Previous Issue
Volume 9, March
 
 

Int. J. Turbomach. Propuls. Power, Volume 9, Issue 2 (June 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
65 pages, 7774 KiB  
Review
Unsteady Flows and Component Interaction in Turbomachinery
by Simone Salvadori, Massimiliano Insinna and Francesco Martelli
Int. J. Turbomach. Propuls. Power 2024, 9(2), 15; https://doi.org/10.3390/ijtpp9020015 - 05 Apr 2024
Viewed by 705
Abstract
Unsteady component interaction represents a crucial topic in turbomachinery design and analysis. Combustor/turbine interaction is one of the most widely studied topics both using experimental and numerical methods due to the risk of failure of high-pressure turbine blades by unexpected deviation of hot [...] Read more.
Unsteady component interaction represents a crucial topic in turbomachinery design and analysis. Combustor/turbine interaction is one of the most widely studied topics both using experimental and numerical methods due to the risk of failure of high-pressure turbine blades by unexpected deviation of hot flow trajectory and local heat transfer characteristics. Compressor/combustor interaction is also of interest since it has been demonstrated that, under certain conditions, a non-uniform flow field feeds the primary zone of the combustor where the high-pressure compressor blade passing frequency can be clearly individuated. At the integral scale, the relative motion between vanes and blades in compressor and turbine stages governs the aerothermal performance of the gas turbine, especially in the presence of shocks. At the inertial scale, high turbulence levels generated in the combustion chamber govern wall heat transfer in the high-pressure turbine stage, and wakes generated by low-pressure turbine vanes interact with separation bubbles at low-Reynolds conditions by suppressing them. The necessity to correctly analyze these phenomena obliges the scientific community, the industry, and public funding bodies to cooperate and continuously build new test rigs equipped with highly accurate instrumentation to account for real machine effects. In computational fluid dynamics, researchers developed fast and reliable methods to analyze unsteady blade-row interaction in the case of uneven blade count conditions as well as component interaction by using different closures for turbulence in each domain using high-performance computing. This research effort results in countless publications that contribute to unveiling the actual behavior of turbomachinery flow. However, the great number of publications also results in fragmented information that risks being useless in a practical situation. Therefore, it is useful to collect the most relevant outcomes and derive general conclusions that may help the design of next-gen turbomachines. In fact, the necessity to meet the emission limits defined by the Paris agreement in 2015 obliges the turbomachinery community to consider revolutionary cycles in which component interaction plays a crucial role. In the present paper, the authors try to summarize almost 40 years of experimental and numerical research in the component interaction field, aiming at both providing a comprehensive overview and defining the most relevant conclusions obtained in this demanding research field. Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
Show Figures

Figure 1

17 pages, 10631 KiB  
Article
Relationship between Casing Pressure and Non-Synchronous Vibration in an Axial Compressor
by Valerie Hernley, Aleksandar Jemcov, Jeongseek Kang, Matthew Montgomery and Scott C. Morris
Int. J. Turbomach. Propuls. Power 2024, 9(2), 14; https://doi.org/10.3390/ijtpp9020014 - 02 Apr 2024
Viewed by 499
Abstract
The relationship between aerodynamic forcing and non-synchronous vibration (NSV) in axial compressors remains difficult to ascertain from experimental measurements. In this work, the relationship between casing pressure and blade vibration was investigated using experimental observations from a 1.5-stage axial compressor under off-design conditions. [...] Read more.
The relationship between aerodynamic forcing and non-synchronous vibration (NSV) in axial compressors remains difficult to ascertain from experimental measurements. In this work, the relationship between casing pressure and blade vibration was investigated using experimental observations from a 1.5-stage axial compressor under off-design conditions. The wavenumber-dependent auto-spectral density (ASD) of casing pressure was introduced to aid in understanding the characteristics of pressure fluctuations that lead to the aeromechanical response. Specifically, the rotor blade’s natural frequencies and nodal diameters could be directly compared with the pressure spectra. This analysis indicated that the rotating disturbances coincided with the first bending (1B) and second bending (2B) vibration modes at certain frequencies and wavenumbers. The non-intrusive stress measurement system (NSMS) data showed elevated vibration amplitudes for the coincident nodal diameters. The amplitude of the wavenumber-dependent pressure spectra was projected onto the single-degree-of-freedom (SDOF) transfer function and was compared with the measured vibration amplitude. The results showed a near-linear relationship between the pressure and vibration data. Full article
Show Figures

Figure 1

19 pages, 11703 KiB  
Article
Numerical and Experimental Study of Flutter in a Realistic Labyrinth Seal
by Oscar Bermejo, Juan Manuel Gallardo, Adrian Sotillo, Arnau Altuna, Roberto Alonso and Andoni Puente
Int. J. Turbomach. Propuls. Power 2024, 9(2), 13; https://doi.org/10.3390/ijtpp9020013 - 01 Apr 2024
Viewed by 542
Abstract
Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon depends on the interaction between [...] Read more.
Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon depends on the interaction between aerodynamics and structural dynamics; mainly due to the very high uncertainties regarding the details of the fluid flow through the component, it is very hard to predict accurately. In 2014, as part of the E-Break research project funded by the European Union (EU), an experimental campaign regarding the flutter behaviour of labyrinth seals was conducted at “Centro de Tecnologias Aeronauticas” (CTA). During this campaign, three realistic seals were tested at different rotational speeds, and the pressure ratio where the flutter onset appeared was determined. The test was reproduced using a linearised uncoupled structural-fluid methodology of analysis based on Computational Fluid Dynamics (CFD) simulations, with results only in moderate agreement with experimental data. A procedure to adjust the CFD simulations to the steady flow measurements was developed. Once this method was applied, the matching between flutter predictions and the measured data improved, but some discrepancies could still be found. Finally, a set of simulations to retain the influence of the external cavities was run, which further improved the agreement with the testing data. Full article
Show Figures

Figure 1

16 pages, 4744 KiB  
Article
Modelling Method for Aeroelastic Low Engine Order Excitation Originating from Upstream Vanes’ Geometrical Variability
by Marco Gambitta, Bernd Beirow and Sven Schrape
Int. J. Turbomach. Propuls. Power 2024, 9(2), 12; https://doi.org/10.3390/ijtpp9020012 - 01 Apr 2024
Viewed by 498
Abstract
The manufacturing geometrical variability in axial compressors is a stochastic source of uncertainty, implying that the real geometry differs from the nominal design. This causes the real geometry to lose the ideal axial symmetry. Considering the aerofoils of a stator vane, the geometrical [...] Read more.
The manufacturing geometrical variability in axial compressors is a stochastic source of uncertainty, implying that the real geometry differs from the nominal design. This causes the real geometry to lose the ideal axial symmetry. Considering the aerofoils of a stator vane, the geometrical variability affects the flow traversing it. This impacts the downstream rotor, especially when considering the aeroelastic excitation forces. Optical surface scans coupled with a parametrisation method allow for acquiring the information relative to the real aerofoils geometries. The measured data are included in a multi-passage and multi-stage CFD setup to represent the mistuned flow. In particular, low excitation harmonics on the rotor vane are introduced due to the geometrical deviations of the upstream stator. The introduced low engine orders, as well as their amplitude, depend on the stator geometries and their order. A method is proposed to represent the phenomena in a reduced CFD domain, limiting the size and number of solutions required to probabilistically describe the rotor excitation forces. The resulting rotor excitation forces are reconstructed as a superposition of disturbances due to individual stator aerofoils geometries. This indicates that the problem is linear in the combination of disturbances from single passages. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop