Next Article in Journal
Oscillation Criteria of Solutions of Fourth-Order Neutral Differential Equations
Next Article in Special Issue
A Deep Learning BiLSTM Encoding-Decoding Model for COVID-19 Pandemic Spread Forecasting
Previous Article in Journal
Simple Graphical Prediction of Relative Permeability of Unsaturated Soils under Deformations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Solutions of Some Riemann–Liouville Fractional Integral Equations

by
Karuna Kaewnimit
1,
Fongchan Wannalookkhee
1,
Kamsing Nonlaopon
1,* and
Somsak Orankitjaroen
2
1
Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand
2
Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
*
Author to whom correspondence should be addressed.
Fractal Fract. 2021, 5(4), 154; https://doi.org/10.3390/fractalfract5040154
Submission received: 23 August 2021 / Revised: 15 September 2021 / Accepted: 30 September 2021 / Published: 6 October 2021

Abstract

:
In this paper, we propose the solutions of nonhomogeneous fractional integral equations of the form I 0 + 3 σ y ( t ) + a · I 0 + 2 σ y ( t ) + b · I 0 + σ y ( t ) + c · y ( t ) = f ( t ) , where I 0 + σ is the Riemann–Liouville fractional integral of order σ = 1 / 3 , 1 , f ( t ) = t n , t n e t , n N { 0 } , t R + , and a , b , c are constants, by using the Laplace transform technique. We obtain solutions in the form of Mellin–Ross function and of exponential function. To illustrate our findings, some examples are exhibited.

1. Introduction

Fractional calculus is the theory of derivatives and integrals of arbitrary complex or real order. It began in 1695 when G.F.A. L’Hôpital asked G.W. Leibniz to give the meaning of d n y / d x n , where n = 1 / 2 . In his predictive answer, G.W. Leibniz expected the beginning of the area that is presently named fractional calculus. Since that time, fractional calculus interested many mathematicians such as L. Euler, H. Laurent, P.S. Laplace, J.B.J. Fourier, N.H. Abel, J. Liouville, and G.F.B. Riemann, etc. Moreover, it is shown to be very useful and active in various mathematical areas.
Fractional derivatives are a part of fractional calculus that plays a key role in modeling real-world phenomena within different branches of engineering and science, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] for more details. With the help of fractional calculus, many mathematical models of real problems were produced in various fields of engineering and science, such as dielectric polarization, viscoelastic, electromagnetic waves, and electrode-electrolyte polarization, which can be found in [23,24,25,26,27,28,29,30].
In addition, in these years, the theory of fractional integral attracted many researchers, see [31,32,33,34,35,36,37,38]. In 1812, P.S. Laplace defined a fractional derivative through an integral and developed it as a mere mathematical exercise, generalizing from the case of integer order. Later, in 1832, J. Liouville recommended a definition based on the formula for differentiating the exponential function known as the first Liouville definition. Next, he presented the second definition formula in terms of an integral, called Liouville integral, to integrate, with respect, a noninteger order. After that, J. Liouville and G.F.B. Riemann developed an approach to noninteger order derivatives in terms of convergent series, conversely to the Riemann–Liouville approach, that was given as an integral. Many researchers focused on developing the theoretical aspects, methods of solution, and applications of fractional integral equations, see [37,38,39,40,41,42,43,44,45].
In 2005, T. Morita [6] studied the initial value problem of fractional differential equations by using the Laplace transform. As a result, he obtained the solutions to the fractional differential equations with Riemann–Liouville fractional derivative and Caputo fractional derivative or its modification. In 2010, T. Morita and K. Sato [8] studied the initial value problem of fractional differential equations with constant coefficients. Moreover, T. Morita and K. Sato obtained solutions in terms of Green’s function and distribution theory.
In 1996, A.A. Kilbas and M. Saigo [39] discovered the connections of the Mittag–Leffler type function with the Riemann–Liouville fractional integrals and derivatives and solved the linear Abel–Volterra integral equations as applications.
In 2015, R. Agarwal et al. [40] studied the solutions of fractional Volterra integral equation with Caputo fractional derivative using the integral transform of pathway type. More interestingly, they discussed the solution of the nonhomogeneous time-fractional heat equation in a spherical domain.
In 2017, C. Li et al. [41] studied a generalized Abel’s integral equation and its variant in the distributional (Schwartz) sense based on fractional calculus of distributions. Particularly, in 2018, C. Li and K. Clarkson [42] studied Abel’s integral equation of the second kind of the form
y ( t ) + λ Γ ( α ) 0 t ( t λ ) α 1 y ( τ ) d τ = f ( t ) , t > 0 ,
where Γ is the gamma function, λ is a constant, and α R . Equation (1) can be written in the form
( 1 + λ I 0 + α ) y ( t ) = f ( t ) ,
where I 0 + α is the Riemann–Liouville fractional integral. Finally, C. Li and K. Clarkson applied Babenko’s method and fractional integral for solving the equation above.
In [35], S.G. Samko et al. considered the linear fractional order integral equations with constant coefficients of the form
c 1 I a + α 1 y ( t ) + c 2 I a + α 2 y ( t ) + + c n I a + α n y ( t ) = f ( t ) ,
where a R , α i R , α 1 > α 2 > > α n 0 , c i C , for i { 1 , 2 , , n } , and f is assumed to be a real valued function of real variable defined on an interval ( a , b ) . The general solution of (2) can be found in the space S + of tempered distributions with support in [ 0 , ) .
In 2017, D.C. Labora and R. Rodriguez–Lopez [44] showed a new method by applying a suitable fractional integral operator for solving some fractional order integral equations with constant coefficients, and all the integration orders involved are rational. Next, they applied and extended ideas presented in [44] for solving fractional integral equations with Riemann–Liouville definition; see [38] for more details.
In 2021, K. Karuna et al. [46] studied the solutions of nonhomogeneous fractional integral equations of the form
I 0 + 2 σ y ( t ) + a · I 0 + σ y ( t ) + b · y ( t ) = f ( t ) ,
where I 0 + σ is the Riemann–Liouville fractional integral of order σ = 1 / 2 , 1 , f ( t ) = t n , t n e t , n N { 0 } , t R + , and a , b are constants, by using the Laplace transform technique. They obtained solutions in the form of Mellin–Ross functions and of exponential functions.
In this paper, we provide the solution of nonhomogeneous fractional integral equations of the form
I 0 + 3 σ y ( t ) + a · I 0 + 2 σ y ( t ) + b · I 0 + σ y ( t ) + c · y ( t ) = f ( t ) ,
where I 0 + σ is the Riemann–Liouville fractional integral of order σ = 1 / 3 , 1 , f ( t ) = t n , t n e t , n N { 0 } , t R + , and a , b are constants by using the Laplace transform technique and its variants in the classical sense.
Section 2 introduces definitions of the Riemann–Liouville fractional integral and the Laplace transform, which helps us obtain our main results. In Section 3, we establish our main results and some examples due to our main results. Finally, we give the conclusions in Section 4.

