Journal Description
Plasma
Plasma
is an international, open access, peer-reviewed journal covering all aspects of plasma science, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, Inspec, CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.2 days after submission; acceptance to publication is undertaken in 4.7 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Tailoring Black TiO2 Thin Films: Insights from Hollow Cathode Hydrogen Plasma Treatment Duration
Plasma 2023, 6(2), 362-378; https://doi.org/10.3390/plasma6020025 - 01 Jun 2023
Abstract
In this study, we report the use of a radiofrequency plasma-assisted chemical vapor deposition (RF-CVD) system with a hollow cathode geometry to hydrogenate anatase TiO2 thin films. The goal was to create black TiO2 films with improved light absorption capabilities. The
[...] Read more.
In this study, we report the use of a radiofrequency plasma-assisted chemical vapor deposition (RF-CVD) system with a hollow cathode geometry to hydrogenate anatase TiO2 thin films. The goal was to create black TiO2 films with improved light absorption capabilities. The initial TiO2 was developed through magnetron sputtering, and this study specifically investigated the impact of hollow cathode hydrogen plasma (HCHP) treatment duration on the crucial characteristics of the resulting black TiO2 films. The HCHP treatment effectively created in-bandgap states in the TiO2 structure, leading to enhanced light absorption and improved conductivity. Morphological analysis showed a 24% surface area increase after 15 min of treatment. Wettability and surface energy results displayed nonlinear behavior, highlighting the influence of morphology on hydrophilicity improvement. The anatase TiO2 phase remained consistent, as confirmed by diffractograms. Raman analysis revealed structural alterations and induced lattice defects. Treated samples exhibited outstanding photodegradation performance, removing over 45% of methylene blue dye compared to ~25% by the pristine TiO2 film. The study emphasized the significant impact of 15-min hydrogenation on the HCHP treatment. The research provided valuable insights into the role of hydrogenation time using the HCHP treatment route on anatase TiO2 thin films and demonstrated the potential of the produced black TiO2 thin films for photocatalytic applications.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
►
Show Figures
Open AccessArticle
A Mechanism for Large-Amplitude Parallel Electrostatic Waves Observed at the Magnetopause
Plasma 2023, 6(2), 345-361; https://doi.org/10.3390/plasma6020024 - 01 Jun 2023
Abstract
Large-amplitude electrostatic waves propagating parallel to the background magnetic field have been observed at the Earth’s magnetopause by the Magnetospheric Multiscale (MMS) spacecraft. These waves are observed in the region where there is an intermixing of magnetosheath and magnetospheric plasmas. The plasma in
[...] Read more.
Large-amplitude electrostatic waves propagating parallel to the background magnetic field have been observed at the Earth’s magnetopause by the Magnetospheric Multiscale (MMS) spacecraft. These waves are observed in the region where there is an intermixing of magnetosheath and magnetospheric plasmas. The plasma in the intermixing region is modeled as a five-component plasma consisting of three types of electrons, namely, two counterstreaming hot electron beams and cold electrons, and two types of ions, namely, cold background protons and a hot proton beam. Sagdeev pseudo-potential technique is used to study the parallel propagating nonlinear electrostatic solitary structures. The model predicts four types of modes, namely, slow ion-acoustic mode, fast ion-acoustic mode, slow electron-acoustic mode and fast electron-acoustic modes. Except the fast ion-acoustic mode, all other modes support solitons. Whereas slow ion-acoustic solitons have positive potentials, both slow and fast electron-acoustic solitons have negative potentials. For the case of 4% cold electron density, the slow ion-acoustic solitons have electric field ∼(40–120) mV m . The fast Fourier transforms (FFT) of slow ion-acoustic solitons produce broadband frequency spectra having peaks between ∼100 Hz to 1000 Hz. These theoretical predictions are in good agreement with the observations. The slow and fast electron-acoustic solitons could be relevant in explaining the low-intensity high (>1 kHz) frequency waves which are also observed at the same time.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
►▼
Show Figures

Figure 1
Open AccessArticle
What Machine Learning Can and Cannot Do for Inertial Confinement Fusion
by
and
Plasma 2023, 6(2), 334-344; https://doi.org/10.3390/plasma6020023 - 01 Jun 2023
Abstract
Machine learning methodologies have played remarkable roles in solving complex systems with large data, well-defined input–output pairs, and clearly definable goals and metrics. The methodologies are effective in image analysis, classification, and systems without long chains of logic. Recently, machine-learning methodologies have been
[...] Read more.
