Next Issue
Volume 6, September
Previous Issue
Volume 6, March
 
 
Tomography is published by MDPI from Volume 7 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Grapho, LLC.

Tomography, Volume 6, Issue 2 (June 2020) – 26 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
7711 KiB  
Article
Diffusion-Weighted and Dynamic Contrast-Enhanced MRI Derived Imaging Metrics for Stereotactic Body Radiotherapy of Pancreatic Ductal Adenocarcinoma: Preliminary Findings
by Richard Kinh Do, Marsha Reyngold, Ramesh Paudyal, Jung Hun Oh, Amaresha Shridhar Konar, Eve LoCastro, Karyn A. Goodman and Amita Shukla-Dave
Tomography 2020, 6(2), 261-271; https://doi.org/10.18383/j.tom.2020.00015 - 1 Jun 2020
Cited by 11 | Viewed by 1058
Abstract
We aimed to assess longitudinal changes in quantitative imaging metric values obtained from diffusion-weighted (DW-) and dynamic contrast-enhanced magnetic resonance imaging (DCE)-MRI at pre-treatment (TX[0]), immediately after the first fraction of stereotactic body radiotherapy (D1-TX[1]), and 6 weeks post-TX (Post-TX[2]) in patients with [...] Read more.
We aimed to assess longitudinal changes in quantitative imaging metric values obtained from diffusion-weighted (DW-) and dynamic contrast-enhanced magnetic resonance imaging (DCE)-MRI at pre-treatment (TX[0]), immediately after the first fraction of stereotactic body radiotherapy (D1-TX[1]), and 6 weeks post-TX (Post-TX[2]) in patients with pancreatic ductal adenocarcinoma. Ten enrolled patients (n = 10) underwent DW- and DCE-MRI examinations on a 3.0 T scanner. The apparent diffusion coefficient, ADC (mm2/s), was derived from DW imaging data using a monoexponential model. The tissue relaxation rate, R1t, time-course data were fitted with a shutter-speed model, which provides estimates of the volume transfer constant, Ktrans (min−1), extravascular extracellular volume fraction, ve, and mean lifetime of intracellular water protons, τi (seconds). Wilcoxon rank-sum test compared the mean values, standard deviation, skewness, kurtosis, and relative percentage (r, %) changes (Δ) in ADC, Ktrans, ve, and τi values between the magnetic resonance examinations. rADCΔ2–0 values were significantly greater than rADCΔ1-0 values (P = .009). rKtransΔ2–0 values were significantly lower than rKtrans Δ1-0 values (P = .048). rveΔ2-1 and rveΔ2-0 values were significantly different (P = .016). rτiΔ2-1 values were significantly lower than rτiΔ2-0 values (P = .008). For group comparison, the pre-TX mean and kurtosis of ADC (P = .18 and P = .14), skewness and kurtosis of Ktrans values (P = .14 for both) showed a leaning toward significant difference between patients who experienced local control (n = 2) and failed early (n = 4). DW- and DCE-MRI-derived quantitative metrics could be useful biomarkers to evaluate longitudinal changes to stereotactic body radiotherapy in patients with pancreatic ductal adenocarcinoma. Full article
2465 KiB  
Article
Deep Feature Stability Analysis Using CT Images of a Physical Phantom across Scanner Manufacturers, Cartridges, Pixel Sizes, and Slice Thickness
by Rahul Paul, Mohammed Shafiq-Ul Hassan, Eduardo G. Moros, Robert J. Gillies, Lawrence O. Hall and Dmitry B. Goldgof
Tomography 2020, 6(2), 250-260; https://doi.org/10.18383/j.tom.2020.00003 - 1 Jun 2020
Cited by 7 | Viewed by 998
Abstract
Image acquisition parameters for computed tomography scans such as slice thickness and field of view may vary depending on tumor size and site. Recent studies have shown that some radiomics features were dependent on voxel size (= pixel size × slice thickness), and [...] Read more.