2. Preliminaries

Before we proceed to the main results, the following definitions, lemmas, and concepts are required.
Definition 1.
([30]). Let α be a constant, v a real number and t a positive real number. The Mellin–Ross function E t ( v , α ) is defined by
E t ( v , α ) = t v e α t Γ * ( v , α t ) ,
where Γ * is the incomplete gamma function, which is defined by
Γ * ( v , t ) = e t k = 0 t k Γ ( v + k + 1 ) ,
and Γ is the gamma function.
In addition, if v > 0 , then E t ( v , α ) has an integral representation as
E t ( v , α ) = 1 Γ ( v ) 0 t x v 1 e α ( t x ) d x .
Example 1.
Let α be a constant, v a real number, and t a positive real number. We recall some special values and recursion relations of the Mellin–Ross function that are needed for our calculations:
(i) 
    E t ( 0 , α ) = e α t ;
(ii) 
  E t ( v , 0 ) = t v Γ ( v + 1 ) ;
(iii) 
E t ( 1 , α ) = E t ( 0 , α ) 1 α , α 0 ;
(iv) 
E t ( v , α ) = α E t ( v + 1 , α ) + t v Γ ( v + 1 ) .
Definition 2.
([30]). Let f ( t ) be piece-wise continuous on ( 0 , ) and integrable on any finite subinterval of [ 0 , ) . Then, the Riemann–Liouville fractional integral of f ( t ) of order v is defined by
I 0 + v f ( t ) = 1 Γ ( v ) 0 t ( t x ) v 1 f ( x ) d x ,
where v R + .
Example 2.
Let α be a constant, μ a real number, v and t positive real numbers. Then, the following Riemann–Liouville fractional integrals hold:
(i)    
I 0 + v t μ = Γ ( μ + 1 ) Γ ( μ + v + 1 ) t μ + v , μ > 1 ;
(ii)  
I 0 + v e α t = E t ( v , α ) ;
(iii) 
I 0 + v t e α t = t E t ( v , α ) v E t ( v + 1 , α ) ;
(iv) 
I 0 + v E t ( μ , α ) = E t ( μ + v , α ) , μ > 1 ;
(v)  
I 0 + v t E t ( μ , α ) = t E t ( μ + v , α ) v E t ( μ + v + 1 , α ) , μ > 2 .
Definition 3.
([30]). Let f ( t ) be piece-wise continuous on ( 0 , ) and integrable on any finite subinterval of [ 0 , ) . Let n be the smallest integer that exceeds β . Then, Riemann–Liouville fractional derivative 0 D t β f ( t ) is defined by
0 D t β f ( t ) = 1 Γ ( n β ) d n d t n 0 t ( t x ) n β 1 f ( x ) d x ,
where β R + and n β > 0 .
Definition 4
([30]). Let f ( t ) be a function satisfying the conditions in Definition 2 and of exponential order v where v R + . The Laplace transform of f ( t ) is defined by
F ( s ) = L f ( t ) = 0 f ( t ) e s t d t ,
where R e ( s ) > v .
Example 3.
Let α be a constant, n a real number, v and t positive real numbers. Then, the following Laplace transforms hold:
(i)   
L 1 = 1 s , s > 0 ;
(ii)  
L t n = Γ ( n + 1 ) s n + 1 , s > 0 , n > 1 ;
(iii) 
L e α t = 1 s α , s > α ;
(iv) 
L t n e α t = Γ ( n + 1 ) ( s α ) n + 1 , s > α , n > 0 ;
(v)  
L E t ( v , α ) = 1 s v ( s α ) , s > α .
Lemma 1
([30]). Let f ( t ) be a function satisfying the conditions in Definition 2 and of exponential order v where v R + . Then
L I 0 + v f ( t ) = s v L f ( t ) .
Definition 5.
Let f ( t ) be a function satisfying the conditions in Definition 4 and L f ( t ) = F ( s ) . The inverse Laplace transform of F ( s ) is defined by
f ( t ) = L 1 F ( s ) = 1 2 π i lim ω c i ω c + i ω F ( s ) e s t d s ,
where R e ( s ) > σ a , σ a is an abscissa of absolute convergence for L { f ( t ) } .
Example 4.
Let α be a constant, v a real number, n and t positive real numbers. Then, the following inverse Laplace transforms hold:
(i) 
    L 1 1 s v + 1 = t v Γ ( v + 1 ) , v > 0 ;
(ii) 
  L 1 1 s α = E t ( 0 , α ) = e α t ;
(iii) 
L 1 Γ ( n + 1 ) ( s α ) n + 1 = t n e α t ;
(iv) 
L 1 1 s 1 / 3 α = E t 2 3 , α 3 + α E t 1 3 , α 3 + α 2 E t 0 , α 3 ;
(v) 
  L 1 1 s v ( s α ) 3 = 1 2 t 2 E t v , α v t E t v + 1 , α + 1 2 v ( v + 1 ) E t ( v + 2 , α ) , v > 3 .
We turn now to the problem of founded inverse transforms of slightly more complicated functions in Example 4 (iv) and (v) are particular cases of the following Lemmas.
Lemma 2
([30]). Let n be a positive integer, α be a constant, v be a real number, and t be a positive real number, then
L 1 1 s v ( s α ) n = 1 ( n 1 ) ! Γ ( v ) i = 0 n 1 ( 1 ) i n 1 i Γ ( v + i ) t n 1 i E t ( v + i , α ) ,
where v > n .
Lemma 3
([30]). Let n and q be positive integers, α be a constant, u be a real number, and t be a positive real number, then
L 1 1 s u ( s v α ) n = r 1 = 1 q r n = 1 q α m n ( n 1 ) ! Γ ( u n + m v ) k = 0 n 1 ( 1 ) k n 1 k × Γ ( u n + m v + k ) t n 1 k E t ( u n + m v + k , α q ) ,
where u > n , v = 1 q and m = i = 1 n r i

