.; Shatokhin, V.L.; Iasev, A.A.; Deryabochkin, O.V. Compact induction accelerator of laser plasma for ion energies up to 1 MeV. Phys. Part. Nucl. Lett.
**2020**, 17, 497. [Google Scholar] [CrossRef] - Zhdanov, S.K.; Kurnaev, V.A.; Romanovskii, M.K.; Tsvetkov, I.V. Fundamentals of Physical Processes in Plasma and Plasma Facilities; MEPhI: Moscow, Russia, 2000. (In Russian) [Google Scholar]
- Beckenbach, E.F.; Bellman, R. Inequalities; Springer: Berlin/Heidelberg, Germany, 1961. [Google Scholar]
- Kozlovskij, K.I.; Shikanov, A.E.; Vovchenko, E.D.; Isaev, A.A. On the acceleration of the particle flux of laser deuterium plasma in a fast-growing magnetic field. Phys. Part. Nuclei Lett.
**2018**, 15, 990. [Google Scholar] - Karimov, A.R.; Terekhov, S.A.; Shikanov, A.E.; Murad, P.A. Acceleration of macroscopic clusters in crossed magnetic fields. IEEE Trans. Plasma Sci.
**2019**, 47, 1520. [Google Scholar] [CrossRef] - Zhang, W.; Yu, M.Y.; Karimov, A.R.; Stenflo, L. Energy coupling among the degrees of freedom in an electron–positron plasma. J. Plasma Phys.
**2010**, 76, 329. [Google Scholar] [CrossRef][Green Version] - Karimov, A.R.; Murad, P.A.; Terekhov, S.A.; Yamschikov, V.A. Electrophysical means in space research and applications for the near-Earth space. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Online, 9–11 August 2021; p. 3253. [Google Scholar]
- Rao, N.N.; Shukla, P.K.; Yu, M.Y. Dust-acoustic waves in dusty plasmas. Plan. Space Sci.
**1990**, 38, 543. [Google Scholar] [CrossRef] - Popel, S.I.; Kopnin, S.I.; Yu, M.Y.; Ma, J.X.; Huang, F. The effect of microscopic charged particulates in space weather. J. Phys. D Appl. Phys.
**2011**, 44, 174036. [Google Scholar] [CrossRef]

**Figure 1.**The accelerator schematic [10]: 1—disk-shaped magnetic circuit; 2—permanent magnet; 3—spiral electrode; 4—tubular magnetic circuit; 5—cylindrical magnetic circuit; 6—accelerated plasma flow; 7—dielectric washer; 8—current pulse generator.

**Figure 2.**The plasma ring in the cylindrical coordinate system which is accelerated in the device shown in Figure 1. Here, ${R}_{1}$ and ${R}_{2}$ are the inner and the external radii of the plasma ring; $\delta $ is the ring length.

**Figure 3.**The dependence of $v/{v}_{0}$ as a function of $\tau /{\tau}_{i}$ for the different values of dimensionless radius $x$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Karimov, A.; Terekhov, S.; Yamschikov, V.
Pulsed Plasma Accelerator. *Plasma* **2023**, *6*, 36-44.
https://doi.org/10.3390/plasma6010004

**AMA Style**

Karimov A, Terekhov S, Yamschikov V.
Pulsed Plasma Accelerator. *Plasma*. 2023; 6(1):36-44.
https://doi.org/10.3390/plasma6010004

**Chicago/Turabian Style**

Karimov, Alexander, Svyatoslav Terekhov, and Vladimir Yamschikov.
2023. "Pulsed Plasma Accelerator" *Plasma* 6, no. 1: 36-44.
https://doi.org/10.3390/plasma6010004