# A Review of Delamination Damage of Composite Materials

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Causes of Delamination

#### 2.1. Technological

#### 2.2. Free Edge

_{1}, Poisson’s ratio ${v}_{21}$ and the coefficient of mutual influence ${\eta}_{16}$ from the direction of reinforcement $\phi $ (Figure 1a) are characteristic of all fiber polymer composites [5,25]. The uniaxial macroscopic stress state at the edge ($p>h$, where $p$ is the radius of curvature of the edge) causes different intralayer stresses. From the equilibrium of the part shown in Figure 1b, it is evident that interlayer stresses ${\sigma}_{13},{\sigma}_{23}\mathrm{and}{\sigma}_{33}$ occur at the edge. Their magnitude and direction depend on the orientation and thickness of the layers in the package, and the edge effect zone $\lambda \lesssim h$.

#### 2.3. Connections

#### 2.4. Percussion Loads

#### 2.5. Cyclic Loading

#### 2.6. Delamination from Other Defects

## 3. Load-Bearing Capacity of Structural Elements with Delamination

#### 3.1. Development of Delamination (Quasi-Statics)

#### 3.1.1. Mechanisms of Delamination Growth

#### 3.1.2. Criteria for Increasing Delamination

#### 3.1.3. Mode Separation

#### 3.1.4. Some Peculiarities of Applying the Criteria for Increasing Delamination

#### 3.1.5. Processes of Delamination Growth

#### 3.2. Durability (Material Resistance)

#### 3.2.1. Delamination Resistance

#### 3.2.2. Closing Delamination Behavior

## 4. Summary and Outlook

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Clyne, T.W.; Hull, D. An Introduction to Composite Materials; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Saba, N.; Jawaid, M.; Sultan, M.T.H. An Overview of Mechanical and Physical Testing of Composite Materials. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–12. [Google Scholar]
- Mizerna, O.L.; Mizerna, E.L. Stress-Strain State of Fibrous Composite Materials under Viscoelastic Deformation. Ph.D. Thesis, National University of Zaporizhzhia Polytechnic, Zaporizhia Oblast, Ukraine, 2021. [Google Scholar]
- Goncharenko, V.V.; Kovalenko, I.V. Technology of Composite Materials: Study Guide; Goncharenko, V.V., Kovalenko, I.V.-K., Eds.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Christensen, R.M. Mechanics of Composite Materials; Courier Corporation: Singapore, 2012. [Google Scholar]
- Bondar, N.V. Strength of Aircraft Shells Made of Composites with Consideration of the Working Environment and Operational Damage. Ph.D. Thesis, National Aviation University, Kyiv, Ukraine, 2019. [Google Scholar]
- Ivanov, D.A.; Shlyapin, S.D.; Vagliano, G.E. Study of Fracture Mechanism of Aluminomatrix Dispersion-Hardened Al-Al
_{4}C_{3}-Al_{2}O_{3}Composite Material with Layered Structure under Static and Shock Loading. Izvestiya vuzov. Powder Metall. Funct. Coat.**2020**, 4, 66–75. [Google Scholar] [CrossRef] - Mahajan, V.M.; Sharma, A. Evaluation of Static Responses for Layered Composite Arches. Curved Layer. Struct.
**2023**, 10, 20220185. [Google Scholar] [CrossRef] - Mudra, E.; Koribanich, I.; Hrubovčáková, M.; Shepa, I.; Kovalcikova, A.; Dusza, J. Preparation and Fracture Analysis of Advanced Layered Composite with Graphene-Coated Alumina Nanofibers. J. Nano Res.
**2023**, 78, 17–22. [Google Scholar] [CrossRef] - Panasiuk, K.; Dudzik, K. Determining the Stages of Deformation and Destruction of Composite Materials in a Static Tensile Test by Acoustic Emission. Materials
**2022**, 15, 313. [Google Scholar] [CrossRef] - Khosrozadeh, A.; Khosravifard, A.; Rajabi, I. Inverse Identification of Material Constants of Various Cohesive Laws for Delamination of Composites Using Experimental Results. Compos. Struct.
**2023**, 303, 116241. [Google Scholar] [CrossRef] - Achache, H.; Ghezail, A.; Bouabdellah, A.; Benzerdjeb, A. Mechanical Behavior of Mode I Delamination of a Laminated Composite Material. Eurasia Proc. Sci. Technol. Eng. Math.
**2019**, 7, 68–75. [Google Scholar] - Karpinos, D.M.; Oleinik, V.I. Polymers and Composite Materials on Their Basis in Engineering; Naukova Dumka: Kiev, Ukraine, 1981. [Google Scholar]
- Dvorak, G. Micromechanics of Composite Materials; Springer Science & Business Media: Berlin, Germany, 2012; Volume 186. [Google Scholar]
- Guz, A.N. Mechanics of Fracture at Compression of Composite Materials; Nauk. Dumka: Kiev, Ukraine, 1990. [Google Scholar]
- Guz, A.N.; Khoroshun, L.P.; Vanin, G.A. Mechanics of Composite Materials and Elements of Structures; Naukova Dumka: Kiev, Ukraine, 1982; Volume 3, p. 1. [Google Scholar]
- Grigorenko, Y.M.; Vasilenko, A.T.; Emelyanov, I.G.; Kryukov, N.N.; Nemysh, Y.N.; Pankratova, N.D.; Pelekh, B.L.; Vlaikov, G.G.; Maksimuk, A.V.; Urusova, G.P. Mechanics of Composites; National Academy of Sciences of Ukraine, Institute of Mechanics Press: Kyiv, Ukraine, 1999. [Google Scholar]
- Arya, V. Large Strain Creep Analysis of Composite Thick-Walled Anisotropic Cylinders. J. Mech. Eng. Sci.
**2023**, 17, 9395–9409. [Google Scholar] [CrossRef] - Fang, H.; Wang, D. Simulation Analysis of Delamination Damage for the Thick-Walled Composite-Overwrapped Pressure Vessels. Materials
**2022**, 15, 6880. [Google Scholar] [CrossRef] - Patel, P.; Chaudhary, V. Delamination Evaluation in Drilling of Composite Materials—A Review. Mater. Today Proc.
**2022**, 56, 2690–2695. [Google Scholar] [CrossRef] - Pliusys, E.; Mativenga, P.T. Reducing Delamination in Micro Drilling of Carbon Composite Materials. In International Matador Conference; Springer: Berlin/Heidelberg, Germany, 2015; pp. 337–356. [Google Scholar]
- Saghir, Q.; Kamran Afaq, S.; Ahmed, T.; Song, J. Effect of Machining Parameters on Surface Quality and Delamination of Carbon/Glass/Epoxy Hybrid Composite Material during End Milling Operation. J. Mech. Sci. Technol.
**2023**, 37, 2319–2324. [Google Scholar] [CrossRef] - Lebedev, A.O.; Bobyr, M.I.; Lamashevsky, V.P. Mechanics of Materials for Engineers: Study Guide; NTUU “KPI” Press: Kyiv, Ukraine, 2006. [Google Scholar]
- Vereshchaka, S.M. Nonlinear Deformation and Stability of Multilayer Elements of Structures with Structural Defects; Vereshchaka SM-Sumy; Sumy State University Publishing House: Sumy Oblast, Ukraine, 2009. [Google Scholar]
- Serensen, S.V.; Zaitsev, G.P. Bearing Capacity of Thin-Walled Structures of Reinforced Plastics with Defects; Naukova Dumka: Kiev, Ukraine, 1982; p. 295. [Google Scholar]
- Chung, S. Effects of Interlaminar Stress Gradients on Free Edge Delamination in Composite Laminates; Drexel University: Philadelphia, PA, USA, 2003. [Google Scholar]