3. Main Results

In this section, we state our main results and give their proofs.
Theorem 1.
Consider that the nonhomogeneous fractional integral equation is given by
I 0 + 3 σ y ( t ) + a · I 0 + 2 σ y ( t ) + b · I 0 + σ y ( t ) + c · y ( t ) = t n ,
where I 0 + σ is the Riemann–Liouville fractional integral of order σ = 1 / 3 , σ = 1 , n N { 0 } , t R + , and a , b , c are constants. Then, the solution of (3) as the following:
(i) 
If σ = 1 / 3 , and j , k , l R { 0 } with j , k , l are different such that a = j + k + l , b = j k + j l + k l , and c = j k l then
y ( t ) = i = 0 3 n ( 1 ) n i n ! j 3 n i + 2 ( j k ) ( j l ) k 3 n i + 2 ( j k ) ( k l ) + l 3 n i + 2 ( j l ) ( k l ) t ( i 3 ) / 3 Γ ( i / 3 ) + ( 1 ) n n ! j 3 n + 1 ( j k ) ( j l ) E t 2 3 , 1 j 3 1 j E t 1 3 , 1 j 3 + 1 j 2 E t 0 , 1 j 3 + ( 1 ) n + 1 n ! k 3 n + 1 ( j k ) ( k l ) E t 2 3 , 1 k 3 1 k E t 1 3 , 1 k 3 + 1 k 2 E t 0 , 1 k 3 + ( 1 ) n + 2 n ! l 3 n + 1 ( j l ) ( k l ) E t 2 3 , 1 l 3 1 l E t 1 3 , 1 l 3 + 1 l 2 E t 0 , 1 l 3 .
as the solution to (3).
(ii) 
If σ = 1 , and j , k , l R { 0 } with j , k , l are different such that a = j + k + l , b = j k + j l + k l and c = j k l then
y ( t ) = i = 0 n ( 1 ) n i n ! j n i ( k l ) k n i ( j l ) + l n i ( j k ) ( j k ) ( j l ) ( k l ) t i 1 Γ ( i ) + ( 1 ) n n ! j n 1 e t / j ( j k ) ( j l ) + ( 1 ) n + 1 n ! k n 1 e t / k ( j k ) ( k l ) + ( 1 ) n + 2 n ! l n 1 e t / l ( j l ) ( k l ) .
as the solution to (3).
Proof. 
Applying the Laplace transform to both sides of (3), we have
L { I 0 + 3 σ y ( t ) } + a · L { I 0 + 2 σ y ( t ) } + b · L { I 0 + σ y ( t ) } + c · L { y ( t ) } = L { t n } .
Using Lemma 1, Example 3 (ii) on (6) and denoting the Laplace transform L { y ( t ) } = Y ( s ) , we obtain
Y ( s ) = n ! s 3 σ s n + 1 c s 3 σ + b s 2 σ + a s σ + 1 .
For σ = 1 / 3 , Equation (7) becomes
Y ( s ) = n ! s n c s + b s 2 / 3 + a s 1 / 3 + 1 ,
and turns into
Y ( s ) = n ! u 3 n c u 3 + b u 2 + a u + 1 ,
with a substitution of u = s 1 / 3 . Using partial fractions with explicit values of a , b , c , we can rewrite it as
Y ( s ) = i = 1 3 n ( 1 ) n i n ! j 3 n i + 2 ( j k ) ( j l ) k 3 n i + 2 ( j k ) ( k l ) + l 3 n i + 2 ( j l ) ( k l ) 1 u i + ( 1 ) n n ! j 3 n + 1 ( j k ) ( j l ) 1 u + 1 / j + ( 1 ) n + 1 n ! k 3 n + 1 ( j k ) ( k l ) 1 u + 1 / k + ( 1 ) n + 2 n ! l 3 n + 1 ( j l ) ( k l ) 1 u + 1 / l .
Finally, resubstituting u = s 1 / 3 and taking the inverse Laplace transform to (8) with the help of Example 4 (i), (iv), we obtain (4) as the solution to (3).
For σ = 1 , Equation (7) becomes
Y ( s ) = n ! s n 2 ( c s 3 + b s 2 + a s + 1 ) ,
Using partial fractions with explicit values of a , b , c , we can rewrite the above equation as
Y ( s ) = i = 1 n ( 1 ) n i n ! j n i ( k l ) k n i ( j l ) + l n i ( j k ) ( j k ) ( j l ) ( k l ) 1 s i + ( 1 ) n n ! j n 1 ( j k ) ( j l ) 1 s + 1 j + ( 1 ) n + 1 n ! k n 1 ( j k ) ( k l ) 1 s + 1 k + ( 1 ) n + 2 n ! l n 1 ( j l ) ( k l ) 1 s + 1 l .
Applying the inverse Laplace transform to (9) and using Example 4 (i) and (ii) yields (5) as the solution to (3). To include the case n = 0 into the solution formulas of both cases, we adopt the notation 1 / Γ ( 0 ) = 0 . The proof is completed. □
Remark 1.
Let n N { 0 } , and a , b , c satisfy condition in Theorem 1, then (5) is a solution of