Machine learning methodologies have played remarkable roles in solving complex systems with large data, well-defined input–output pairs, and clearly definable goals and metrics. The methodologies are effective in image analysis, classification, and systems without long chains of logic. Recently, machine-learning methodologies have been widely applied to inertial confinement fusion (ICF) capsules and the design optimization of OMEGA (Omega Laser Facility) capsule implosion and NIF (National Ignition Facility) ignition capsules, leading to significant progress. As machine learning is being increasingly applied, concerns arise regarding its capabilities and limitations in the context of ICF. ICF is a complicated physical system that relies on physics knowledge and human judgment to guide machine learning. Additionally, the experimental database for ICF ignition is not large enough to provide credible training data. Most researchers in the field of ICF use simulations, or a mix of simulations and experimental results, instead of real data to train machine learning models and related tools. They then use the trained learning model to predict future events. This methodology can be successful, subject to a careful choice of data and simulations. However, because of the extreme sensitivity of the neutron yield to the input implosion parameters, physics-guided machine learning for ICF is extremely important and necessary, especially when the database is small, the uncertain-domain knowledge is large, and the physical capabilities of the learning models are still being developed. In this work, we identify problems in ICF that are suitable for machine learning and circumstances where machine learning is less likely to be successful. This study investigates the applications of machine learning and highlights fundamental research challenges and directions associated with machine learning in ICF.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
►▼
Show Figures

Figure 1
Open AccessArticle
Plasma Treatment of Polystyrene Films—Effect on Wettability and Surface Interactions with Au Nanoparticles
Plasma 2023, 6(2), 322-333; https://doi.org/10.3390/plasma6020022 - 29 May 2023
Abstract
Polystyrene (PS)/Gold (Au) is used for a wide range of applications, including composite nanofibers, catalysis, organic memory devices, and biosensing. In this work, PS films were deposited on silicon substrates via a spin coating technique followed by treatment with argon (Ar) plasma admixed
[...] Read more.
Polystyrene (PS)/Gold (Au) is used for a wide range of applications, including composite nanofibers, catalysis, organic memory devices, and biosensing. In this work, PS films were deposited on silicon substrates via a spin coating technique followed by treatment with argon (Ar) plasma admixed with ammonia (NH3), oxygen (O2), or tetrafluoroethane (C2H2F4). X-Ray photoelectron spectroscopy (XPS) analysis revealed modified surface chemistry for Ar/O2, Ar/NH3, or Ar/C2H2F4 plasma treatment through the incorporation of oxygen, nitrogen, or fluorine groups, respectively. Size-controlled magnetron sputter deposition of Au nanoparticles (NP) onto these plasma-treated PS films was investigated via XPS and AFM techniques. The interaction of the Au NPs, as probed from the XPS and AFM measurements, is discussed by referring to changes in surface chemistry and morphology of the PS after plasma treatment. The results demonstrate the effect of surface chemistry on the interaction of Au NPs with polymer support having different surface functionalities. The XPS results show that significant oxygen surface incorporation resulted from oxygen-containing species in the plasma itself. The surface concentration of O increased from 0.4% for the pristine PS to 4.5 at%, 35.4 at%, and 45.6 at% for the Ar/C2H4F4, Ar/NH3, and Ar/O2, respectively. The water contact angle (WCA) values were noticed to decrease from 98° for the untreated PS to 95°, 37°, and 15° for Ar/C2H2F4, Ar/NH3, and Ar/O2 plasma-modified PS samples, respectively. AFM results demonstrate that surface treatment was also accompanied by surface morphology change. Small Au islands are well dispersed and cover the surface, thus forming a homogeneous, isotropic structure. The reported results are important for exploiting Au NPs use in catalysis and sensing applications.
