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Abstract: In this paper, we propose the solutions of nonhomogeneous fractional integral equations
of the form I3σ

0+ y(t) + a · I2σ
0+ y(t) + b · Iσ

0+y(t) + c · y(t) = f (t), where Iσ
0+ is the Riemann–Liouville

fractional integral of order σ = 1/3, 1, f (t) = tn, tnet, n ∈ N ∪ {0}, t ∈ R+, and a, b, c are constants,
by using the Laplace transform technique. We obtain solutions in the form of Mellin–Ross function
and of exponential function. To illustrate our findings, some examples are exhibited.

Keywords: Laplace transform; fractional differential equations; fractional integral equations;
Riemann–Liouville fractional integral
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1. Introduction

Fractional calculus is the theory of derivatives and integrals of arbitrary complex or
real order. It began in 1695 when G.F.A. L’Hôpital asked G.W. Leibniz to give the meaning
of dny/dxn, where n = 1/2. In his predictive answer, G.W. Leibniz expected the beginning
of the area that is presently named fractional calculus. Since that time, fractional calculus
interested many mathematicians such as L. Euler, H. Laurent, P.S. Laplace, J.B.J. Fourier,
N.H. Abel, J. Liouville, and G.F.B. Riemann, etc. Moreover, it is shown to be very useful
and active in various mathematical areas.

Fractional derivatives are a part of fractional calculus that plays a key role in modeling
real-world phenomena within different branches of engineering and science, see [1–22]
for more details. With the help of fractional calculus, many mathematical models of real
problems were produced in various fields of engineering and science, such as dielectric
polarization, viscoelastic, electromagnetic waves, and electrode-electrolyte polarization,
which can be found in [23–30].

In addition, in these years, the theory of fractional integral attracted many researchers,
see [31–38]. In 1812, P.S. Laplace defined a fractional derivative through an integral and
developed it as a mere mathematical exercise, generalizing from the case of integer order.
Later, in 1832, J. Liouville recommended a definition based on the formula for differentiating
the exponential function known as the first Liouville definition. Next, he presented the
second definition formula in terms of an integral, called Liouville integral, to integrate,
with respect, a noninteger order. After that, J. Liouville and G.F.B. Riemann developed
an approach to noninteger order derivatives in terms of convergent series, conversely to
the Riemann–Liouville approach, that was given as an integral. Many researchers focused
on developing the theoretical aspects, methods of solution, and applications of fractional
integral equations, see [37–45].

In 2005, T. Morita [6] studied the initial value problem of fractional differential equa-
tions by using the Laplace transform. As a result, he obtained the solutions to the fractional
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differential equations with Riemann–Liouville fractional derivative and Caputo fractional
derivative or its modification. In 2010, T. Morita and K. Sato [8] studied the initial value
problem of fractional differential equations with constant coefficients. Moreover, T. Morita
and K. Sato obtained solutions in terms of Green’s function and distribution theory.

In 1996, A.A. Kilbas and M. Saigo [39] discovered the connections of the Mittag–Leffler
type function with the Riemann–Liouville fractional integrals and derivatives and solved
the linear Abel–Volterra integral equations as applications.

In 2015, R. Agarwal et al. [40] studied the solutions of fractional Volterra integral
equation with Caputo fractional derivative using the integral transform of pathway type.
More interestingly, they discussed the solution of the nonhomogeneous time-fractional
heat equation in a spherical domain.

In 2017, C. Li et al. [41] studied a generalized Abel’s integral equation and its variant in
the distributional (Schwartz) sense based on fractional calculus of distributions. Particularly,
in 2018, C. Li and K. Clarkson [42] studied Abel’s integral equation of the second kind of
the form

y(t) +
λ

Γ(α)

∫ t

0
(t− λ)α−1y(τ)dτ = f (t), t > 0, (1)

where Γ is the gamma function, λ is a constant, and α ∈ R. Equation (1) can be written in
the form (

1 + λIα
0+
)
y(t) = f (t),

where Iα
0+ is the Riemann–Liouville fractional integral. Finally, C. Li and K. Clarkson

applied Babenko’s method and fractional integral for solving the equation above.
In [35], S.G. Samko et al. considered the linear fractional order integral equations with

constant coefficients of the form

c1 Iα1
a+y(t) + c2 Iα2

a+y(t) + · · ·+ cn Iαn
a+y(t) = f (t), (2)

where a ∈ R, αi ∈ R, α1 > α2 > · · · > αn ≥ 0, ci ∈ C, for i ∈ {1, 2, . . . , n}, and f is
assumed to be a real valued function of real variable defined on an interval (a, b). The
general solution of (2) can be found in the space S′+ of tempered distributions with support
in [0, ∞).