Image acquisition parameters for computed tomography scans such as slice thickness and field of view may vary depending on tumor size and site. Recent studies have shown that some radiomics features were dependent on voxel size (= pixel size × slice thickness), and with proper normalization, this voxel size dependency could be reduced. Deep features from a convolutional neural network (CNN) have shown great promise in characterizing cancers. However, how do these deep features vary with changes in imaging acquisition parameters? To analyze the variability of deep features, a physical radiomics phantom with 10 different material cartridges was scanned on 8 different scanners. We assessed scans from 3 different cartridges (rubber, dense cork, and normal cork). Deep features from the penultimate layer of the CNN before (pre-rectified linear unit) and after (post-rectified linear unit) applying the rectified linear unit activation function were extracted from a pre-trained CNN using transfer learning. We studied both the interscanner and intrascanner dependency of deep features and also the deep features' dependency over the 3 cartridges. We found some deep features were dependent on pixel size and that, with appropriate normalization, this dependency could be reduced. False discovery rate was applied for multiple comparisons, to mitigate potentially optimistic results. We also used stable deep features for prognostic analysis on 1 non–small cell lung cancer data set. Full article
8345 KiB  
Article
4D-CT Attenuation Correction in Respiratory-Gated PET for Hypoxia Imaging: Is It Really Beneficial?
by Brandon Driscoll, Douglass Vines, Tina Shek, Julia Publicover, Ivan Yeung, Stephen Breen and David Jaffray
Tomography 2020, 6(2), 241-249; https://doi.org/10.18383/j.tom.2019.00027 - 1 Jun 2020
Cited by 2 | Viewed by 968
Abstract
Previous literature has shown that 4D respiratory-gated positron emission tomography (PET) is beneficial for quantitative analysis and defining targets for boosting therapy. However the case for addition of a phase-matched 4D-computed tomography (CT) for attenuation correction (AC) is less clear. We seek to [...] Read more.
Previous literature has shown that 4D respiratory-gated positron emission tomography (PET) is beneficial for quantitative analysis and defining targets for boosting therapy. However the case for addition of a phase-matched 4D-computed tomography (CT) for attenuation correction (AC) is less clear. We seek to validate the use of 4D-CT for AC and investigate the impact of motion correction for low signal-to-background PET imaging of hypoxia using radiotracers such as FAZA and FMISO. A new insert for the Modus Medicals' QUASAR™ Programmable Respiratory Motion Phantom was developed in which a 3D-printed sphere was placed within the “lung” compartment while an additional compartment is added to simulate muscle/blood compartment required for hypoxia quantification. Experiments are performed at 4:1 or 2:1 signal-to-background ratio consistent with clinical FAZA and FMISO imaging. Motion blur was significant in terms of SUVmax, mean, and peak for motion ≥1 cm and could be significantly reduced (from 20% to 8% at 2-cm motion) for all 4D-PET-gated reconstructions. The effect of attenuation method on precision was significant (σ2 hCT-AC = 5.5%/4.7%/2.7% vs σ2 4D-CT-AC = 0.5%/0.6%/0.7% [max%/peak%/mean% variance]). The simulated hypoxic fraction also significantly decreased under conditions of 2-cm amplitude motion from 55% to 20% and was almost fully recovered (HF = 0.52 for phase-matched 4D-CT) using gated PET. 4D-gated PET is valuable under conditions of low radiotracer uptake found in hypoxia imaging. This work demonstrates the importance of using 4D-CT for AC when performing gated PET based on its significantly improved precision over helical CT. Full article
4360 KiB  
Article
Diffusion-Weighted Echo Planar Imaging Using Multiplexed Sensitivity Encoding and Reverse Polarity Gradient in Head Andneck Cancer: An Initial Study
by Amaresha Shridhar Konar, Maggie Fung, Ramesh Paudyal, Jung Hun Oh, Yousef Mazaheri, Vaios Hatzoglou and Amita Shukla-Dave
Tomography 2020, 6(2), 231-240; https://doi.org/10.18383/j.tom.2020.00014 - 1 Jun 2020
Cited by 9 | Viewed by 969
Abstract
We aimed to compare the geometric distortion (GD) correction performance and apparent diffusion coefficient (ADC) measurements of single-shot diffusion-weighted echo-planar imaging (SS-DWEPI), multiplexed sensitivity encoding (MUSE)-DWEPI, and MUSE-DWEPI with reverse-polarity gradient (RPG) in phantoms and patients. We performed phantom studies at 3T magnetic [...] Read more.