c · y ( t ) + b · y ( t ) + a · y ( t ) + y ( t ) = n ( n 1 ) ( n 2 ) t n 3 ,
see [44] for more details.
Example 5.
Letting a = 1 2 , b = 1 , c = 1 2 and σ = 1 / 3 then (3) changes to
I 0 + y ( t ) + 1 2 · I 0 + 2 / 3 y ( t ) I 0 + 1 / 3 y ( t ) 1 2 · y ( t ) = t n .
From Theorem 1, Equation (10) has solution
y ( t ) = i = 0 3 n ( 1 ) n i + 1 n ! ( 1 / 2 ) 3 n i 3 + ( 1 ) 3 n i + 1 3 t ( i 3 ) / 3 Γ ( i ) + ( 1 ) n + 1 n ! ( 1 / 2 ) 3 n 1 3 E t 2 3 , 8 2 E t 1 3 , 8 + 4 E t 0 , 8 + ( 1 ) n + 2 n ! E t 2 3 , 1 E t 1 3 , 1 + E t 0 , 1 + ( 1 ) 4 n + 1 n ! 3 E t 2 3 , 1 + E t 1 3 , 1 + E t 0 , 1 .
By applying Example 2 (i), (ii), and (iv), it is not difficult to verify that (11) satisfies (10).
Moreover, if n = 1 , then Equation (10) becomes
I 0 + y ( t ) + 1 2 · I 0 + 2 / 3 y ( t ) I 0 + 1 / 3 y ( t ) 1 2 · y ( t ) = t .
From (11), it follows that (12) has solution
y ( t ) = 5 t 2 / 3 4 Γ ( 1 / 3 ) + 1 t 1 / 3 2 Γ ( 2 / 3 ) + 1 12 E t 2 3 , 8 2 E t 1 3 , 8 + 4 E t 0 , 8 E t 2 3 , 1 E t 1 3 , 1 + E t 0 , 1 1 3 E t 2 3 , 1 + E t 1 3 , 1 + E t 0 , 1 .
It is not difficult to verify that (13) satisfies (12).
Example 6.
Letting a = 1 2 , b = 1 , c = 1 2 and σ = 1 then (3) changes to
I 0 + 3 y ( t ) + 1 2 · I 0 + 2 y ( t ) I 0 + 1 y ( t ) 1 2 · y ( t ) = t n .
From Theorem 1, Equation (14) has solution
y ( t ) = i = 0 n ( 1 ) n i + 1 n ! ( 1 / 2 ) n i 2 3 + ( 1 ) n i + 1 3 t i 1 Γ ( i ) + ( 1 ) n + 1 n ! ( 1 / 2 ) n 3 e 2 t 3 + ( 1 ) n + 2 n ! e t + ( 1 ) 2 n + 1 n ! e t 3 .
By applying Example 2 (ii), it is not difficult to verify that (15) satisfies (14).
Moreover, if n = 3 , then Equation (14) becomes
I 0 + 3 y ( t ) + 1 2 · I 0 + 2 y ( t ) I 0 + 1 y ( t ) 1 2 · y ( t ) = t 3 .
From (15), it follows that (16) has solution
y ( t ) = 6 + 2 e 2 t 6 e t 2 e t .
It is not difficult to verify that (17) satisfies (16).
According to Remark 1, function (17) is solution of 1 2 y ( t ) + y ( t ) 1 2 y ( t ) y ( t ) = 6 .
Theorem 2.
Consider the nonhomogeneous fractional integral equation is given by
I 0 + 3 σ y ( t ) + a · I 0 + 2 σ y ( t ) + b · I 0 + σ y ( t ) + c · y ( t ) = t n e t ,
where I 0 + σ is the Riemann–Liouville fractional integral of order σ = 1 / 3 , σ = 1 , n N { 1 , 0 } , t R + , and a , b , c are constants. Then:
(i) 
If σ = 1 / 3 , and j , k , l R { 1 , 0 } with j , k , l are different such that a = j + k + l , b = j k + j l + k l , and c = j k l then
y ( t ) = n ! i = 0 n ( 1 ) n + 1 j 3 n + 1 2 i ( j 2 j + 1 ) n i + 1 ( j + 1 ) n + 1 ( j k ) ( j l ) k 3 n + 1 2 i ( k 2 k + 1 ) n i + 1 ( k + 1 ) n + 1 ( j k ) ( k l ) + l 3 n + 1 2 i ( l 2 l + 1 ) n i + 1 ( l + 1 ) n + 1 ( j k ) ( k l ) r = 0 n Γ ( n + r i + 1 ) 3 n + r i + 1 Γ ( n + r i ) 1 j k l + m = 0 r 1 Γ ( m + 1 ) j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) p = 0 i + 1 ( 1 ) p i + 1 p × 1 i ! Γ ( ( i p + 2 ) / 3 ) q = 0 i ( 1 ) q i q Γ ( ( i p + 2 ) / 3 + q ) t i q E t i p + 2 3 + q , 1 + n ! i = 0 n ( 1 ) n + 1 j 3 n 2 i ( j 1 ) ( j 2 j + 1 ) n i + 1 ( j + 1 ) n + 1 ( j k ) ( j l ) k 3 n 2 i ( k 1 ) ( k 2 k + 1 ) n i + 1 ( k + 1 ) n + 1 ( j k ) ( k l ) + l 3 n 2 i ( l 1 ) ( l 2 l + 1 ) n i + 1 ( l + 1 ) n + 1 ( j k ) ( k l ) r = 0 n 2 Γ ( n + r i + 1 ) 3 n + r i + 1 Γ ( n + r i ) 1 j k l + m = 0 r 1 Γ ( m + 1 ) j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) p = 0 i + 1 ( 1 ) p i + 1 p × 1 i ! Γ ( ( i p + 1 ) / 3 ) q = 0 i ( 1 ) q i q Γ ( ( i p + 1 ) / 3 + q ) t i q E t i p + 1 3 + q , 1 + n ! i = 1 n ( 1 ) n i + 1 ( n + 1 ) 3 n i + 1 r = 0 n i j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) 1 ( j + 1 ) ( k + 1 ) ( l + 1 ) r 1 = 1 3 r n = 1 3 1 ( i 1 ) ! Γ ( M / 3 i + 1 ) × p = 0 i 1 ( 1 ) p i 1 p Γ ( M / 3 + p i + 1 ) t i 1 p E t ( M / 3 + p i + 1 , 1 ) + n ! 