In 2017, D.C. Labora and R. Rodriguez–Lopez [44] showed a new method by applying
a suitable fractional integral operator for solving some fractional order integral equations
with constant coefficients, and all the integration orders involved are rational. Next, they
applied and extended ideas presented in [44] for solving fractional integral equations with
Riemann–Liouville definition; see [38] for more details.

In 2021, K. Karuna et al. [46] studied the solutions of nonhomogeneous fractional
integral equations of the form

I2σ
0+y(t) + a · Iσ

0+y(t) + b · y(t) = f (t),

where Iσ
0+ is the Riemann–Liouville fractional integral of order σ = 1/2, 1, f (t) = tn, tnet,

n ∈ N∪ {0}, t ∈ R+, and a, b are constants, by using the Laplace transform technique. They
obtained solutions in the form of Mellin–Ross functions and of exponential functions.

In this paper, we provide the solution of nonhomogeneous fractional integral equations
of the form

I3σ
0+y(t) + a · I2σ

0+y(t) + b · Iσ
0+y(t) + c · y(t) = f (t),

where Iσ
0+ is the Riemann–Liouville fractional integral of order σ = 1/3, 1, f (t) = tn, tnet,

n ∈ N∪ {0}, t ∈ R+, and a, b are constants by using the Laplace transform technique and
its variants in the classical sense.

Section 2 introduces definitions of the Riemann–Liouville fractional integral and the
Laplace transform, which helps us obtain our main results. In Section 3, we establish our
main results and some examples due to our main results. Finally, we give the conclusions
in Section 4.
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2. Preliminaries

Before we proceed to the main results, the following definitions, lemmas, and concepts
are required.

Definition 1 ([30]). Let α be a constant, v a real number and t a positive real number. The
Mellin–Ross function Et(v, α) is defined by

Et(v, α) = tveαtΓ∗(v, αt),

where Γ∗ is the incomplete gamma function, which is defined by

Γ∗(v, t) = e−t
∞

∑
k=0

tk

Γ(v + k + 1)
,

and Γ is the gamma function.

In addition, if v > 0, then Et(v, α) has an integral representation as

Et(v, α) =
1

Γ(v)

∫ t

0
xv−1eα(t−x)dx.

Example 1. Let α be a constant, v a real number, and t a positive real number. We recall some special
values and recursion relations of the Mellin–Ross function that are needed for our calculations:

(i) Et(0, α) = eαt;

(ii) Et(v, 0) =
tv

Γ(v + 1)
;

(iii) Et(1, α) =
Et(0, α)− 1

α
, α 6= 0;

(iv) Et(v, α) = αEt(v + 1, α) +
tv

Γ(v + 1)
.

Definition 2 ([30]). Let f (t) be piece-wise continuous on (0, ∞) and integrable on any finite
subinterval of [0, ∞). Then, the Riemann–Liouville fractional integral of f (t) of order v is defined by

Iv
0+ f (t) =

1
Γ(v)

∫ t

0
(t− x)v−1 f (x)dx,

where v ∈ R+.

Example 2. Let α be a constant, µ a real number, v and t positive real numbers. Then, the following
Riemann–Liouville fractional integrals hold:

(i) Iv
0+ tµ =

Γ(µ + 1)
Γ(µ + v + 1)

tµ+v, µ > −1;

(ii) Iv
0+ eαt = Et(v, α);

(iii) Iv
0+
[
teαt] = tEt(v, α)− vEt(v + 1, α);

(iv) Iv
0+ [Et(µ, α)] = Et(µ + v, α), µ > −1;

(v) Iv
0+ [tEt(µ, α)] = tEt(µ + v, α)− vEt(µ + v + 1, α), µ > −2.
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Definition 3 ([30]). Let f (t) be piece-wise continuous on (0, ∞) and integrable on any finite
subinterval of [0, ∞). Let n be the smallest integer that exceeds β. Then, Riemann–Liouville
fractional derivative 0Dβ

t f (t) is defined by

0Dβ
t f (t) =

1
Γ(n− β)

dn

dtn

∫ t

0
(t− x)n−β−1 f (x)dx,

where β ∈ R+ and n− β > 0.