We aimed to compare the geometric distortion (GD) correction performance and apparent diffusion coefficient (ADC) measurements of single-shot diffusion-weighted echo-planar imaging (SS-DWEPI), multiplexed sensitivity encoding (MUSE)-DWEPI, and MUSE-DWEPI with reverse-polarity gradient (RPG) in phantoms and patients. We performed phantom studies at 3T magnetic resonance imaging (MRI) using the American College of Radiology phantom and Quantitative Imaging Biomarker Alliance DW-MRI ice-water phantom to assess GD and effect of distortion in the measurement of ADC, respectively. Institutional review board approved the prospective clinical component of this study. DW-MRI data were obtained from 11 patients with head and neck cancer using these three DW-MRI methods. Wilcoxon signed-rank (WSR) and Kruskal–Wallis (KW) tests were used to compare ADC values, and qualitative rating by radiologist between three DW-MRI methods. In the ACR phantom, GD of 0.17% was observed for the b = 0 s/mm2 image of the MUSE-DWEPI with RPG method compared with that of 1.53% and 2.1% of MUSE-DWEPI and SS-DWEPI, respectively; The corresponding methods root-mean-square errors were 0.58, 3.37, and 5.07 mm. WSR and KW tests showed no significant difference in the ADC measurement between these three DW-MRI methods for both healthy masseter muscles and neoplasms (P > .05). We observed improvement in spatial accuracy for MUSE-DWEPI with RPG in the head and neck region with a higher correlation (R2 = 0.791) compared with that for SS-DWEPI (R2 = 0.707) and MUSE-DWEPI (R2 = 0.745). MUSE-DWEPI with RPG significantly reduces the distortion compared with MUSE-DWEPI or conventional SS-DWEPI techniques, and the ADC values were similar. Full article
1072 KiB  
Article
Radiomics Prediction of EGFR Status in Lung Cancer—Our Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data
by Lin Lu, Shawn H. Sun, Hao Yang, Linning E, Pingzhen Guo, Lawrence H. Schwartz and Binsheng Zhao
Tomography 2020, 6(2), 223-230; https://doi.org/10.18383/j.tom.2020.00017 - 1 Jun 2020
Cited by 24 | Viewed by 1816
Abstract
We investigated the performance of multiple radiomics feature extractors/software on predicting epidermal growth factor receptor mutation status in 228 patients with non–small cell lung cancer from publicly available data sets in The Cancer Imaging Archive. The imaging and clinical data were split into [...] Read more.
We investigated the performance of multiple radiomics feature extractors/software on predicting epidermal growth factor receptor mutation status in 228 patients with non–small cell lung cancer from publicly available data sets in The Cancer Imaging Archive. The imaging and clinical data were split into training (n = 105) and validation cohorts (n = 123). Two of the most cited open-source feature extractors, IBEX (1563 features) and Pyradiomics (1319 features), and our in-house software, Columbia Image Feature Extractor (CIFE) (1160 features), were used to extract radiomics features. Univariate and multivariate analyses were performed sequentially to predict EGFR mutation status using each individual feature extractor. Our univariate analysis integrated an unsupervised clustering method to identify nonredundant and informative candidate features for the creation of prediction models by multivariate analyses. In training, unsupervised clustering-based univariate analysis identified 5, 6, and 4 features from IBEX, Pyradiomics, and CIFE as candidate features, respectively. Multivariate prediction models using these features from IBEX, Pyradiomics, and CIFE yielded similar areas under the receiver operating characteristic curve of 0.68, 0.67, and 0.69. However, in validation, areas under the receiver operating characteristic curve of multivariate prediction models from IBEX, Pyradiomics, and CIFE decreased to 0.54, 0.56 and 0.64, respectively. Different feature extractors select different radiomics features, which leads to prediction models with varying performance. However, correlation between those selected features from different extractors may indicate these features measure similar imaging phenotypes associated with similar biological characteristics. Overall, attention should be paid to the generalizability of individual radiomics features and radiomics prediction models. Full article
2215 KiB  
Article
Tumor Sphericity Predicts Response in Neoadjuvant Chemotherapy for Invasive Breast Cancer
by Wen Li, David C. Newitt, Bo La Yun, Ella F. Jones, Vignesh Arasu, Lisa J. Wilmes, Jessica Gibbs, Alex Anh-Tu Nguyen, Natsuko Onishi, John Kornak, Bonnie N. Joe, Laura J. Esserman and Nola M. Hylton
Tomography 2020, 6(2), 216-222; https://doi.org/10.18383/j.tom.2020.00016 - 1 Jun 2020
Cited by 9 | Viewed by 1161
Abstract
This retrospective study examined magnetic resonance imaging (MRI)–derived tumor sphericity (SPH) as a quantitative measure of breast tumor morphology, and investigated the association between SPH and reader-assessed morphological pattern (MP). In addition, association of SPH with pathologic complete response was evaluated in patients [...] Read more.