3 n + 1 ( j + 1 ) ( k + 1 ) ( l + 1 ) r 1 = 1 3 r n + 1 = 1 3 1 ( n ) ! Γ ( M / 3 n ) p = 0 n ( 1 ) p × n p Γ ( M / 3 + p n ) t n p E t ( M / 3 + p n , 1 ) + ( 1 ) n n ! j 3 n 1 e t / j ( j 3 + 1 ) n + 1 ( j k ) ( j l ) + ( 1 ) n + 1 n ! k 3 n 1 e t / k ( k 3 + 1 ) n + 1 ( j k ) ( k l ) + ( 1 ) n + 2 n ! l 3 n 1 e t / l ( l 3 + 1 ) n + 1 ( j l ) ( k l ) .
as the solution to (18), where M = i = 1 n + 1 r i .
(ii) 
If σ = 1 , and j , k , l R { 1 , 0 } with j , k , l are different such that a = j + k + l , b = j k + j l + k l , and c = j k l then
y ( t ) = i = 0 n ( 1 ) n i n ! j n i ( j + 1 ) n i + 2 ( j k ) ( j l ) k n i ( k + 1 ) n i + 2 ( j k ) ( k l ) + l n i ( l + 1 ) n i + 2 ( j l ) ( k l ) t i 1 e t Γ ( i ) + t n e t ( j + 1 ) ( k + 1 ) ( l + 1 ) + ( 1 ) n n ! j n 1 e t / j ( j + 1 ) n + 1 ( j k ) ( j l ) + ( 1 ) n + 1 n ! k n 1 e t / k ( k + 1 ) n + 1 ( j k ) ( k l ) + ( 1 ) n + 2 n ! l n 1 e t / l ( l + 1 ) n + 1 ( j l ) ( k l ) .
as the solution to (18).
Proof. 
Applying the Laplace transform to both sides of (18), we have
L { I 0 + 3 σ y ( t ) } + a L { I 0 + 2 σ y ( t ) } + b L { I 0 + σ y ( t ) } + c L { y ( t ) } = L { t n e t } .
Using Lemma 1, Example 3 (iv), on (21) and denoting the Laplace transform L { y ( t ) } = Y ( s ) , we obtain
Y ( s ) = n ! s 3 σ ( s 1 ) n + 1 c s 3 σ + b s 2 σ + a s σ + 1 .
For σ = 1 / 3 , Equation (22) becomes
Y ( s ) = n ! s ( s 1 ) n + 1 c s + b s 2 / 3 + a s 1 / 3 + 1 ,
and turns into
Y ( s ) = n ! u 3 ( u 3 1 ) n + 1 c u 3 + b u 2 + a u + 1 ,
with a substitution of u = s 1 / 3 . Using partial fractions with explicit values of a , b , c , we can rewrite it as
Y ( s ) = n ! i = 0 n ( 1 ) n + 1 j 3 n + 1 2 i ( j 2 j + 1 ) n i + 1 ( j + 1 ) n + 1 ( j k ) ( j l ) k 3 n + 1 2 i ( k 2 k + 1 ) n i + 1 ( k + 1 ) n + 1 ( j k ) ( k l ) + l 3 n + 1 2 i ( l 2 l + 1 ) n i + 1 ( l + 1 ) n + 1 ( j k ) ( k l ) r = 0 n Γ ( n + r i + 1 ) 3 n + r i + 1 Γ ( n + r i ) 1 j k l + m = 0 r 1 Γ ( m + 1 ) j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) u ( u 2 + u + 1 ) i + 1 + n ! i = 0 n ( 1 ) n + 1 j 3 n 2 i ( j 1 ) ( j 2 j + 1 ) n i + 1 ( j + 1 ) n + 1 ( j k ) ( j l ) k 3 n 2 i ( k 1 ) ( k 2 k + 1 ) n i + 1 ( k + 1 ) n + 1 ( j k ) ( k l ) + l 3 n 2 i ( l 1 ) ( l 2 l + 1 ) n i + 1 ( l + 1 ) n + 1 ( j k ) ( k l ) r = 0 n 2 Γ ( n + r i + 1 ) 3 n + r i + 1 Γ ( n + r i ) 1 j k l + m = 0 r 1 Γ ( m + 1 ) j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) 1 ( u 2 + u + 1 ) i + 1 + n ! i = 1 n ( 1 ) n i + 1 ( n + 1 ) 3 n i + 1 r = 0 n i j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) 1 ( j + 1 ) ( k + 1 ) ( l + 1 ) 1 ( u 1 ) i + n ! 3 n + 1 ( j + 1 ) ( k + 1 ) ( l + 1 ) 1 ( u 1 ) n + 1 + ( 1 ) n n ! j 3 n 1 ( j 3 + 1 ) n + 1 ( j k ) ( j l ) 1 u + 1 / j + ( 1 ) n + 1 n ! k 3 n 1 ( k 3 + 1 ) n + 1 ( j k ) ( k l ) 1 u + 1 / k + ( 1 ) n + 2 n ! l 3 n 1 ( l 3 + 1 ) n + 1 ( j l ) ( k l ) 1 u + 1 / k ,
equivalently,
Y ( s ) = n ! i = 0 n ( 1 ) n + 1 j 3 n + 1 2 i ( j 2 j + 1 ) n i + 1 ( j + 1 ) n + 1 ( j k ) ( j l ) k 3 n + 1 2 i ( k 2 k + 1 ) n i + 1 ( k + 1 ) n + 1 ( j k ) ( k l ) + l 3 n + 1 2 i ( l 2 l + 1 ) n i + 1 ( l + 1 ) n + 1 ( j k ) ( k l ) r = 0 n Γ ( n + r i + 1 ) 3 n + r i + 1 Γ ( n + r i ) 1 j k l + m = 0 r 1 Γ ( m + 1 ) j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) p = 0 i + 1 i + 1 p u ( i p + 2 ) ( u 3 1 ) i + 1 + n ! i = 0 n ( 1 ) n + 1 j 3 n 2 i ( j 1 ) ( j 2 j + 1 ) n i + 1 ( j + 1 ) n + 1 ( j k ) ( j l ) k 3 n 2 i ( k 1 ) ( k 2 k + 1 ) n i + 1 ( k + 1 ) n + 1 ( j k ) ( k l ) + l 3 n 2 i ( l 1 ) ( l 2 l + 1 ) n i + 1 ( l + 1 ) n + 1 ( j k ) ( k l ) r = 0 n 2 Γ ( n + r i + 1 ) 3 n + r i + 1 Γ ( n + r i ) 1 j k l + m = 0 r 1 Γ ( m + 1 ) j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) p = 0 i + 1 i + 1 p u ( i p + 1 ) ( u 3 1 ) i + 1 + n ! i = 1 n ( 1 ) n i + 1 ( n + 1 ) 3 n i + 1 i = 0 n 1 j n r 1 ( j + 1 ) n r + 1 ( j k ) ( j l ) k n r 1 ( k + 1 ) n r + 1 ( j k ) ( k l ) + l n r 1 ( l + 1 ) n r + 1 ( j k ) ( k l ) 1 ( j + 1 ) ( k + 1 ) ( l + 1 ) 1 ( u 1 ) i + n ! 3 n + 1 ( j + 1 ) ( k + 1 ) ( l + 1 ) 1 ( u 1 ) n + 1 + ( 1 ) n n ! j 3 n 1 ( j 3 + 1 ) n + 1 ( j k ) ( j l ) 1 u + 1 / j + ( 1 ) n + 1 n ! k 3 n 1 ( k 3 + 1 ) n + 1 ( j k ) ( k l ) 1 u + 1 / k + ( 1 ) n + 2 n ! l 3 n 1 ( l 3 + 1 ) n + 1 ( j l ) ( k l ) 1 u + 1 / k
Finally, resubstituting u = s 1 / 3 and taking the inverse Laplace transform to (24) with the help of Example 4 in section (iii) and (iv), and Lemma 2 and Lemma 3, we obtain (19) as the solution to (18).
For σ = 1 , Equation (22) becomes
Y ( s ) = n ! s 3 ( s 1 ) n + 1 ( c s 3 + b s 2 + a s + 1 ) .
Using partial fractions with explicit values of a , b , c , we can rewrite the above equation as
Y ( s ) = i = 1 n ( 1 ) n i n ! j n i ( j + 1 ) n i + 2 ( j k ) ( j l ) k n i ( k + 1 ) n i + 2 ( j k ) ( k l ) + l n i ( l + 1 ) n i + 2 ( j l ) ( k l ) 1 ( s 1 ) i + n ! ( j + 1 ) ( k + 1 ) ( l + 1 ) 1 ( s 1 ) n + 1 + ( 1 ) n n ! j n 1 ( j + 1 ) n + 1 ( j k ) ( j l ) 1 s + 1 / j + ( 1 ) n + 1 n ! k n 1 ( k + 1 ) n + 1 ( j k ) ( k l ) 1 s + 1 / k + ( 1 ) n + 2 n ! l n 1 ( l + 1 ) n + 1 ( j l ) ( k l ) 1 s + 1 / l .
Applying the inverse Laplace transform to (25) with the help of Example 4 in section (iii) and (iv) yields (20) as the solution of (18). To include the case n = 0 into the solution formulas of both cases, we adopt the notation 1 / Γ ( 0 ) = 0 . The proof is completed. □
Example 7.
Let a = 11 6 , b = 1 , c = 1 6 and σ = 1 then (22) becomes
I 0 + 3 y ( t ) + 11 6 · I 0 + 2 y ( t ) + I 0 + y ( t ) + 1 6 · y ( t ) = t n e t .
From Theorem 2, Equation (26) has solution
y ( t ) = i = 0 n ( 1 ) n i 1 n ! ( 1 / 2 ) n i 4 ( 3 / 2 ) n i + ( 1 / 3 ) n i 3 ( 4 / 3 ) n i + 1 + 3 2 n i + 1 t i e t i ! + t n e t + ( 1 ) n 3 · n ! j n 1 e t 2 n + 1 + ( 1 ) n + 2 n ! ( 1 / 3 ) n 3 e 3 t ( 4 / 3 ) n + 1 + ( 1 ) n + 3 n ! ( 1 / 2 ) n 4 e 2 t ( 3 / 2 ) n .
By applying Example 2 in section (i), (iii), and (iv), it is not difficult to verify that (27) satisfies (26).
Moreover, if n = 0 , then (26) becomes
I 0 + 3 y ( t ) + 11 6 · I 0 + 2 y ( t ) + I 0 + y ( t ) + 1 6 · y ( t ) = e t .
From (27), it follows that (28) has solution
y ( t ) = 1 4 e t + 81 4 e 3 t + 3 2 e t 16 e 2 t .
It is not difficult to verify that (29) satisfies (28).

