Coulomb Spike Modelling of Ion Sputtering of Amorphous Water Ice
Abstract
:1. Introduction
2. Method
3. Results
4. Discussion
4.1. Coulomb Spike Sputtering of Amorphous Water Ice
4.2. Role of Target Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chauvin, N.; Konings, R.J.M.; Matzke, H.J. Optimisation of inert matrix fuel concepts for americium transmutation. J. Nucl. Mater. 1999, 274, 105. [Google Scholar] [CrossRef]
- Plante, I.; Cucinotta, F.A. Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks. New J. Phys. 2008, 10, 125020. [Google Scholar] [CrossRef][Green Version]
- Plante, I.; Cucinotta, F.A. Energy deposition and relative frequency of hits of cylindrical nanovolume in medium irradiated by ions: Monte Carlo simulation of tracks structure. Radiat. Environ. Biophys. 2010, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Velazco, R.; McMorrow, D.; Estela, J. (Eds.) Radiation Effects on Integrated Circuits and Systems for Space Applications; Springer: Berlin, Germany, 2019. [Google Scholar]
- Assmann, W.; Toulemonde, M.; Trautmann, C. Electronic Sputtering with Swift heavy Ions. In Sputtering by Particle Bombardment-Experiments and Computer Calculations from Threshold to MeV Energies; Behrisch, R., Eckstein, W., Eds.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Cuomo, J.J.; Rossnagel, S.M.; Kaufman, H.R. (Eds.) Handbook of Ion Beam Processing Technology; OSTI: Albuquerque, NM, USA, 1989. [Google Scholar]
- Valbusa, U.; Boragno, C.; Buatier de Mongeot, F. Nanostructuring surfaces by ion sputtering. J. Phys. Condens. Matter 2002, 14, 8153. [Google Scholar] [CrossRef]
- Baragiola, R.A.; Vidal, R.A.; Svendsen, W.; Schou, J.; Shi, M.; Bahr, D.A.; Atteberry, C.L. Sputtering of water ice. Nucl. Instr. Meth. B 2003, 209, 294. [Google Scholar] [CrossRef]
- Baragiola, R.A.; Loeffler, M.J.; Raut, U.; Vidal, R.A.; Wilson, C.D. Laboratory studies of radiation effects in water ice in the outer solar system. Radiat. Phys. Chem. 2005, 72, 187. [Google Scholar] [CrossRef]
- Bringa, E.M.; Johnson, R.E. A new model for cosmic-ray ion erosion of volatiles from grains in the interstellar medium. Astrophys. J. 2004, 603, 159. [Google Scholar] [CrossRef]
- Fama, M.; Shi, J.; Baragiola, R.A. Sputtering of ice by low-energy ions. Surf. Sci. 2008, 602, 156. [Google Scholar] [CrossRef]
- Brown, W.L.; Lanzerotti, L.J.; Poate, J.M.; Augustyniak, W.M. "Sputtering" of Ice by MeV Light Ions. Phys. Rev. Lett. 1978, 40, 1027. [Google Scholar] [CrossRef]
- Dufour, C.; Toulemonde, M. Models for the description of track formation. Top. Appl. Phys. 2016, 61, 63. [Google Scholar]
- Nakajima, K.; Kitayama, T.; Hayashi, H.; Matsuda, M.; Sataka, M.; Tsujimoto, M.; Toulemonde, M.; Bouffard, S.; Kimura, K. Measurement of local temperature around the impact points of fast ions under grazing incidence. Nat. Sci. Rep. 2015, 5, 13363. [Google Scholar]
- Rymzhanov, R.A.; Gorunov, S.A.; Medvedev, N.; Volkov, A.E. Damage along swift heavy ion trajectory. Nucl. Instr. Meth. B 2019, 440, 25. [Google Scholar] [CrossRef]
- Fleischer, R.L.; Price, P.B.; Walker, R.M. Ion explosion spike mechanism for formation of charged-particle tracks in solids. J. Appl. Phys. 1965, 36, 3645. [Google Scholar] [CrossRef]
- Lesueur, D.; Dunlop, A. Damage creation via electronic excitations in metallic targets part II: A theoretical model. Radiat. Eff. Defects Solids 1993, 126, 163. [Google Scholar] [CrossRef]
- Cheng, H.P.; Gillaspy, J.D. Nanoscale modification of silicon surfaces via Coulomb explosion. Phys. Rev. 1997, 55, 2628. [Google Scholar] [CrossRef][Green Version]
- Bringa, E.M.; Johnson, R.E. Coulomb explosion and thermal spikes. Phys. Rev. Lett. 2002, 88, 165501. [Google Scholar] [CrossRef][Green Version]