This retrospective study examined magnetic resonance imaging (MRI)–derived tumor sphericity (SPH) as a quantitative measure of breast tumor morphology, and investigated the association between SPH and reader-assessed morphological pattern (MP). In addition, association of SPH with pathologic complete response was evaluated in patients enrolled in an adaptively randomized clinical trial designed to rapidly identify new agents for breast cancer. All patients underwent MRI examinations at multiple time points during the treatment. SPH values from pretreatment (T0) and early-treatment (T1) were investigated in this study. MP on T0 dynamic contrast-enhanced MRI was ranked from 1 to 5 in 220 patients. Mean SPH values decreased with the increased order of MP. SPH was higher in patients with pathologic complete response than in patients without (difference at T0: 0.04, 95% confidence interval [CI]: 0.02–0.05, P < .001; difference at T1: 0.03, 95% CI: 0.02–0.04, P < .001). The area under the receiver operating characteristic curve was estimated as 0.61 (95% CI, 0.57–0.65) at T0 and 0.58 (95% CI, 0.55–0.62) at T1. When the analysis was performed by cancer subtype defined by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status, highest area under the receiver operating characteristic curve were observed in HR−/HER2+: 0.67 (95% CI, 0.54–0.80) at T0, and 0.63 (95% CI, 0.51–0.76) at T1. Tumor SPH showed promise to quantify MRI MPs and as a biomarker for predicting treatment outcome at pre- or early-treatment time points. Full article
753 KiB  
Article
Lung Nodule Sizes Are Encoded When Scaling CT Image for CNN's
by Dmitry Cherezov, Rahul Paul, Nikolai Fetisov, Robert J. Gillies, Matthew B. Schabath, Dmitry B. Goldgof and Lawrence O. Hall
Tomography 2020, 6(2), 209-215; https://doi.org/10.18383/j.tom.2019.00024 - 1 Jun 2020
Cited by 6 | Viewed by 1097
Abstract
Noninvasive diagnosis of lung cancer in early stages is one task where radiomics helps. Clinical practice shows that the size of a nodule has high predictive power for malignancy. In the literature, convolutional neural networks (CNNs) have become widely used in medical image [...] Read more.
Noninvasive diagnosis of lung cancer in early stages is one task where radiomics helps. Clinical practice shows that the size of a nodule has high predictive power for malignancy. In the literature, convolutional neural networks (CNNs) have become widely used in medical image analysis. We study the ability of a CNN to capture nodule size in computed tomography images after images are resized for CNN input. For our experiments, we used the National Lung Screening Trial data set. Nodules were labeled into 2 categories (small/large) based on the original size of a nodule. After all extracted patches were re-sampled into 100-by-100-pixel images, a CNN was able to successfully classify test nodules into small- and large-size groups with high accuracy. To show the generality of our discovery, we repeated size classification experiments using Common Objects in Context (COCO) data set. From the data set, we selected 3 categories of images, namely, bears, cats, and dogs. For all 3 categories a 5- × 2-fold cross-validation was performed to put them into small and large classes. The average area under receiver operating curve is 0.954, 0.952, and 0.979 for the bear, cat, and dog categories, respectively. Thus, camera image rescaling also enables a CNN to discover the size of an object. The source code for experiments with the COCO data set is publicly available in Github (https://github.com/VisionAI-USF/COCO_Size_Decoding/). Full article
2107 KiB  
Article
Evaluating the Use of rCBV as a Tumor Grade and Treatment Response Classifier Across NCI Quantitative Imaging Network Sites: Part II of the DSC-MRI Digital Reference Object (DRO) Challenge
by Laura C. Bell, Natenael Semmineh, Hongyu An, Cihat Eldeniz, Richard Wahl, Kathleen M. Schmainda, Melissa A. Prah, Bradley J. Erickson, Panagiotis Korfiatis, Chengyue Wu, Anna G. Sorace, Thomas E. Yankeelov, Neal Rutledge, Thomas L. Chenevert, Dariya Malyarenko, Yichu Liu, Andrew Brenner, Leland S. Hu, Yuxiang Zhou, Jerrold L. Boxerman, Yi-Fen Yen, Jayashree Kalpathy-Cramer, Andrew L. Beers, Mark Muzi, Ananth J. Madhuranthakam, Marco Pinho, Brian Johnson and C. Chad Quarlesadd Show full author list remove Hide full author list
Tomography 2020, 6(2), 203-208; https://doi.org/10.18383/j.tom.2020.00012 - 1 Jun 2020
Cited by 10 | Viewed by 1193
Abstract
We have previously characterized the reproducibility of brain tumor relative cerebral blood volume (rCBV) using a dynamic susceptibility contrast magnetic resonance imaging digital reference object across 12 sites using a range of imaging protocols and software platforms. As expected, reproducibility was highest when [...] Read more.