- Chen, X.; Janeliukstis, R.; Sarhadi, A. Thermographic Data Analytics-Based Damage Characterization in a Large-Scale Composite Structure under Cyclic Loading. Compos. Struct.
**2022**, 290, 115525. [Google Scholar] [CrossRef] - Dhanesh, N.; Kapuria, S. Piezoelasticity Solution for Edge Stress Field in Weakly Bonded Piezoelectric Composite Laminates. Arch. Appl. Mech.
**2021**, 91, 2411–2434. [Google Scholar] [CrossRef] - Edwin Samson, P.; Senthil Kumaran, S.; Vigneshwaran, S.; Oisik, D. The Effect of Fiber Orientation and Stacking Sequence on Carbon/E-Glass/Epoxy Intraply Hybrid Composites under Dynamic Loading Conditions. Polym. Adv. Technol.
**2023**, 34, 363–376. [Google Scholar] [CrossRef] - Isometsii, J.; Lahtinen, H. Criteria for Matrix Failure in Continuous Frp-Composites—A Literature Study. Part 1: Matrix Cracking. Rakenteiden Mekaniikka
**1996**, 29, 3–28. [Google Scholar] - Kim, W.C.; Miller, T.C.; Dharan, C.K.H. Strength of Composite Sandwich Panels Containing Debonds. Int. J. Solids Struct.
**1993**, 30, 211–223. [Google Scholar] [CrossRef] - Lim, Y.B.; Parsons, I.D. The Linearized Buckling Analysis of a Composite Beam with Multiple Delaminations. Int. J. Solids Struct.
**1993**, 30, 3085–3099. [Google Scholar] [CrossRef] - Baier-Saip, J.A.; Baier, P.A.; de Faria, A.R.; Baier, H. Layerwise Theories for Composite Beams with Continuous and Discontinuous Stresses. Eur. J. Mech. A/Solids
**2023**, 98, 104890. [Google Scholar] [CrossRef] - Bazhenov, V.A.; Sakharov, A.S.; Gondlyakh, A.V.; Melnikov, S.L. Nonlinear Problems of Mechanics of Multilayer; Budmechanics: Fargo, ND, USA, 1994; pp. 233–246. [Google Scholar]
- Hou, N.; Zhao, R.; Li, J.; Wang, X.; Li, X.; Cui, H.; Li, Y. Impact Damage of Composite Laminates with High-Speed Waterjet. Int. J. Impact Eng.
**2022**, 167, 104276. [Google Scholar] [CrossRef] - Kayaaslan, M.; Coskun, T.; Sahin, O.S.; Unlu, U.M.; Kadioglu, F. Mechanical and Dynamic Responses of Unidirectional/Woven Carbon Fiber Reinforced Thermoset and Thermoplastic Composites after Low Velocity Impact. Polym. Polym. Compos.
**2022**, 30. [Google Scholar] [CrossRef] - Zhao, Z.; Du, C.; Liu, P.; Dang, H.; Ma, L.; Guo, Z.; Zhang, C.; Li, Y. Effect of Fiber Architecture on the Impact Resistance of Composite Panels Subjected to Metallic Projectile. Compos. Struct.
**2021**, 273, 114273. [Google Scholar] [CrossRef] - Russo, A.; Palumbo, C.; Riccio, A. The Role of Intralaminar Damages on the Delamination Evolution in Laminated Composite Structures. Heliyon
**2023**, 9, e15060. [Google Scholar] [CrossRef] - Wei, R.; Shen, K.; Pan, G. A Numerical Study on the Effect of Delamination on Composite Cylindrical Shells Subjected to Hydrostatic Pressure. Ocean. Eng.
**2022**, 262, 112294. [Google Scholar] [CrossRef] - Yang, J.; Han, S.; Yu, W.-R. Detection of Delamination of Steel–Polymer Sandwich Composites Using Acoustic Emission and Development of a Forming Limit Diagram Considering Delamination. Heliyon
**2023**, 9, e16942. [Google Scholar] [CrossRef] [PubMed] - Chen, S.; Zhu, S. Effects of Planimetric Position of Delamination on Compressive Failure of Composite Laminates. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2022; Volume 360. [Google Scholar]
- Lorriot, T.; Marion, G.; Harry, R.; Wargnier, H. Onset of Free-Edge Delamination in Composite Laminates under Tensile Loading. Compos. Part B Eng.