Full article
(This article belongs to the Topic Applications of Photonics, Laser, Plasma and Radiation Physics)
►▼
Show Figures

Figure 1
Open AccessArticle
EUV/VUV Spectroscopy for the Study of Carbon Impurity Transport in Hydrogen and Deuterium Plasmas in the Edge Stochastic Magnetic Field Layer of Large Helical Device
by
, , , , , , , and
Plasma 2023, 6(2), 308-321; https://doi.org/10.3390/plasma6020021 - 12 May 2023
Abstract
The ergodic layer in the Large Helical Device (LHD) consists of stochastic magnetic fields exhibiting a three-dimensional structure that is intrinsically formed by helical coils. Spectroscopic diagnostics was employed in the extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) wavelength ranges to investigate emission
[...] Read more.
The ergodic layer in the Large Helical Device (LHD) consists of stochastic magnetic fields exhibiting a three-dimensional structure that is intrinsically formed by helical coils. Spectroscopic diagnostics was employed in the extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) wavelength ranges to investigate emission lines of carbon impurities in both hydrogen (H) and deuterium (D) plasmas, aiming to elucidate the impact of distinct bulk ions on impurity generation and transport in the edge plasmas of the LHD. The emission intensity of carbon CIII, CIV, CV, and CVI lines is significantly higher in the D plasma compared to the H plasma, indicating a greater sputtering rate of carbon materials in the D plasma, resulting in a higher quantity of carbon impurities originating from the divertor plates. A Doppler profile measurement of the second order of CIV line emission (1548.20 × 2 Å) was attempted using a 3 m normal-incidence VUV spectrometer in the edge plasma at a horizontally elongated plasma position. The flow velocity reaches its maximum value close to the outermost region of the ergodic layer, and the observed flow direction aligns with the friction force in the parallel momentum balance. The flow velocity increases with the electron density in H plasmas, suggesting that the friction force becomes more dominant in the force balance at higher density regimes. This leads to an increase in the impurity flow, which can contribute to the impurity screening. In contrast, the flow velocity in the D plasma is smaller than that in the H plasma. The difference in flow values between D and H plasmas, when the friction force term dominates in the momentum balance, could be attributed to the mass dependence of the thermal velocity of the bulk ions.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
►▼
Show Figures

Figure 1
Open AccessReview
Fundamentals and Applications of Nonthermal Plasma Fluid Flows: A Review
Plasma 2023, 6(2), 277-307; https://doi.org/10.3390/plasma6020020 - 10 May 2023
Abstract
A review is presented to integrate fluid engineering, heat transfer engineering, and plasma engineering treated in the fields of mechanical engineering, chemical engineering, and electrical engineering. A basic equation system for plasma heat transfer fluids is introduced, and its characteristics are explained. In
[...] Read more.
A review is presented to integrate fluid engineering, heat transfer engineering, and plasma engineering treated in the fields of mechanical engineering, chemical engineering, and electrical engineering. A basic equation system for plasma heat transfer fluids is introduced, and its characteristics are explained. In such reviews, generally, the gap between fundamentals and application is large. Therefore, the author attempts to explain the contents from the standpoint of application. The derivation of formulas and basic equations are presented with examples of application to plasmas. Furthermore, the heat transfer mechanisms of equilibrium and nonequilibrium plasmas are explained with reference to the basic equation system and concrete examples of analyses.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
From Repeatability to Self-Organization of Guided Streamers Propagating in a Jet of Cold Plasma
by
and
Plasma 2023, 6(2), 250-276; https://doi.org/10.3390/plasma6020019 - 05 May 2023
Abstract
In this work, a jet of cold plasma is generated in a device supplied in helium and powered with a high-voltage nanopulse power supply, hence generating guided streamers. We focus on the interaction between these guided streamers and two targets placed in a
[...] Read more.
In this work, a jet of cold plasma is generated in a device supplied in helium and powered with a high-voltage nanopulse power supply, hence generating guided streamers. We focus on the interaction between these guided streamers and two targets placed in a series: a metal mesh target (MM) at floating potential followed by a metal plate target (MP) grounded by a 1500 Ω resistor. We demonstrate that such an experimental setup allows to shift from a physics of streamer repeatability to a physics of streamer self-organization, i.e., from the repetition of guided streamers that exhibit fixed spatiotemporal constants to the emergence of self-organized guided streamers, each of which is generated on the rising edge of a high-voltage pulse. Up to five positive guided streamers can be self-organized one after the other, all distinct in space and time. While self-organization occurs in the capillary and up to the MM target, we also demonstrate the existence of transient emissive phenomena in the inter-target region, especially a filamentary discharge whose generation is directly correlated with complexity order Ω. The mechanisms of the self-organized guided streamers are deciphered by correlating their optical and electrical properties measured by fast ICCD camera and current-voltage probes, respectively. For the sake of clarity, special attention is paid to the case where three self-organized guided streamers (α, β and γ) propagate at vα = 75.7 km·s–1, vβ = 66.5 km·s–1 and vγ = 58.2 km·s–1), before being accelerated in the vicinity of the MM target.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
►▼
Show Figures

Figure 1
Open AccessArticle
Anodization Time Effect on Silver Particles Deposition on Anodic Oxide Coating over Al Produced by Plasma Electrolytic Oxidation
by
, , , , and
Plasma 2023, 6(2), 235-249; https://doi.org/10.3390/plasma6020018 - 23 Apr 2023
Abstract
In this study, 6061 Al alloy was galvanostatically anodized under the Plasma Electrolytic Oxidation (PEO) condition. A factorial design of 22 was carried out using two variables (anodization time and presence of silver in the electrolyte) on two levels, i.e., 20 and
[...] Read more.
In this study, 6061 Al alloy was galvanostatically anodized under the Plasma Electrolytic Oxidation (PEO) condition. A factorial design of 22 was carried out using two variables (anodization time and presence of silver in the electrolyte) on two levels, i.e., 20 and 60 min of anodization and the absence/presence of silver ions in the electrolyte. The Al anodization was performed in sodium silicate electrolyte, applying a constant current density of 20 mA cm−2. The oxide characterization was performed by Scanning Electron Microscopy (SEM), surface roughness analysis (RMS), Energy Dispersive Spectroscopy (EDS), Rutherford Backscattered Spectroscopy (RBS), and Grazing Incidence X-ray Diffraction (GIXRD). The SEM micrographs revealed an irregular porous structure with cracks on the oxide surface composed of a thin crystalline layer of γ-Al2O3 over the Al substrate. From EDS and RBS analysis, it was possible to identify the elements Al, O, Si, Ag, and Na, demonstrating that a shorter anodization time (20 min) led to a significant amount of silver deposits on the outer layer of the oxide coating, mainly deposited in the surroundings of the pores. Conversely, the silver content on the PEO film anodized for 60 min was meager. These results demonstrated that the anodization time was the critical control variable for the amount of silver deposited over the oxide film. The shorter the anodizing time, the higher the silver content on the PEO coating.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Combinatorial Synthesis of AlTiN Thin Films
Plasma 2023, 6(2), 225-234; https://doi.org/10.3390/plasma6020017 - 03 Apr 2023
Cited by 1
Abstract
Nitrides of aluminum (Al) and titanium (Ti) mixtures have long been studied and used as commercial coatings because of their high hardness and high oxidation resistance due to the formation of an alumina layer on the coating surface. To fully understand the contribution
[...] Read more.
Nitrides of aluminum (Al) and titanium (Ti) mixtures have long been studied and used as commercial coatings because of their high hardness and high oxidation resistance due to the formation of an alumina layer on the coating surface. To fully understand the contribution of Al and Ti to the properties of the film, a combinatorial deposition approach was employed using half-disk targets. Film growth was carried out using a magnetron sputtering system powered by a 13.56 MHz radio frequency power supply with varying argon (Ar) and nitrogen (N2) gas ratios. Depending on the location of the substrate relative to the target, atomic percent gradients of 0.60–0.70 Al and 0.30–0.40 Ti across the substrate surface were obtained from energy dispersive X-ray spectral analysis. X-ray diffraction peaks at 43.59°, 74.71° (face-centered cubic), and 50.60° (wurtzite) confirmed the presence of aluminum titanium nitride (AlTiN) mixtures, with an increasing amount of wurtzite phase at higher Al concentrations. For all samples, cauliflower-like nanograins were obtained and samples of the 80:20 Ar:N2 gas pressure ratio showed the smallest grain size among the three gas ratio combinations. The 80:20 Ar:N2 films revealed a relatively high hardness compared to the other gas ratios. All thin films exhibited good adhesion to 304 stainless steel substrates.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Characteristics of Double-Layer, Large-Flow Dielectric Barrier Discharge Plasma Source for Toluene Decomposition
Plasma 2023, 6(2), 212-224; https://doi.org/10.3390/plasma6020016 - 03 Apr 2023
Abstract
The direct decomposition of toluene-containing humidified air at large flow rates was studied in two types of reactors with dielectric barrier discharge (DBD) features in ambient conditions. A scalable large-flow DBD reactor (single-layer reactor) was designed to verify the feasibility of large-flow plasma
[...] Read more.