4. Conclusions

We used the Laplace transform technique to find the solutions of nonhomogeneous fractional integral equation of the form
I 0 + 3 σ y ( t ) + a · I 0 + 2 σ y ( t ) + b · I 0 + σ y ( t ) + c · y ( t ) = f ( t ) ,
where I 0 + σ is the Riemann–Liouville fractional integral of order σ = 1 / 3 , 1 , f ( t ) = t n , t n e t , n N { 0 } , t R + , and a , b , c are constants. Moreover, example are given to demonstrate the effectiveness of these results. It is expected that our findings may encourage further research in this field.

Author Contributions

Conceptualization, K.N. and S.O.; investigation, K.K., F.W., K.N. and S.O.; methodology, K.K., F.W., K.N. and S.O.; validation, K.K., F.W., K.N. and S.O.; visualization, K.K., F.W., K.N. and S.O.; writing—original draft, K.K. and K.N.; writing—review and editing, K.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The second author was supported by Development and Promotion of Science and Technology talents project (DPST), Thailand. The third author was financially supported by the National Research Council of Thailand and Faculty of Science, Khon Kaen University 2019.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Li, C.; Li, C.P. Remarks on fractional derivatives of distributions. Tbilisi Math. J. 2017, 10, 1–18. [Google Scholar] [CrossRef]
  2. Li, C.; Li, C.P. Clarkson, K. Several results of fractional differential and integral equations in distribution. Mathematics 2018, 6, 97. [Google Scholar] [CrossRef] [Green Version]
  3. Li, C.; Li, C.P. Humphries, T.; Plowman, H. Remarks on the generalized fractional Laplacian operator. Mathematics 2019, 7, 320. [Google Scholar] [CrossRef] [Green Version]
  4. Oliveira, E.C.; Jarosz, S.; Vaz, J., Jr. Fractional calculus via Laplace transform and its application in relaxation processes. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 58–72. [Google Scholar] [CrossRef]
  5. Demirci, E.; Ozalp, N. A method for solving differential equations of fractional order. J. Comput. Appl. Math. 2012, 236, 2754–2762. [Google Scholar] [CrossRef] [Green Version]
  6. Morita, T. Solution for initial-value problems of a fractional differential equation. J. Korean Phys. Soc. 2005, 46, 580–584. [Google Scholar]
  7. Morita, T.; Sato, K. Solution of fractional differential equations in terms of distribution theory. Interdiscip. Inform. Sci. 2006, 12, 71–83. [Google Scholar] [CrossRef] [Green Version]
  8. Morita, T.; Sato, K. Neumann-series solution of fractional differential equation. Interdiscip. Inform. Sci. 2010, 16, 127–137. [Google Scholar] [CrossRef] [Green Version]
  9. Morita, T.; Sato, K. Solution of Laplace’s differential equation and fractional differential equation of that type. Appl. Math. 2013, 4, 26–36. [Google Scholar] [CrossRef] [Green Version]
  10. Kiryakova, V. Fractional calculus operators of special functions? The result is well predictable. Chaos, Soli. Frac. 2017, 102, 2–15. [Google Scholar] [CrossRef]
  11. Campos, L.M.B.C. On the solution of some simple fractional differential equations. Internat. J. Math. Math. Sci. 1990, 13, 481–496. [Google Scholar] [CrossRef] [Green Version]
  12. Khudair, A.R. On solving non-homogeneous fractional differential equations of Euler type. Comp. Appl. Math. 2013, 32, 577–584. [Google Scholar] [CrossRef]
  13. Zhukovskaya, N.V.; Kilbas, A.A. Solving homogeneous fractional differential equations of Euler type. Differ. Equ. 2011, 47, 1714–1725. [Google Scholar] [CrossRef]
  14. Kim, M.H.; Ri, G.C.; Choe, G.S.; Chol, O.H. Cauchy type problems of linear Riemann–Liouville fractional differential equations with variable coefficients. arXiv 2016, arXiv:1608.00601. [Google Scholar]
  15. Zhao, K.; Ma, Y. Study on the existence of solutions for a class of nonlinear neutral Hadamard-type fractional integro-differential equation with infinite delay. Fractal Fract. 2021, 5, 52. [Google Scholar] [CrossRef]
  16. Zhao, K.; Suo, L.; Liao, Y. Boundary value problem for a class of fractional integro-differential coupled systems with Hadamard fractional calculus and impulses. Bound. Value Probl. 2019, 1, 105. [Google Scholar] [CrossRef]
  17. Zhao, K.; Deng, S. Existence and Ulam-Hyers stability of a kind of fractional-order multiple point BVP involving noninstantaneous impulses and abstract bounded operator. Adv. Differ. Equ. 2021, 2021, 44. [Google Scholar] [CrossRef]
  18. Zhao, K. Impulsive boundary value problems for two classes of fractional differential equation with two different Caputo fractional derivatives. Mediterr. J. Math. 2016, 13, 1033–1050. [Google Scholar] [CrossRef]
  19. Zhao, K.; Gong, P. Existence of positive solutions for a class of higher-order Caputo fractional differential equation. Qual. Theory Dyn. Syst. 2015, 14, 157–171. [Google Scholar] [CrossRef]
  20. Zhao, K. Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays. Dyn. Syst. 2015, 30, 208–223. [Google Scholar] [CrossRef]