**2003**, 34, 459–471. [Google Scholar] [CrossRef] - Russo, P.; Langella, A.; Papa, I.; Simeoli, G.; Lopresto, V. Thermoplastic Polyurethane/Glass Fabric Composite Laminates: Low Velocity Impact Behavior under Extreme Temperature Conditions. Compos. Struct.
**2017**, 166, 146–152. [Google Scholar] [CrossRef] - Papa, I.; Donadio, F.; Sánchez Gálvez, V.; Lopresto, V. On the Low- and High-Velocity Impact Behaviour of Hybrid Composite Materials at Room and Extreme Temperature. J. Compos. Mater.
**2022**, 56, 31–42. [Google Scholar] [CrossRef] - Yan, M.; Liu, L.; Chen, L.; Li, N.; Jiang, Y.; Xu, Z.; Jing, M.; Hu, Y.; Liu, L.; Zhang, X. Radiation Resistance of Carbon Fiber-Reinforced Epoxy Composites Optimized Synergistically by Carbon Nanotubes in Interface Area/Matrix. Compos. Part B Eng.
**2019**, 172, 447–457. [Google Scholar] [CrossRef] - Liu, L.; Feng, L.; Ma, T.; Xu, Z.; Pei, X.; Liu, Y.; Shi, H.; Tang, Y.; Liu, L.; Deng, H.; et al. Mechanical Properties, Thermal Stability and Microstructure Evolution of Carbon Fiber-Reinforced Epoxy Composites Exposed to High-Dose γ-Rays. Radiat. Phys. Chem.
**2022**, 194, 110056. [Google Scholar] [CrossRef] - Bhuyan, M.K.; Bhuyan, M.S.; Rodríguez-Dévora, J.I.; Yanez, M. Delamination Behavior of Bidirectional S 2 Glass Epoxy Laminated Composite Due to Combined Moisture and Temperature Cyclic Loading. J. Compos. Mater.
**2013**, 47, 3421–3432. [Google Scholar] [CrossRef] - Lai, J.-Y.; Young, K.-F. Dynamics of Graphite/Epoxy Composite under Delamination Fracture and Environmental Effects. Compos. Struct.
**1995**, 30, 25–32. [Google Scholar] [CrossRef] - Ning, Z.; Liu, R.; Elhajjar, R.F.; Wang, F. Micro-Modeling of Thermal Properties in Carbon Fibers Reinforced Polymer Composites with Fiber Breaks or Delamination. Compos. Part B Eng.
**2017**, 114, 247–255. [Google Scholar] [CrossRef] - Gdoutos, E. Fracture Mechanics Analysis of Composite Materials. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Hudișteanu, I.; Țăranu, N.; Isopescu, D.N.; Ungureanu, D.; Axinte, A.; Ghiga, D.A. The Influence of Fibre Orientation and of the Adjacent Layers on the Delamination of Laminated Composites. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 916, p. 012045. [Google Scholar]
- Ismail, M.R.; Ali, Z.A.; Al-Waily, M. Delamination Damage Effect on Buckling Behavior of Woven Reinforcement Composite Materials Plate. Int. J. Mech. Mechatron. Eng.
**2018**, 18, 83–93. [Google Scholar] - Garcia, D.; Palazzetti, R.; Trendafilova, I.; Fiorini, C.; Zucchelli, A. Vibration-Based Delamination Diagnosis and Modelling for Composite Laminate Plates. Compos. Struct.
**2015**, 130, 155–162. [Google Scholar] [CrossRef] - Trendafilova, I.; Palazzetti, R.; Zucchelli, A. Damage Assessment Based on General Signal Correlation. Application for Delamination Diagnosis in Composite Structures. Eur. J. Mech. A/Solids
**2015**, 49, 197–204. [Google Scholar] [CrossRef] - Li, T.; Cadini, F.; Chiachío, M.; Chiachío, J.; Sbarufatti, C. Particle Filter-Based Delamination Shape Prediction in Composites. In European Workshop on Structural Health Monitoring; Springer: Berlin/Heidelberg, Germany, 2022; pp. 227–236. [Google Scholar]
- Klug, J.; Wu, X.X.; Sun, C.T. Efficient Modeling of Postbuckling Delamination Growth in Composite Laminates Using Plate Elements. AIAA J.