The direct decomposition of toluene-containing humidified air at large flow rates was studied in two types of reactors with dielectric barrier discharge (DBD) features in ambient conditions. A scalable large-flow DBD reactor (single-layer reactor) was designed to verify the feasibility of large-flow plasma generation and evaluate its decomposition characteristics with toluene-containing humidified air, which have not been investigated. In addition, another large-flow DBD reactor with a multilayer structure (two-layer reactor) was developed as an upscale version of the single-layer reactor, and the scalability and superiority of the features of the multilayer structure were validated by comparing the decomposition characteristics of the two reactors. Consequently, the large-flow DBD reactor showed similar decomposition characteristics to those of the small-flow DBD reactor regarding applied voltage, flow velocity, flow rate, and discharge length, thus justifying the feasibility of large-flow plasma generation. Additionally, the two-layer reactor is more effective than the single-layer reactor, suggesting multilayer configuration is a viable scheme for further upscaled DBD systems. A high decomposition rate of 59.5% was achieved at the considerably large flow rate of 110 L/min. The results provide fundamental data and present guidelines for the implementation of the DBD plasma-based system as a solution for volatile organic compound abatement.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
►▼
Show Figures

Figure 1
Open AccessArticle
Geometrical Analysis of the Stagnation Zone in Laterally Colliding Plasmas: Effects of Plasma Plume Separation and Ablating Target Material
Plasma 2023, 6(2), 198-211; https://doi.org/10.3390/plasma6020015 - 30 Mar 2023
Abstract
The influence of an ablating target’s atomic mass on the development and growth of the interaction zone in laterally colliding plasmas has been investigated. As diagnostic tools, fast imaging and optical emission techniques were used to evaluate the characteristics of the seed plasma
[...] Read more.
The influence of an ablating target’s atomic mass on the development and growth of the interaction zone in laterally colliding plasmas has been investigated. As diagnostic tools, fast imaging and optical emission techniques were used to evaluate the characteristics of the seed plasma as well as the interaction zone created by different target materials (i.e., aluminum and silicon). The current findings show that the dynamical, spectral, and geometrical properties of the generated interaction zone are affected by the features of the ablated species and the geographical separation of the interacting plumes. The interaction of aluminum plume species results in a sharper, more intense, and more directed stagnation zone than that reported for silicon targets using a 450 nm filter. Furthermore, the investigation of the interaction area emission from both regions for aluminum (Al) and silicon (Si) plasma explains the variation in plasma properties in the stagnation zone. As a part of this work’s description, a comparative study of the dynamics and characteristics of the homogenous interaction region produced by colliding plasma plumes by laser ablation of flat Al and Si targets has been presented, which can provide deep insight into the characterization of colliding laser-produced plasma expansion and related physical and technical properties.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
The Post-Shock Nonequilibrium Relaxation in a Hypersonic Plasma Flow Involving Reflection off a Thermal Discontinuity
Plasma 2023, 6(1), 181-197; https://doi.org/10.3390/plasma6010014 - 06 Mar 2023
Abstract
The evolution in the post-shock nonequilibrium relaxation in a hypersonic plasma flow was investigated during a shock’s reflection off a thermal discontinuity. It was found that within a transitional period, the relaxation zone parameters past both the reflected and transmitted waves evolve differently
[...] Read more.