Definition 4 ([30]). Let f (t) be a function satisfying the conditions in Definition 2 and of expo-
nential order v where v ∈ R+. The Laplace transform of f (t) is defined by

F(s) = L { f (t)} =
∫ ∞

0
f (t)e−stdt,

where Re(s) > v.

Example 3. Let α be a constant, n a real number, v and t positive real numbers. Then, the following
Laplace transforms hold:

(i) L {1} = 1
s

, s > 0;

(ii) L {tn} = Γ(n + 1)
sn+1 , s > 0, n > −1;

(iii) L
{

eαt} =
1

s− α
, s > α;

(iv) L
{

tneαt} =
Γ(n + 1)
(s− α)n+1 , s > α, n > 0;

(v) L {Et(v, α)} = 1
sv(s− α)

, s > α.

Lemma 1 ([30]). Let f (t) be a function satisfying the conditions in Definition 2 and of exponential
order v where v ∈ R+. Then

L
[
Iv
0+ f (t)

]
= s−vL [ f (t)].

Definition 5. Let f (t) be a function satisfying the conditions in Definition 4 and L { f (t)} = F(s).
The inverse Laplace transform of F(s) is defined by

f (t) = L −1{F(s)} = 1
2πi

lim
ω→∞

∫ c+iω

c−iω
F(s)estds,

where Re(s) > σa, σa is an abscissa of absolute convergence for L { f (t)}.

Example 4. Let α be a constant, v a real number, n and t positive real numbers. Then, the following
inverse Laplace transforms hold:

(i) L −1
{

1
sv+1

}
=

tv

Γ(v + 1)
, v > 0;

(ii) L −1
{

1
s− α

}
= Et(0, α) = eαt;

(iii) L −1
{

Γ(n + 1)
(s− α)n+1

}
= tneαt;

(iv) L −1
{

1
s1/3 − α

}
= Et

(
−2

3
, α3
)
+ αEt

(
−1

3
, α3
)
+ α2Et

(
0, α3

)
;

(v) L −1
{

1
sv(s− α)3

}
=

1
2

t2Et(v, α)− vtEt(v + 1, α) +
1
2

v(v + 1)Et(v + 2, α), v > −3.

We turn now to the problem of founded inverse transforms of slightly more compli-
cated functions in Example 4 (iv) and (v) are particular cases of the following Lemmas.
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Lemma 2 ([30]). Let n be a positive integer, α be a constant, v be a real number, and t be a positive
real number, then

L −1
{

1
sv(s− α)n

}
=

1
(n− 1)! Γ(v)

n−1

∑
i=0

(−1)i
(

n− 1
i

)
Γ(v + i)tn−1−iEt(v + i, α),

where v > −n.

Lemma 3 ([30]). Let n and q be positive integers, α be a constant, u be a real number, and t be a
positive real number, then

L −1
{

1
su(sv − α)n

}
=

q

∑
r1=1
· · ·

q

∑
rn=1

αm−n

(n− 1)! Γ(u− n + mv)

n−1

∑
k=0

(−1)k
(

n− 1
k

)
× Γ(u− n + mv + k)tn−1−kEt(u− n + mv + k, αq),

where u > −n, v = 1
q and m =

n

∑
i=1

ri

3. Main Results

In this section, we state our main results and give their proofs.

Theorem 1. Consider that the nonhomogeneous fractional integral equation is given by

I3σ
0+y(t) + a · I2σ

0+y(t) + b · Iσ
0+y(t) + c · y(t) = tn, (3)

where Iσ
0+ is the Riemann–Liouville fractional integral of order σ = 1/3, σ = 1, n ∈ N ∪ {0},

t ∈ R+, and a, b, c are constants. Then, the solution of (3) as the following:

(i) If σ = 1/3, and j, k, l ∈ R \ {0} with j, k, l are different such that a = j + k + l,
b = jk + jl + kl, and c = jkl then

y(t) =
3n

∑
i=0

(−1)n−in!
[

j3n−i+2

(j− k)(j− l)
− k3n−i+2

(j− k)(k− l)
+

l3n−i+2

(j− l)(k− l)

]
t(i−3)/3

Γ(i/3)

+
(−1)nn! j3n+1

(j− k)(j− l)

[
Et

(
−2

3
,− 1

j3

)
− 1

j
Et

(
−1

3
,− 1

j3

)
+

1
j2

Et

(
0,− 1

j3

)]
(4)

+
(−1)n+1n! k3n+1

(j− k)(k− l)

[
Et

(
−2

3
,− 1

k3

)
− 1

k
Et

(
−1

3
,− 1

k3

)
+

1
k2 Et

(
0,− 1

k3

)]
+

(−1)n+2n! l3n+1

(j− l)(k− l)

[
Et

(
−2

3
,− 1

l3

)
− 1

l
Et

(
−1

3
,− 1

l3

)
+

1
l2 Et

(
0,− 1

l3

)]
.

as the solution to (3).

(ii) If σ = 1, and j, k, l ∈ R \ {0 } with j, k, l are different such that a = j + k + l,
b = jk + jl + kl and c = jkl then

y(t) =
n

∑
i=0

(−1)n−in!
[

jn−i(k− l)− kn−i(j− l) + ln−i(j− k)
(j− k)(j− l)(k− l)

]
ti−1

Γ(i)

+
(−1)nn! jn−1e−t/j

(j− k)(j− l)
+

(−1)n+1n! kn−1e−t/k

(j− k)(k− l)
+

(−1)n+2n! ln−1e−t/l

(j− l)(k− l)
. (5)

as the solution to (3).
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Proof. Applying the Laplace transform to both sides of (3), we have

L {I3σ
0+y(t)}+ a ·L {I2σ

0+y(t)}+ b ·L {Iσ
0+y(t)}+ c ·L {y(t)} = L {tn}. (6)

Using Lemma 1, Example 3 (ii) on (6) and denoting the Laplace transform L {y(t)} = Y(s),
we obtain

Y(s) =
n! s3σ

sn+1(cs3σ + bs2σ + asσ + 1)
. (7)

For σ = 1/3, Equation (7) becomes

Y(s) =
n!

sn
(
cs + bs2/3 + as1/3 + 1

) ,

and turns into
Y(s) =

n!
u3n(cu3 + bu2 + au + 1)

,

with a substitution of u = s1/3. Using partial fractions with explicit values of a, b, c, we can
rewrite it as

Y(s) =
3n

∑
i=1

(−1)n−in!
[

j3n−i+2

(j− k)(j− l)
− k3n−i+2

(j− k)(k− l)
+

l3n−i+2

(j− l)(k− l)

]
1
ui

+
(−1)nn! j3n+1

(j− k)(j− l)

(
1

u + 1/j

)
+

(−1)n+1n! k3n+1

(j− k)(k− l)

(
1

u + 1/k

)
(8)

+
(−1)n+2n! l3n+1

(j− l)(k− l)

(
1

u + 1/l

)
.

Finally, resubstituting u = s1/3 and taking the inverse Laplace transform to (8) with the
help of Example 4 (i), (iv), we obtain (4) as the solution to (3).

For σ = 1, Equation (7) becomes

Y(s) =
n!

sn−2(cs3 + bs2 + as + 1)
,

Using partial fractions with explicit values of a, b, c, we can rewrite the above equation as

Y(s) =
n

∑
i=1

(−1)n−in!
[

jn−i(k− l)− kn−i(j− l) + ln−i(j− k)
(j− k)(j− l)(k− l)

](
1
si

)

+
(−1)nn! jn−1

(j− k)(j− l)

 1(
s + 1

j

)
+

(−1)n+1n! kn−1

(j− k)(k− l)

 1(
s + 1

k

)
 (9)

+
(−1)n+2n! ln−1

(j− l)(k− l)

 1(
s + 1

l

)
.

Applying the inverse Laplace transform to (9) and using Example 4 (i) and (ii) yields (5) as
the solution to (3). To include the case n = 0 into the solution formulas of both cases, we
adopt the notation 1/Γ(0) = 0. The proof is completed.

Remark 1. Let n ∈ N∪ {0}, and a, b, c satisfy condition in Theorem 1, then (5) is a solution of

c · y′′′(t) + b · y′′(t) + a · y′(t) + y(t) = n(n− 1)(n− 2)tn−3,

see [44] for more details.
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Example 5. Letting a = 1
2 , b = −1, c = − 1

2 and σ = 1/3 then (3) changes to

I0+y(t) +
1
2
· I2/3

0+ y(t)− I1/3
0+ y(t)− 1

2
· y(t) = tn. (10)

From Theorem 1, Equation (10) has solution

y(t) =
3n

∑
i=0

(−1)n−i+1n!
[
(1/2)3n−i − 3 + (−1)3n−i+1

3

]
t(i−3)/3

Γ(i)

+
(−1)n+1n! (1/2)3n−1

3

[
Et

(
−2

3
,−8

)
− 2Et

(
−1

3
,−8

)
+ 4Et(0,−8)

]
+ (−1)n+2n!