**1996**, 34, 178–184. [Google Scholar] [CrossRef] - Jin, Z.; Sun, S.; Joshi, S.C.; Han, Z.; Fu, H. Interfacial and Mechanical Performance of Chemically Modified High Content MWCNT/PEEK Thermoplastic Composites. Res. Sq.
**2023**. [Google Scholar] [CrossRef] - Yavuz, Z.; Khaligh, A.; Öz, Y.; Tuncel, D. Effects of Thermoplastic Coating on Interfacial Interactions in Advanced Engineering Composites for Aerospace Applications. Polym. Bull.
**2023**, 5, 1–23. [Google Scholar] - Mohsin, M.A.A.; Iannucci, L.; Greenhalgh, E.S. Delamination of Novel Carbon Fiber-Based Non-Crimp Fabric-Reinforced Thermoplastic Composites in Mode I: Experimental and Fractographic Analysis. Polymers
**2023**, 15, 1611. [Google Scholar] [CrossRef] - Bhudolia, S.K.; Gohel, G.; Vasudevan, D.; Leong, K.F.; Gerard, P. On the Mode I and Mode II Delamination Characteristics and Surface Morphological Aspects of Composites with Carbon-Thermoplastic Hybrid Fabrics and Innovative Liquid Thermoplastic Resin. Polymers
**2022**, 14, 4155. [Google Scholar] [CrossRef] - Garg, A.C. Delamination—A Damage Mode in Composite Structures. Eng. Fract. Mech.
**1988**, 29, 557–584. [Google Scholar] [CrossRef] - Davies, P.; Moore, D.R. Glass/Nylon-6.6 Composites: Delamination Resistance Testing. Compos. Sci. Technol.
**1990**, 38, 211–227. [Google Scholar] [CrossRef] - Shu, D.; Mai, Y.-W. Delamination Buckling with Bridging. Compos. Sci. Technol.
**1993**, 47, 25–33. [Google Scholar] [CrossRef] - Smiley, A.J.; Pipes, R.B. Rate Effects on Mode I Interlaminar Fracture Toughness in Composite Materials. J. Compos. Mater.
**1987**, 21, 670–687. [Google Scholar] [CrossRef] - Prichard, J.C.; Hogg, P.J. The Role of Impact Damage in Post-Impact Compression Testing. Composites
**1990**, 21, 503–511. [Google Scholar] [CrossRef] - Pidaparti, R.M.V.; Kakarla, V. Fracture Analysis of Delamination Failure in Angle-Ply Elastomer Composites. Polym. Polym. Compos.
**1998**, 6, 439–445. [Google Scholar] [CrossRef] - Zhang, X.C.; Xu, B.S.; Wang, H.D.; Wu, Y.X. Effect of Graded Interlayer on the Mode I Edge Delamination by Residual Stresses in Multilayer Coating-Based Systems. Appl. Surf. Sci.
**2008**, 254, 1881–1889. [Google Scholar] [CrossRef] - Zhou, W.; Huang, J.; Liu, D. In Situ Capture of Impact-Induced Progressive Damage and Delamination in Fiberglass Composite Laminate with a High-Speed Optical Imaging Method. Compos. Struct.
**2021**, 259, 113498. [Google Scholar] [CrossRef] - Wong, K.J.; Johar, M.; Israr, H.A. Characterisation of Mixed-Mode I-II-III Delamination in Composite Laminates. In Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites; Springer: Berlin/Heidelberg, Germany, 2021; pp. 47–70. [Google Scholar]
- Han, X.; Cai, H.; Sun, J.; Wei, Z.; Huang, Y.; Meng, L. Behaviors of Composite Laminates under Low-Energy Impact Using a Novel Analytical Framework. Int. J. Appl. Mech.