- Szenes, G. Coulomb explosion at low and high ion velocities. Nucl. Instr. Meth. B 2013, 298, 76. [Google Scholar] [CrossRef]
- Toulemonde, M.; Assmann, W.; Trautmann, C.; Grüner, F. Jetlike component in sputtering of LiF induced by swift heavy ions. Phys. Rev. Lett. 2002, 88, 057602. [Google Scholar] [CrossRef]
- Toulemonde, M.; Assmann, W.; Muller, D.; Trautmann, C. Electronic sputtering of LiF, CaF2, LaF3 and UF4 with 197 MeV Au ions. Is the stoichiometry of atom emission preserved? Nucl. Instr. Meth. B 2017, 406, 501. [Google Scholar] [CrossRef]
- Stoian, R.; Ashkenazi, D.; Rosenfeld, A.; Wittmann, M.; Kelly, R.; Campbell, E.E.B. The dynamics of ion expulsion in ultrashort pulse laser sputtering of Al2O3. Nucl. Instr. Meth. B 2000, 166–167, 682. [Google Scholar] [CrossRef]
- Urbassek, H.M.; Kafeman, H.; Johnson, R.E. Atom ejection from a fast-ion track: A molecular-dynamics study. Phys. Rev. B 1994, 49, 786. [Google Scholar] [CrossRef] [PubMed]
- Baragiola, R.A.; Fama, M.; Loeffler, M.J.; Raut, U.; Shi, J. Radiation effects in ice: New results. Nucl. Instr. Meth. B 2008, 266, 3057. [Google Scholar] [CrossRef]
- Balog, R.; Cicman, P.; Field, D.; Feketeova, L.; Hoydalsvik, K.; Jones, N.C.; Field, T.A.; Ziesel, J.-P. Transmission and trapping of cold electrons in water ice. J. Phys. Chem. A 2011, 115, 6820. [Google Scholar] [CrossRef] [PubMed]
- Sagi, R.; Akerman, M.; Ramakrishnan, S.; Asscher, M. Temperature effect on transport, charging, and binding of low-energy electrons interacting with amorphous solid water films. J. Phys. Chem. C 2018, 122, 9985. [Google Scholar] [CrossRef]
- Assmann, W.; Ban-d’Etat, B.; Bender, M.; Boduch, P.; Grande, P.L.; Lebius, H.; Lelièvre, D.; Marmitt, G.G.; Rothard, H.; Seidl, T.; et al. Charge-state related effects in sputtering of LiF by swift heavy ions. Nucl. Instr. Meth. B 2017, 392, 94. [Google Scholar] [CrossRef]
- Toulemonde, M.; Assmann, W.; Trautmann, C. Electronic sputtering of vitreous SiO2: Experimental and modeling results. Nucl. Instr. Meth. B 2016, 379, 2. [Google Scholar] [CrossRef]
- Timmeanu, N.; Caleman, C.; Hajdu, J.; Van der Spoel, D. Auger electron cascades in water and ice. Chem. Phys. 2004, 299, 277. [Google Scholar] [CrossRef][Green Version]
- Du, Y.; Price, E.; Bartels, D.M. Solvated electron spectrum in supercooled water and ice. Chem. Phys. Lett. 2007, 438, 234. [Google Scholar] [CrossRef]
- Lu, D.; Gygi, F.; Galli, G. Dielectric properties of ice and liquid water from first-principles calculations. Phys. Rev. Lett. 2008, 100, 147601. [Google Scholar] [CrossRef]
- Waligórski, M.P.R.; Hamm, R.N.; Katz, R. The radial distribution of dose around the path of a heavy ion in liquid water. Nucl. Tracks Radiat. Meas. 1986, 11, 309. [Google Scholar] [CrossRef][Green Version]
- Sato, T.; Watanabe, R.; Niita, K. Development of a calculation method for estimating specific energy distribution in complex radiation fields. Radiat. Prot. Dosim. 2006, 122, 41. [Google Scholar] [CrossRef]
- Biersack, J.P.; Haggmark, L.G. A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instr. Meth. 1980, 174, 257. Available online: www.srim.org (accessed on 1 January 2023). [CrossRef]
- Kabadayi, Ö.; Gümüs, H. Calculation of average projected range and range straggling of charged particles in solids. Radiat. Phys. Chem. 2001, 60, 25. [Google Scholar] [CrossRef]
- Bowyer, M.D.J.; Ashworth, D.G.; Oven, R.J. A revised version of the projected range algorithm with numerical solutions. Radiat. Eff. Defects Solids 1994, 130–131, 535. [Google Scholar] [CrossRef]
- Ziegler, J.F. The electronic and nuclear stopping of energetic ions. Appl. Phys. Lett. 1977, 31, 544. [Google Scholar] [CrossRef]
- Reeves, K.G.; Kai, Y. Electronic excitation dynamics in liquid water under proton irradiation. Nat. Sci. Rep. 2016, 7, 40379. [Google Scholar] [CrossRef][Green Version]
- Gervais, B.; Beuve, M.; Olivera, G.H.; Galassi, M.E. Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis. Radiat. Phys. Chem. 2006, 75, 493. [Google Scholar] [CrossRef]
- Yada, H.; Nagai, M.; Tanaka, K. Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 2008, 464, 166. [Google Scholar] [CrossRef]
- Tomita, H.; Kai, M.; Kusama, T.; Ito, A. Monte Carlo simulation of physicochemical processes of liquid water radiolysis: The effects of dissolved oxygen and OH scavenger. Radiat. Environ. Biophys. 1997, 36, 105. [Google Scholar] [CrossRef]
- Weiss, J. Primary processes in the action of ionizing radiations on water: Formation and reactivity of self-trapped electrons (’polarons’). Nature 1960, 4727, 751. [Google Scholar] [CrossRef]
- Bovensiepen, U.; Gahl, C.; Stähler, J.; Loukakos, P.A.; Wolf, M. Femtosecond dynamics of electron transfer, localization, and solvation processes at the ice—metal interface. Isr. J. Chem. 2005, 45, 171. [Google Scholar] [CrossRef]
- Kai, T.; Yokoya, A.; Ukai, M.; Fujii, K.; Toigawa, T.; Watanabe, R. A significant role of non-thermal equilibrated electrons in the formation of deleterious complex DNA damage. Phys. Chem. Chem. Phys. 2018, 20, 2838. [Google Scholar] [CrossRef] [PubMed]
- Stahler, J.; Deinert, J.-C.; Wegkamp, D.; Hagen, S.; Wolf, M.J. Real-time measurement of the vertical binding energy during the birth of a solvated electron. Am. Chem. Soc. 2015, 137, 3520. [Google Scholar] [CrossRef] [PubMed]
- Kolesniková, L.; Alonso, E.R.; Tercero, B.; Cernicharo, J.; Alonso, J.L. Millimeter wave spectra of ethyl isocyanate and searches for it in Orion KL and Sagittarius B2. Astron. Astrophys. 2018, 616, A173. [Google Scholar] [CrossRef] [PubMed]
- Stottrup, B.L.; Meussler, A.M.; Bibelnieks, T.A. Determination of Line Tension in Lipid Monolayers by Fourier Analysis of Capillary Waves. J. Phys. Chem. B 2007, 111, 6820. [Google Scholar] [CrossRef]
- Hijazi, H.; Rothard, H.; Boduch, P.; Alzaher, I.; Cassimi, A.; Ropars, F.; Been, T.; Ramillon, J.M.; Lebius, H.; Ban-d’Etat, B.; et al. Electronic sputtering: Angular distributions of (LiF)nLi+ clusters emitted in collisions of Kr (10.1 MeV/u) with LiF single crystals. Eur. Phys. J. D 2012, 66, 68. [Google Scholar] [CrossRef]
- Haranger, F.; Ban-d’Etat, B.; Boduch, P.; Bouffard, S.; Lebius, H.; Maunoury, L.; Rothard, H. Projectile charge and velocity effect on UO2 sputtering in the nuclear stopping regime. Eur. Phys. J. D 2006, 38, 501. [Google Scholar] [CrossRef]
- Rzadkiewicz, J.; Gojska, A.; Rosmej, O.; Polasik, M.; Słabkowska, K. Interpretation of the Si Kα x-ray spectra accompanying the stopping of swift Ca ions in low-density SiO aerogel. Phys. Rev. A 2010, 82, 012703. [Google Scholar] [CrossRef]
- Ishikawa, N.; Okubo, N.; Taguchi, T. Experimental evidence of crystalline hillocks created by irradiation of CeO2 with swift heavy ions: TEM study. Nanotechnology 2015, 26, 355701. [Google Scholar] [CrossRef]
- Ogawa, T.; Hirata, Y.; Matsuya, Y.; Kai, T. Development and validation of proton track-structure model applicable to arbitrary materials. Sci. Rep. 2021, 11, 24401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantini, J.-M.; Ogawa, T. Coulomb Spike Modelling of Ion Sputtering of Amorphous Water Ice. Quantum Beam Sci. 2023, 7, 7. https://doi.org/10.3390/qubs7010007
Costantini J-M, Ogawa T. Coulomb Spike Modelling of Ion Sputtering of Amorphous Water Ice. Quantum Beam Science. 2023; 7(1):7. https://doi.org/10.3390/qubs7010007
Chicago/Turabian StyleCostantini, Jean-Marc, and Tatsuhiko Ogawa. 2023. "Coulomb Spike Modelling of Ion Sputtering of Amorphous Water Ice" Quantum Beam Science 7, no. 1: 7. https://doi.org/10.3390/qubs7010007