[
Et

(
−2

3
,−1

)
− Et

(
−1

3
,−1

)
+ Et(0,−1)

]
+

(−1)4n+1n!
3

[
Et

(
−2

3
, 1
)
+ Et

(
−1

3
, 1
)
+ Et(0, 1)

]
. (11)

By applying Example 2 (i), (ii), and (iv), it is not difficult to verify that (11) satisfies (10).
Moreover, if n = 1, then Equation (10) becomes

I0+y(t) +
1
2
· I2/3

0+ y(t)− I1/3
0+ y(t)− 1

2
· y(t) = t. (12)

From (11), it follows that (12) has solution

y(t) =
5t−2/3

4 Γ(1/3)
+ 1− t−1/3

2 Γ(2/3)
+

1
12

[
Et

(
−2

3
,−8

)
− 2Et

(
−1

3
,−8

)
+ 4Et(0,−8)

]
−
[

Et

(
−2

3
,−1

)
− Et

(
−1

3
,−1

)
+ Et(0,−1)

]
(13)

− 1
3

[
Et

(
−2

3
, 1
)
+ Et

(
−1

3
, 1
)
+ Et(0, 1).

]
It is not difficult to verify that (13) satisfies (12).

Example 6. Letting a = 1
2 , b = −1, c = − 1

2 and σ = 1 then (3) changes to

I3
0+y(t) +

1
2
· I2

0+y(t)− I1
0+y(t)− 1

2
· y(t) = tn. (14)

From Theorem 1, Equation (14) has solution

y(t) = ∑n
i=0(−1)n−i+1n!

[
(1/2)n−i−2−3+(−1)n−i+1

3

]
ti−1

Γ(i) +
(−1)n+1n!(1/2)n−3e−2t

3

+(−1)n+2n!e−t + (−1)2n+1n!et

3 .
(15)

By applying Example 2 (ii), it is not difficult to verify that (15) satisfies (14).
Moreover, if n = 3, then Equation (14) becomes

I3
0+y(t) +

1
2
· I2

0+y(t)− I1
0+y(t)− 1

2
· y(t) = t3. (16)

From (15), it follows that (16) has solution

y(t) = 6 + 2e−2t − 6e−t − 2et. (17)

It is not difficult to verify that (17) satisfies (16).

According to Remark 1, function (17) is solution of 1
2 y′′′(t) + y′′(t)− 1

2 y′(t)− y(t) = −6.
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Theorem 2. Consider the nonhomogeneous fractional integral equation is given by

I3σ
0+y(t) + a · I2σ

0+y(t) + b · Iσ
0+y(t) + c · y(t) = tnet, (18)

where Iσ
0+ is the Riemann–Liouville fractional integral of order σ = 1/3, σ = 1, n ∈ N ∪ {−1, 0},

t ∈ R+, and a, b, c are constants. Then:

(i) If σ = 1/3, and j, k, l ∈ R \ {−1, 0} with j, k, l are different such that a = j + k + l,
b = jk + jl + kl, and c = jkl then

y(t) = n! ∑n
i=0(−1)n+1

[
j3n+1−2i

(j2−j+1)n−i+1(j+1)n+1(j−k)(j−l)

− k3n+1−2i

(k2−k+1)n−i+1(k+1)n+1(j−k)(k−l) +
l3n+1−2i

(l2−l+1)n−i+1(l+1)n+1(j−k)(k−l)

−∑n
r=0

Γ(n+r−i+1)
3n+r−i+1Γ(n+r−i)

[
1

jkl + ∑r
m=0

1
Γ(m+1)

[
jn−r−1

(j+1)n−r+1(j−k)(j−l)

− kn−r−1

(k+1)n−r+1(j−k)(k−l) +
ln−r−1

(l+1)n−r+1(j−k)(k−l)

]]]
∑i+1

p=0(−1)p(i+1
p )

× 1
i!Γ(−(i−p+2)/3) ∑i

q=0(−1)q( i
q)Γ(−(i− p + 2)/3 + q)ti−qEt

(
− i−p+2

3 + q, 1
)

+n! ∑n
i=0(−1)n+1

[
j3n−2i(j−1)

(j2−j+1)n−i+1(j+1)n+1(j−k)(j−l)