**2022**, 14, 2250004. [Google Scholar] [CrossRef] - Sebastian, W.M.; McConnel, R.E. Nonlinear FE Analysis of Steel-Concrete Composite Structures. J. Struct. Eng.
**2000**, 126, 662–674. [Google Scholar] [CrossRef] - Bahrami, M.; Malakouti, M.; Farrokhabadi, A. Anticipating the Induced Delamination Formation in Composite Laminates Subjected to Bending Loads. Fatigue Fract. Eng. Mater. Struct.
**2021**, 44, 3108–3120. [Google Scholar] [CrossRef] - Grigorenko, Y.M.; Vasilenko, A.T.; Pankratova, N.D. Problems of Theory of Elasticity of Inhomogeneous Bodies; Naukova Dumka: Kiev, Ukraine, 1991. [Google Scholar]
- Bazhenov, V.A.; Gotsulyak, E.A.; Ogloblya, A.I.; Dinkevich, Y.L.; Gerashchenko, O.V. Calculation of Composite Structures with Consideration of Layers; Budivelnyk: Kyiv, Ukraine, 1992. [Google Scholar]
- Budnyk, O.A.; Berladir, H.V.; Budnyk, A.F.; Rudenko, P.V. Increase of Physical, Chemical and Operational Properties of Tribotechnical Polytetrafluoroethylene Composites by Methods of Mechanical Activation. Probl. Frict. Wear
**2014**, 4, 130–135. [Google Scholar] - Mikulik, Z.; Kelly, D.W.; Thomson, R.S.; Prusty, B.G. Fracture Mechanics Based Predictions of Initiation and Growth of Multi-Level Delaminations in a Composite Specimen. Int. J. Fract.
**2011**, 170, 145–157. [Google Scholar] [CrossRef] - Adan, M.; Sheinman, I.; Altus, E. Buckling of Multiply Delaminated Beams. J. Compos. Mater.
**1994**, 28, 77–90. [Google Scholar] [CrossRef] - Piskunov, V.G.; Verizhenko, V.E. Linear and Nonlinear Problems of Calculation of Layered Structures; Budivelnik: Kyiv, Ukraine, 1986; p. 176. [Google Scholar]
- Chen, D.; Zhang, H.; Li, H.; Zhu, R.; Zhu, Y.; Jiang, Z. Study on Microstructure and Properties of Ultra-Thin Cu/Al Composite Sheets Using the Cold-Rolled Composite Method at the Microscale. Metals
**2023**, 13, 780. [Google Scholar] [CrossRef] - Chandra, K.S.; Rajanna, T.; Rao, K.V. Hygro-Thermo-Mechanical Vibration and Buckling Analysis of Composite Laminates with Elliptical Cutouts under Localized Edge Loads. Int. J. Struct. Stab. Dyn.
**2021**, 21, 2150150. [Google Scholar] [CrossRef] - Truong, V.-H.; Hoang, V.-T.; Choe, H.-S.; Nam, Y.-W.; Kweon, J.-H. Delamination Growth in Curved Composite Beam at Elevated Temperatures. Adv. Compos. Mater.
**2022**, 31, 151–172. [Google Scholar] [CrossRef] - Hein, H. Vibrations of Composite Beams with Multiple Delaminations. In III European Conference on Computational Mechanics, Solids, Structures and Coupled Problems in Engineering, Lisbon, Portugal; University of Tartu: Tartu, Estonia, 2006. [Google Scholar]
- Kassa, M.K.; Getachew, A.; Singh, L.K.; Albert, P.P.; Arumugam, A.B. Dynamic Bending Characterization of Delaminated Epoxy/Glass Fiber Based Hybrid Composite Plate Reinforced with Multi-Walled Carbon Nanotubes. J. Vib. Eng. Technol.
**2023**, 11, 19–41. [Google Scholar] [CrossRef] - Kien, D.N.; Chen, X.; Zhuang, X.; Rabczuk, T. Radial Basis Function Based Finite Element Method for Bending, Vibration and Buckling Analysis of Laminated Composite Mindlin-Reissner Plates. In International Conference on Engineering Research and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 806–822. [Google Scholar]
- Wang, S.S.; Yu, T.P. Nonlinear Mechanics of Delamination in Fiber-Composite Laminates: Asymptotic Solutions and Computational Results. Compos. Sci. Technol.