The evolution in the post-shock nonequilibrium relaxation in a hypersonic plasma flow was investigated during a shock’s reflection off a thermal discontinuity. It was found that within a transitional period, the relaxation zone parameters past both the reflected and transmitted waves evolve differently compared to that in the incident wave. In a numerical example for the non-dissociating N2 gas heated to 5000 K/10,000 K across the interface and M = 3.5, the relaxation time determined for the transmitted wave is up to 50% shorter and the relaxation depth for both waves is significantly reduced, thus resulting in a weakened wave structure. The results of the extension into larger values of heating strength and the shock Mach numbers are discussed. The findings can be useful in the areas of research involving strong shocks interacting with optical discharges or other heated media on the scale where the shock structure becomes important.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Plane Parallel Barrier Discharges for Carbon Dioxide Splitting: Influence of Discharge Arrangement on Carbon Monoxide Formation
Plasma 2023, 6(1), 162-180; https://doi.org/10.3390/plasma6010013 - 06 Mar 2023
Abstract
A planar volume dielectric barrier discharge (DBD) in pure carbon dioxide (CO2) for the formation of carbon monoxide (CO) is examined by combined electrical and CO density measurements. The influence of the type of electrode, the barrier material, the barrier thickness,
[...] Read more.
A planar volume dielectric barrier discharge (DBD) in pure carbon dioxide (CO2) for the formation of carbon monoxide (CO) is examined by combined electrical and CO density measurements. The influence of the type of electrode, the barrier material, the barrier thickness, and the discharge gap on the plasma power and the CO formation is analyzed systematically. The electrical characterization by means of charge-voltage plots is based on the simplest equivalent circuit model of DBDs, extended by the so-called partial surface discharge effect and the presence of parallel parasitic capacitances. The stackable discharge arrangement in this study enables one to elucidate the influence of parasitic capacitances, which can be overlooked in the application of such plasma sources. The determination of the discharge voltage from charge-voltage plots and the validity of the so-called Manley power equation are revised by taking into account non-uniform coverage as well as parasitic capacitances. The energy yield ( ) of CO is analyzed and compared with the literature. No correlations of with the mean reduced electric field strength or the geometric parameters of the DBD arrangement are observed.
Full article
(This article belongs to the Special Issue Dielectric Barrier Discharges 2023)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of Plasma Bridge for Grounding of Conductive Substrates Treated by Transferred Pulsed Atmospheric Arc
Plasma 2023, 6(1), 139-161; https://doi.org/10.3390/plasma6010012 - 05 Mar 2023
Abstract
An atmospheric pressure plasma jet (APPJ) sustained by a pulsed atmospheric arc (PAA) transferred on an electrically conducting surface was operated with a mean power of 700 W, a pulse frequency of 60 kHz, and a gas mixture of N and H
[...] Read more.
An atmospheric pressure plasma jet (APPJ) sustained by a pulsed atmospheric arc (PAA) transferred on an electrically conducting surface was operated with a mean power of 700 W, a pulse frequency of 60 kHz, and a gas mixture of N and H with up to 10% H , flowing at 30 to 70 SLM. It was shown that the plasma bridge ignited between the grounded injector and electrically conducting and floating substrates can be used for electrical grounding. This allowed for arc transfer on such substrates. The plasma bridge was stable for Argon flow through the injector from 3 to 10 SLM. Its length was between 5 and 15 mm. The plasma bridge current was 350 mA. The copper contact pads on an alumina electronic board were treated using the plasma bridge sustained by Ar injection for grounding. First, an oxide film of about 65 nm was grown by a compressed dry air (CDA) plasma jet. Then, this film was reduced at a speed of 4 cm /s by forming gas 95/5 (95% of N and 5% of H ) plasma jet.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrocoalescence of Water Droplets
Plasma 2023, 6(1), 127-138; https://doi.org/10.3390/plasma6010011 - 01 Mar 2023
Abstract
An experimental setup has been created to study the electrocoalescence of submillimeter- and millimeter-sized water droplets on a hydrophobic dielectric surface. The dependences of the interdroplet distance on the droplet radius are studied. It is shown that drops on a hydrophobic surface exhibit
[...] Read more.