  21. Zhao, K. Impulsive integral boundary value problems of the higher-order fractional differential equation with eigenvalue arguments. Adv. Differ. Equ. 2015, 2015, 382. [Google Scholar] [CrossRef] [Green Version]
  22. Zhao, K.; Huang, H. Existence results of nonlocal boundary value problem for a nonlinear fractional differential coupled system involving fractional order impulses. Adv. Differ. Equ. 2019, 2019, 36. [Google Scholar] [CrossRef] [Green Version]
  23. Rosales, J.; Go´mez, J.F.; Gui´a, M.; Tkach, V. Fractional electromagnetic waves. In Proceedings of the 11th International Conference Laser and Fiber-Optical Networks Modeling, Kharkov, Ukraine, 5–8 September 2011. [Google Scholar]
  24. Sun, H.H.; Onaral, B.; Tsao, Y.Y. Application of the positive reality principle to metal electrode linear polarization phenomena. IEEE Trans. BME 1984, 10, 664–674. [Google Scholar] [CrossRef]
  25. Koeller, R.C. Applications of fractional calculus ot the theorem of viscoelasticity. J. Appl. Mech. 1984, 51, 229–307. [Google Scholar] [CrossRef]
  26. Glöckle, W.G.; Nonnenmacher, T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef] [Green Version]
  27. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: New York, NY, USA, 2006. [Google Scholar]
  28. Das, S. Fractional Fractional Calculus; Springer: New York, NY, USA, 2011. [Google Scholar]
  29. Kimeu, J.M. Fractional Calculus: Definitions and Applications; Western Kentucky University: Bowling Green, KY, USA, 2009. [Google Scholar]
  30. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
  31. Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial. Mathematics 2019, 7, 407. [Google Scholar] [CrossRef] [Green Version]
  32. Makogin, V.; Mishura, Y. Fractional integrals, derivatives and integral equations with weighted Takagi-Landsberg functions. arXiv 2020, arXiv:2003.13285v1. [Google Scholar] [CrossRef]
  33. Kilbas, A.A.; Trujillo, J.J. Computation of fractional integrals via functions of hypergeometric and Bessel type. J. Comput. Appl. Math. 2000, 118, 223–239. [Google Scholar] [CrossRef]
  34. Agarwal, R.; Jain, S.; Agarwal, R.P.; Baleanu, D. A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function. Front. Phys. 2018, 6, 79. [Google Scholar] [CrossRef]
  35. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
  36. Vladimirov, V.S. Methods of the Theory of Generalized Functions; Taylor & Francis: London, UK; New York, NY, USA, 2002. [Google Scholar]
  37. El-Nabulsi, R.A. Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 2011, 217, 9492–9496. [Google Scholar]
  38. Labora, D.C.; Rodriguez-Lopez, R. Improvements in a method for solving fractional integral equations with some links with fractional differential equations. Fract. Calc. Appl. Anal. 2018, 21, 174–189. [Google Scholar] [CrossRef] [Green Version]
  39. Kilbas, A.A.; Saigo, M. On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Int. Trans. Spec. Funct. 1996, 4, 355–370. [Google Scholar] [CrossRef]
  40. Agarwal, R.; Jain, S.; Agarwal, R.P. Solution of fractional Volterra integral equation and non-homogeneous time fractional heat equation using integral transform of pathway type. Progr. Fract. Differ. Appl. 2015, 1, 145–155. [Google Scholar]
  41. Li, C.; Li, C.P.; Kacsmar, B.; Lacroix, R.; Tilbury, K. The Abel integral equations in distribution. Adv. Anal. 2017, 2, 88–104. [Google Scholar] [CrossRef]
  42. Li, C. Babenko’s approach to Abel’s integral equations. Mathematics 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
  43. Li, C.; Humphries, T.; Plowman, H. Solutions to Abel integral equations in distribution. Axioms 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
  44. Labora, D.C.; Rodriguez-Lopez, R. From fractional order equations to integer order equations. Fract. Calc. Appl. Anal. 2017, 20, 1405–1423. [Google Scholar] [CrossRef] [Green Version]
  45. Yousefi, A.; Javadi, S.; Babolian, E. A computational approach for solving fractional integral equations based on Legendre collocation method. Math. Sci. 2019, 13, 231–240. [Google Scholar] [CrossRef] [Green Version]
  46. Karuna, K.; Nonlaopon, K.; Orankitjaroen, S.; Kim, H. On the solutions of non-homogeneous fractional integral equations via Laplace transform. J. Math. Comput. Sci. 2021, 11, 6999–7014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kaewnimit, K.; Wannalookkhee, F.; Nonlaopon, K.; Orankitjaroen, S. The Solutions of Some Riemann–Liouville Fractional Integral Equations. Fractal Fract. 2021, 5, 154. https://doi.org/10.3390/fractalfract5040154

AMA Style

Kaewnimit K, Wannalookkhee F, Nonlaopon K, Orankitjaroen S. The Solutions of Some Riemann–Liouville Fractional Integral Equations. Fractal and Fractional. 2021; 5(4):154. https://doi.org/10.3390/fractalfract5040154

Chicago/Turabian Style

Kaewnimit, Karuna, Fongchan Wannalookkhee, Kamsing Nonlaopon, and Somsak Orankitjaroen. 2021. "The Solutions of Some Riemann–Liouville Fractional Integral Equations" Fractal and Fractional 5, no. 4: 154. https://doi.org/10.3390/fractalfract5040154

Article Metrics

Back to TopTop