− k3n−2i(k−1)
(k2−k+1)n−i+1(k+1)n+1(j−k)(k−l) +

l3n−2i(l−1)
(l2−l+1)n−i+1(l+1)n+1(j−k)(k−l)

−∑n
r=0

2Γ(n+r−i+1)
3n+r−i+1Γ(n+r−i)

[
1

jkl + ∑r
m=0

1
Γ(m+1)

[
jn−r−1

(j+1)n−r+1(j−k)(j−l)

− kn−r−1

(k+1)n−r+1(j−k)(k−l) +
ln−r−1

(l+1)n−r+1(j−k)(k−l)

]]]
∑i+1

p=0(−1)p(i+1
p )

× 1
i!Γ(−(i−p+1)/3) ∑i

q=0(−1)q( i
q)Γ(−(i− p + 1)/3 + q)ti−qEt

(
− i−p+1

3 + q, 1
)

+n! ∑n
i=1

(−1)n−i+1(n+1)
3n−i+1 ∑n−i

r=0

[
jn−r−1

(j+1)n−r+1(j−k)(j−l) −
kn−r−1

(k+1)n−r+1(j−k)(k−l)

+ ln−r−1

(l+1)n−r+1(j−k)(k−l) −
1

(j+1)(k+1)(l+1)

]
∑3

r1=1 · · ·∑3
rn=1

1
(i−1)! Γ(M/3−i+1)

×∑i−1
p=0(−1)p(i−1

p )Γ(M/3 + p− i + 1)ti−1−pEt(M/3 + p− i + 1, 1)

+ n!
3n+1(j+1)(k+1)(l+1) ∑3

r1=1 · · ·∑3
rn+1=1

1
(n)! Γ(M/3−n) ∑n

p=0(−1)p×

(n
p)Γ(M/3 + p− n)tn−pEt(M/3 + p− n, 1) + (−1)nn!j3n−1e−t/j

(j3+1)n+1(j−k)(j−l)

+ (−1)n+1n!k3n−1e−t/k

(k3+1)n+1(j−k)(k−l) +
(−1)n+2n!l3n−1e−t/l

(l3+1)n+1(j−l)(k−l) .

(19)

as the solution to (18), where M =
n+1

∑
i=1

ri.

(ii) If σ = 1, and j, k, l ∈ R \ {−1, 0} with j, k, l are different such that a = j + k + l,
b = jk + jl + kl, and c = jkl then

y(t) =
n

∑
i=0

(−1)n−in!
[

jn−i

(j + 1)n−i+2(j− k)(j− l)
− kn−i

(k + 1)n−i+2(j− k)(k− l)

+
ln−i

(l + 1)n−i+2(j− l)(k− l)

]
ti−1et

Γ(i)
+

tnet

(j + 1)(k + 1)(l + 1)
(20)

+
(−1)nn!jn−1e−t/j

(j + 1)n+1(j− k)(j− l)
+

(−1)n+1n!kn−1e−t/k

(k + 1)n+1(j− k)(k− l)
+

(−1)n+2n!ln−1e−t/l

(l + 1)n+1(j− l)(k− l)
.

as the solution to (18).
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Proof. Applying the Laplace transform to both sides of (18), we have

L {I3σ
0+y(t)}+ aL {I2σ

0+y(t)}+ bL {Iσ
0+y(t)}+ cL {y(t)} = L {tnet}. (21)

Using Lemma 1, Example 3 (iv), on (21) and denoting the Laplace transform L {y(t)} = Y(s),
we obtain

Y(s) =
n!s3σ

(s− 1)n+1(cs3σ + bs2σ + asσ + 1)
. (22)

For σ = 1/3, Equation (22) becomes

Y(s) =
n!s

(s− 1)n+1
(
cs + bs2/3 + as1/3 + 1

) ,

and turns into

Y(s) =
n! u3

(u3 − 1)n+1(cu3 + bu2 + au + 1)
, (23)

with a substitution of u = s1/3. Using partial fractions with explicit values of a, b, c, we can
rewrite it as

Y(s) = n!
n

∑
i=0

(−1)n+1
[

j3n+1−2i

(j2 − j + 1)n−i+1(j + 1)n+1(j− k)(j− l)

− k3n+1−2i

(k2 − k + 1)n−i+1(k + 1)n+1(j− k)(k− l)
+

l3n+1−2i

(l2 − l + 1)n−i+1(l + 1)n+1(j− k)(k− l)

−
n

∑
r=0

Γ(n + r− i + 1)
3n+r−i+1Γ(n + r− i)

[
1

jkl
+

r

∑
m=0

1
Γ(m + 1)

[
jn−r−1

(j + 1)n−r+1(j− k)(j− l)

− kn−r−1

(k + 1)n−r+1(j− k)(k− l)
+

ln−r−1

(l + 1)n−r+1(j− k)(k− l)

]]]
u

(u2 + u + 1)i+1

+ n!
n

∑
i=0

(−1)n+1
[

j3n−2i(j− 1)
(j2 − j + 1)n−i+1(j + 1)n+1(j− k)(j− l)

− k3n−2i(k− 1)
(k2 − k + 1)n−i+1(k + 1)n+1(j− k)(k− l)

+
l3n−2i(l − 1)

(l2 − l + 1)n−i+1(l + 1)n+1(j− k)(k− l)

−
n

∑
r=0

2Γ(n + r− i + 1)
3n+r−i+1Γ(n + r− i)

[
1

jkl
+

r

∑
m=0

1
Γ(m + 1)

[
jn−r−1

(j + 1)n−r+1(j− k)(j− l)

− kn−r−1

(k + 1)n−r+1(j− k)(k− l)
+

ln−r−1

(l + 1)n−r+1(j− k)(k− l)

]]]
1

(u2 + u + 1)i+1

+ n!
n

∑
i=1

(−1)n−i+1(n + 1)
3n−i+1

n−i

∑
r=0

[
jn−r−1

(j + 1)n−r+1(j− k)(j− l)
− kn−r−1

(k + 1)n−r+1(j− k)(k− l)

+
ln−r−1

(l + 1)n−r+1(j− k)(k− l)
− 1

(j + 1)(k + 1)(l + 1)

]
1

(u− 1)i

+

[
n!

3n+1(j + 1)(k + 1)(l + 1)

]
1

(u− 1)n+1 +

[
(−1)nn! j3n−1

(j3 + 1)n+1(j− k)(j− l)

]
1

u + 1/j

+

[
(−1)n+1n! k3n−1

(k3 + 1)n+1(j− k)(k− l)

]
1

u + 1/k
+

[
(−1)n+2n! l3n−1

(l3 + 1)n+1(j− l)(k− l)

]
1

u + 1/k
,

equivalently,
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Y(s) = n!
n

∑
i=0

(−1)n+1
[

j3n+1−2i

(j2 − j + 1)n−i+1(j + 1)n+1(j− k)(j− l)

− k3n+1−2i

(k2 − k + 1)n−i+1(k + 1)n+1(j− k)(k− l)
+

l3n+1−2i

(l2 − l + 1)n−i+1(l + 1)n+1(j− k)(k− l)

−
n

∑
r=0

Γ(n + r− i + 1)
3n+r−i+1Γ(n + r− i)

[
1

jkl
+

r

∑
m=0

1
Γ(m + 1)

[
jn−r−1

(j + 1)n−r+1(j− k)(j− l)

− kn−r−1

(k + 1)n−r+1(j− k)(k− l)
+

ln−r−1

(l + 1)n−r+1(j− k)(k− l)

]]] i+1

∑
p=0

(i+1
p )

u−(i−p+2)(u3 − 1)i+1

+ n!
n

∑
i=0

(−1)n+1
[

j3n−2i(j− 1)
(j2 − j + 1)n−i+1(j + 1)n+1(j− k)(j− l)

− k3n−2i(k− 1)
(k2 − k + 1)n−i+1(k + 1)n+1(j− k)(k− l)

+
l3n−2i(l − 1)

(l2 − l + 1)n−i+1(l + 1)n+1(j− k)(k− l)
(24)

−
n

∑
r=0

2Γ(n + r− i + 1)
3n+r−i+1Γ(n + r− i)

[
1

jkl
+

r

∑
m=0

1
Γ(m + 1)

[
jn−r−1

(j + 1)n−r+1(j− k)(j− l)

− kn−r−1

(k + 1)n−r+1(j− k)(k− l)
+

ln−r−1

(l + 1)n−r+1(j− k)(k− l)

]]] i+1

∑
p=0

(i+1
p )

u−(i−p+1)(u3 − 1)i+1

+ n!
n

∑
i=1

(−1)n−i+1(n + 1)
3n−i+1

n−1

∑
i=0

[
jn−r−1

(j + 1)n−r+1(j− k)(j− l)
− kn−r−1

(k + 1)n−r+1(j− k)(k− l)

+
ln−r−1

(l + 1)n−r+1(j− k)(k− l)
− 1

(j + 1)(k + 1)(l + 1)

]
1

(u− 1)i

+

[
n!