An experimental setup has been created to study the electrocoalescence of submillimeter- and millimeter-sized water droplets on a hydrophobic dielectric surface. The dependences of the interdroplet distance on the droplet radius are studied. It is shown that drops on a hydrophobic surface exhibit patterns of spatial arrangement that are characteristic of drops of a droplet cluster and fog. The electric field strengths at which mass coalescence of droplets begin are measured. A new model of electrocoalescence based on the state diagram of a drop-ion plasma is proposed. The possible role of electrocoalescence in the problem of rapid rain formation in atmospheric clouds is discussed.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
CO2 Decomposition in Microwave Discharge Created in Liquid Hydrocarbon
Plasma 2023, 6(1), 115-126; https://doi.org/10.3390/plasma6010010 - 27 Feb 2023
Cited by 1
Abstract
The task of CO2 decomposition is one of the components of the problem associated with global warming. One of the promising directions of its solution is the use of low-temperature plasma. For these purposes, different types of discharges are used. Microwave discharge
[...] Read more.
The task of CO2 decomposition is one of the components of the problem associated with global warming. One of the promising directions of its solution is the use of low-temperature plasma. For these purposes, different types of discharges are used. Microwave discharge in liquid hydrocarbons has not been studied before for this problem. This paper presents the results of a study of microwave discharge products in liquid Nefras C2 80/120 (petroleum solvent, a mixture of light hydrocarbons with a boiling point from 33 to 205 °C) when CO2 is introduced into the discharge zone, as well as the results of a study of the discharge by optical emission spectroscopy and shadow photography methods. The main gas products are H2, C2H2, C2H4, CH4, CO2, and CO. No oxygen was found in the products. The mechanisms of CO2 decomposition in the discharge are considered. The formation of H2 occurs simultaneously with the decomposition of CO2 in the discharge, with a volumetric rate of up to 475 mL/min and energy consumption of up to 81.4 NL/kWh.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Understanding the Role of Plasma Bullet Currents in Heating Skin to Mitigate Risks of Thermal Damage Caused by Low-Temperature Atmospheric-Pressure Plasma Jets
by
, , , , , , , , , , , , and
Plasma 2023, 6(1), 103-114; https://doi.org/10.3390/plasma6010009 - 27 Feb 2023
Abstract
Low-temperature atmospheric-pressure plasma jets are generally considered a safe medical technology with no significant long-term side effects in clinical studies reported to date. However, there are studies emerging that show plasma jets can cause significant side effects in the form of skin burns
[...] Read more.
Low-temperature atmospheric-pressure plasma jets are generally considered a safe medical technology with no significant long-term side effects in clinical studies reported to date. However, there are studies emerging that show plasma jets can cause significant side effects in the form of skin burns under certain conditions. Therefore, with a view of developing safer plasma treatment approaches, in this study we have set out to provide new insights into the cause of these skin burns and how to tailor plasma treatments to mitigate these effects. We discovered that joule heating by the plasma bullet currents is responsible for creating skin burns during helium plasma jet treatment of live mice. These burns can be mitigated by treating the mice at a further distance so that the visible plasma plume does not contact the skin. Under these treatment conditions we also show that the plasma jet treatment still retains its medically beneficial property of producing reactive oxygen species in vivo. Therefore, treatment distance is an important parameter for consideration when assessing the safety of medical plasma treatments.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation of Machine Learning Techniques for Disruption Prediction Using JET Data
Plasma 2023, 6(1), 89-102; https://doi.org/10.3390/plasma6010008 - 24 Feb 2023
Abstract
Disruption prediction and mitigation is of key importance in the development of sustainable tokamak reactors. Machine learning has become a key tool in this endeavour. In this paper, multiple machine learning models are tested and compared. A focus has been placed on the
[...] Read more.
Disruption prediction and mitigation is of key importance in the development of sustainable tokamak reactors. Machine learning has become a key tool in this endeavour. In this paper, multiple machine learning models are tested and compared. A focus has been placed on the analysis of a transition to dimensionless input quantities. The methods used in this paper are the support vector machine, two-tiered support vector machine, random forest, gradient-boosted trees and long-short term memory. The performance between different models is remarkably similar, with the support vector machine attaining a slightly better accuracy score. The similarity could indicate issues with the dataset, but further study is required to confirm this. Both the two-tiered model and long-short term memory performed below expectations. The former could be attributed to an implementation which did not allow error propagation between tiers. The latter could be attributed to high noise and low frequency of the input signals. Dimensionless models experienced an expected decrease in performance, caused by a loss of information in the conversion. However, random forest and gradient boosted trees experienced a significantly lower decrease, making them more suitable for dimensionless predictors. From the disruption detection times, it was concluded that several disruptions could be predicted at more than 600 ms in advance. A feature importance study using the random forest indicated the negative impact of high noise and missing data in the database, suggesting improvements in data preparation for future work and the potential reevaluation of some of the selected portable features due to poor performance.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Open AccessReview
Flexible Cold Atmospheric Plasma Jet Sources
Plasma 2023, 6(1), 72-88; https://doi.org/10.3390/plasma6010007 - 16 Feb 2023
Abstract
The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable for industrial and biomedical applications. They show many advantages when it comes to local and precise surface treatments, and there is interest in upgrading their performance for irradiation on large areas
[...] Read more.
The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable for industrial and biomedical applications. They show many advantages when it comes to local and precise surface treatments, and there is interest in upgrading their performance for irradiation on large areas and uneven surfaces. The generation of charged species (electrons and ions) and reactive species (radicals), together with emitted UV photons, enables a rich plasma chemistry that should be uniform on arbitrary sample profiles. Lateral gradients in plasma parameters from multi-jets should, therefore, be minimized and addressed by means of plasma monitoring techniques, such as electrical diagnostics and optical emission spectroscopy analysis (OES). This article briefly reviews the main strategies adopted to build morphing APPJ arrays and ultra-flexible and long tubes to project cold plasma jets. Basic aspects, such as inter-jet interactions and nozzle shape, have also been discussed, as well as potential applications in the fields of polymer processing and plasma medicine.
Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
►▼
Show Figures

Figure 1
Open AccessArticle
Analysis and Mitigation of Pulse-Pile-Up Artifacts in Plasma Pulse-Height X-ray Spectra
by
, , , , , and
Plasma 2023, 6(1), 58-71; https://doi.org/10.3390/plasma6010006 - 02 Feb 2023
Cited by 1
Abstract
Pulse pile-up in pulse-height energy analyzers increases when the incident rate of pulses increases relative to the inverse of the dead time per pulse of the detection system. Changes in the observed energy distributions with incident rate and detector-electronics-formed pulse shape then occur.
[...] Read more.
Pulse pile-up in pulse-height energy analyzers increases when the incident rate of pulses increases relative to the inverse of the dead time per pulse of the detection system. Changes in the observed energy distributions with incident rate and detector-electronics-formed pulse shape then occur. We focus on weak high energy tails in X-ray spectra, important for measurements on partially ionized, warm (50–500 eV average electron energy), pure hydrogen plasma. A first-principles two-photon pulse-pile-up model is derived specific to trapezoidal-shaped pulses; quantitative agreement is found between the measurements and the model’s predictions. The model is then used to diagnose pulse-pile-up tail artifacts and mitigate them in relatively low count-rate spectra.
Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Entropy, Photonics, Physics, Plasma, Universe, Fractal Fract, Condensed Matter
Applications of Photonics, Laser, Plasma and Radiation Physics
Topic Editors: Viorel-Puiu Paun, Eugen Radu, Maricel AgopDeadline: 30 March 2024
Topic in
Applied Sciences, JMMP, Materials, Photonics, Plasma
Hybrid and Heterogeneous Integration on Photonic Circuits
Topic Editors: Joan Manel Ramírez, Carlos Alberto Alonso-RamosDeadline: 31 May 2024
Topic in
Cancers, Catalysts, Current Oncology, Plasma, Sci
Advances in Low-Temperature Plasma Cancer Therapy
Topic Editors: Michael Keidar, Li Lin, Dayun YanDeadline: 20 September 2024

Conferences
Special Issues
Special Issue in
Plasma
Plasma Application for Nanotechnologies
Guest Editor: Arif A. BabaevDeadline: 31 July 2023
Special Issue in
Plasma
Plasma and Artificial Intelligence
Guest Editor: Brunello TirozziDeadline: 31 August 2023
Special Issue in
Plasma
Dielectric Barrier Discharges 2023
Guest Editors: Bruno Caillier, Nicolas NaudéDeadline: 30 September 2023
Special Issue in
Plasma
New Insights into Plasma Theory, Modeling and Predictive Simulations
Guest Editor: Tariq RafiqDeadline: 31 October 2023