**2006**, 66, 776–784. [Google Scholar] [CrossRef] - Shi, Y.B.; Hull, D. Fracture of Delaminated Unidirectional Composite Beams. J. Compos. Mater.
**1992**, 26, 2172–2195. [Google Scholar] [CrossRef] - Suo, Z. Delamination Specimens for Orthotropic Materials. J. Appl. Mech.
**1990**, 57, 627–634. [Google Scholar] [CrossRef] - Takeda, N.; Ogihara, S. Initiation and Growth of Delamination from the Tips of Transverse Cracks in CFRP Cross-Ply Laminates. Compos. Sci. Technol.
**1994**, 52, 309–318. [Google Scholar] [CrossRef] - Tian, Z.; Swanson, S.R. The Fracture Behavior of Carbon/Epoxy Laminates Containing Internal Cut Fibers. J. Compos. Mater.
**1991**, 25, 1427–1444. [Google Scholar] [CrossRef] - Duong, N.T.; Hung, N.D. Interlaminar Stresses and Delamination of Composite Laminates under Extension and Bending. Struct. Eng. Mech. Int. J.
**2007**, 25, 733–751. [Google Scholar] - Yaylaci, M. Simulate of Edge and an Internal Crack Problem and Estimation of Stress Intensity Factor through Finite Element Method. Adv. Nano Res.
**2022**, 12, 405. [Google Scholar] - Ghosh, G.; Annavarapu, C.; Jimã, S.; Duddu, R. A Stabilized Finite Element Method for Modeling Mixed-Mode Delamination of Composites. In Proceedings of the 32nd American Society for Composites Annual Technical Conference, West Lafayette, Indiana, 23–25 October 2017. [Google Scholar]
- Santos, M.V.; Sartorato, M.; Roy, A.; Tita, V.; Ribeiro, M.L. Analysis of Delamination of Composite Laminates via Extended Finite Element Method Based on the Layerwise Displacement Theory and Cohesive Zone Method. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
**2022**, 236, 1379–1389. [Google Scholar] [CrossRef] - Ganjdoust, F.; Kefal, A.; Tessler, A. A Novel Delamination Damage Detection Strategy Based on Inverse Finite Element Method for Structural Health Monitoring of Composite Structures. Mech. Syst. Signal Process.
**2023**, 192, 110202. [Google Scholar] [CrossRef] - Elices, M.; Guinea, G.V.; Gomez, J.; Planas, J. The Cohesive Zone Model: Advantages, Limitations and Challenges. Eng. Fract. Mech.
**2002**, 69, 137–163. [Google Scholar] [CrossRef] - Dugdale, D.S. Yielding of Steel Sheets Containing Slits. J. Mech. Phys. Solids
**1960**, 8, 100–104. [Google Scholar] [CrossRef] - Barenblatt, G.I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech.
**1962**, 7, 55–129. [Google Scholar] - Needleman, A. A Continuum Model for Void Nucleation by Inclusion Debonding. J. Appl. Mech.
**1987**, 54, 525–531. [Google Scholar] [CrossRef] - Tvergaard, V.; Hutchinson, J.W. The Relation between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids. J. Mech. Phys. Solids
**1992**, 40, 1377–1397. [Google Scholar] [CrossRef] - Mi, Y.; Crisfield, M.A.; Davies, G.A.O.; Hellweg, H.B. Progressive Delamination Using Interface Elements. J. Compos. Mater.
**1998**, 32, 1246–1272. [Google Scholar] [CrossRef] - De Borst, R. Numerical Aspects of Cohesive-Zone Models. Eng. Fract. Mech.
**2003**, 70, 1743–1757. [Google Scholar] [CrossRef] - Jiang, W.-G.; Hallett, S.R.; Green, B.G.; Wisnom, M.R. A Concise Interface Constitutive Law for Analysis of Delamination and Splitting in Composite Materials and Its Application to Scaled Notched Tensile Specimens. Int. J. Numer. Methods Eng.