3n+1(j + 1)(k + 1)(l + 1)

]
1

(u− 1)n+1 +

[
(−1)nn! j3n−1

(j3 + 1)n+1(j− k)(j− l)

]
1

u + 1/j

+

[
(−1)n+1n! k3n−1

(k3 + 1)n+1(j− k)(k− l)

]
1

u + 1/k
+

[
(−1)n+2n! l3n−1

(l3 + 1)n+1(j− l)(k− l)

]
1

u + 1/k

Finally, resubstituting u = s1/3 and taking the inverse Laplace transform to (24) with the
help of Example 4 in section (iii) and (iv), and Lemma 2 and Lemma 3, we obtain (19) as
the solution to (18).

For σ = 1, Equation (22) becomes

Y(s) =
n!s3

(s− 1)n+1(cs3 + bs2 + as + 1)
.

Using partial fractions with explicit values of a, b, c, we can rewrite the above equation as

Y(s) = ∑n
i=1(−1)n−in!

[
jn−i

(j+1)n−i+2(j−k)(j−l) −
kn−i

(k+1)n−i+2(j−k)(k−l)

+ ln−i

(l+1)n−i+2(j−l)(k−l)

](
1

(s−1)i

)
+ n!

(j+1)(k+1)(l+1)

(
1

(s−1)n+1

)
+ (−1)nn!jn−1

(j+1)n+1(j−k)(j−l)

(
1

s+1/j

)
+ (−1)n+1n!kn−1

(k+1)n+1(j−k)(k−l)

(
1

s+1/k

)
+ (−1)n+2n!ln−1

(l+1)n+1(j−l)(k−l)

(
1

s+1/l

)
.

(25)

Applying the inverse Laplace transform to (25) with the help of Example 4 in section (iii)
and (iv) yields (20) as the solution of (18). To include the case n = 0 into the solution
formulas of both cases, we adopt the notation 1/Γ(0) = 0. The proof is completed.
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Example 7. Let a = 11
6 , b = 1, c = 1

6 and σ = 1 then (22) becomes

I3
0+y(t) +

11
6
· I2

0+y(t) + I0+y(t) +
1
6
· y(t) = tnet. (26)

From Theorem 2, Equation (26) has solution

y(t) = ∑n
i=0(−1)n−i−1n!

[
(1/2)n−i−4

(3/2)n−i + (1/3)n−i−3

(4/3)n−i+1 +
3

2n−i+1

]
tiet

i! + tnet

+ (−1)n3·n!jn−1e−t

2n+1 + (−1)n+2n!(1/3)n−3e−3t

(4/3)n+1 + (−1)n+3n!(1/2)n−4e−2t

(3/2)n .
(27)

By applying Example 2 in section (i), (iii), and (iv), it is not difficult to verify that (27) satisfies (26).
Moreover, if n = 0, then (26) becomes

I3
0+y(t) +

11
6
· I2

0+y(t) + I0+y(t) +
1
6
· y(t) = et. (28)

From (27), it follows that (28) has solution

y(t) =
1
4

et +
81
4

e−3t +
3
2

e−t − 16e−2t. (29)

It is not difficult to verify that (29) satisfies (28).

4. Conclusions

We used the Laplace transform technique to find the solutions of nonhomogeneous
fractional integral equation of the form

I3σ
0+y(t) + a · I2σ

0+y(t) + b · Iσ
0+y(t) + c · y(t) = f (t),

where Iσ
0+ is the Riemann–Liouville fractional integral of order σ = 1/3, 1, f (t) = tn, tnet,

n ∈ N∪ {0}, t ∈ R+, and a, b, c are constants. Moreover, example are given to demonstrate
the effectiveness of these results. It is expected that our findings may encourage further
research in this field.
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23. Rosales, J.; Gómez, J.F.; Guía, M.; Tkach, V. Fractional electromagnetic waves. In Proceedings of the 11th International Conference

Laser and Fiber-Optical Networks Modeling, Kharkov, Ukraine, 5–8 September 2011.
24. Sun, H.H.; Onaral, B.; Tsao, Y.Y. Application of the positive reality principle to metal electrode linear polarization phenomena.

IEEE Trans. BME 1984, 10, 664–674.
25. Koeller, R.C. Applications of fractional calculus ot the theorem of viscoelasticity. J. Appl. Mech. 1984, 51, 229–307.
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