**2007**, 69, 1982–1995. [Google Scholar] [CrossRef] - Yin, S.; Gong, Y.; Li, W.; Zhao, L.; Zhang, J.; Hu, N. A Novel Four-Linear Cohesive Law for the Delamination Simulation in Composite DCB Laminates. Compos. Part B Eng.
**2020**, 180, 107526. [Google Scholar] [CrossRef] - Dávila, C.G.; Joosten, M.W. A Cohesive Fatigue Model for Composite Delamination Based on a New Material Characterization Procedure for the Paris Law. Eng. Fract. Mech.
**2023**, 284, 109232. [Google Scholar] [CrossRef] - Abdel-Monsef, S.; Tijs, B.H.A.H.; Renart, J.; Turon, A. Accurate Simulation of Delamination under Mixed-Mode Loading Using a Multilinear Cohesive Law. Eng. Fract. Mech.
**2023**, 284, 109233. [Google Scholar] [CrossRef] - Umarfarooq, M.A.; Gouda, P.S.; Banapurmath, N.R.; Kittur, M.I.; Khan, T.; Parveez, B.; Sebaey, T.A.; Badruddin, I.A. Post-Curing and Fiber Hybridization Effects on Mode-II Interlaminar Fracture Toughness of Glass/Carbon/Epoxy Composites. Polym. Compos.
**2023**, 44, 4734–4745. [Google Scholar] [CrossRef] - Agrawal, V.; Runnels, B. Block Structured Adaptive Mesh Refinement and Strong Form Elasticity Approach to Phase Field Fracture with Applications to Delamination, Crack Branching and Crack Deflection. Comput. Methods Appl. Mech. Eng.
**2021**, 385, 114011. [Google Scholar] [CrossRef] - Dasari, S.; Patnaik, S.; Bhattacharyya, T.; Mukherjee, S.; Ray, B.C.; Prusty, R.K. Mode I and II Interlaminar Fracture Toughness of Glass/Carbon Inter-Ply Hybrid FRP Composites: Effects of Stacking Sequence and Testing Temperature. Polym. Compos.
**2023**, 44, 3622–3633. [Google Scholar] [CrossRef] - Patil, S.D.; Hatte, P.; Khan, S.N.; Desai, A.A.; Yadav, P.H. Analyzing the Design Parameters and Their Influence on the Tensile Strength of Composite Layers Using Taguchi Technique. Mater. Today Proc.
**2023**, 77, 640–646. [Google Scholar] [CrossRef] - Arulanandam, P.M.; Sivasubramanian, M.V.; Singh, S.B. Effect of Layer Thickness and FRP Reinforcement Ratio on the Load Carrying Capacity of ECC Composite Beams. In Fiber Reinforced Polymeric Materials and Sustainable Structures; Springer: Berlin/Heidelberg, Germany, 2023; pp. 81–90. [Google Scholar]
- Lessard, L.B.; Schmidt, A.S.; Shokrieh, M.M. Three-Dimensional Stress Analysis of Free-Edge Effects in a Simple Composite Cross-Ply Laminate. Int. J. Solids Struct.
**1996**, 33, 2243–2259. [Google Scholar] [CrossRef]

**Figure 4.**Conditions of crack growth in a homogeneous iso-tropic medium and a delamination crack in a composite.

**Figure 8.**Interaction of intralayer cracks in delaminations in the rods of [0/90°] structures during bending.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Huang, T.; Bobyr, M.
A Review of Delamination Damage of Composite Materials. *J. Compos. Sci.* **2023**, *7*, 468.
https://doi.org/10.3390/jcs7110468

**AMA Style**

Huang T, Bobyr M.
A Review of Delamination Damage of Composite Materials. *Journal of Composites Science*. 2023; 7(11):468.
https://doi.org/10.3390/jcs7110468

**Chicago/Turabian Style**

Huang, Tao, and Mykola Bobyr.
2023. "A Review of Delamination Damage of Composite Materials" *Journal of Composites Science* 7, no. 11: 468.
https://doi.org/10.3390/jcs7110468