We have previously characterized the reproducibility of brain tumor relative cerebral blood volume (rCBV) using a dynamic susceptibility contrast magnetic resonance imaging digital reference object across 12 sites using a range of imaging protocols and software platforms. As expected, reproducibility was highest when imaging protocols and software were consistent, but decreased when they were variable. Our goal in this study was to determine the impact of rCBV reproducibility for tumor grade and treatment response classification. We found that varying imaging protocols and software platforms produced a range of optimal thresholds for both tumor grading and treatment response, but the performance of these thresholds was similar. These findings further underscore the importance of standardizing acquisition and analysis protocols across sites and software benchmarking. Full article
7370 KiB  
Article
Intraobserver Variability in Bladder Cancer Treatment Response Assessment With and Without Computerized Decision Support
by Lubomir M. Hadjiiski, Kenny H. Cha, Richard H. Cohan, Heang-Ping Chan, Elaine M. Caoili, Matthew S. Davenport, Ravi K. Samala, Alon Z. Weizer, Ajjai Alva, Galina Kirova-Nedyalkova, Kimberly Shampain, Nathaniel Meyer, Daniel Barkmeier, Sean A Woolen, Prasad R. Shankar, Isaac R. Francis and Phillip L. Palmbos
Tomography 2020, 6(2), 194-202; https://doi.org/10.18383/j.tom.2020.00013 - 1 Jun 2020
Cited by 13 | Viewed by 1247
Abstract
We evaluated the intraobserver variability of physicians aided by a computerized decision-support system for treatment response assessment (CDSS-T) to identify patients who show complete response to neoadjuvant chemotherapy for bladder cancer, and the effects of the intraobserver variability on physicians' assessment accuracy. A [...] Read more.
We evaluated the intraobserver variability of physicians aided by a computerized decision-support system for treatment response assessment (CDSS-T) to identify patients who show complete response to neoadjuvant chemotherapy for bladder cancer, and the effects of the intraobserver variability on physicians' assessment accuracy. A CDSS-T tool was developed that uses a combination of deep learning neural network and radiomic features from computed tomography (CT) scans to detect bladder cancers that have fully responded to neoadjuvant treatment. Pre- and postchemotherapy CT scans of 157 bladder cancers from 123 patients were collected. In a multireader, multicase observer study, physician-observers estimated the likelihood of pathologic T0 disease by viewing paired pre/posttreatment CT scans placed side by side on an in-house-developed graphical user interface. Five abdominal radiologists, 4 diagnostic radiology residents, 2 oncologists, and 1 urologist participated as observers. They first provided an estimate without CDSS-T and then with CDSS-T. A subset of cases was evaluated twice to study the intraobserver variability and its effects on observer consistency. The mean areas under the curves for assessment of pathologic T0 disease were 0.85 for CDSS-T alone, 0.76 for physicians without CDSS-T and improved to 0.80 for physicians with CDSS-T (P = .001) in the original evaluation, and 0.78 for physicians without CDSS-T and improved to 0.81 for physicians with CDSS-T (P = .010) in the repeated evaluation. The intraobserver variability was significantly reduced with CDSS-T (P < .0001). The CDSS-T can significantly reduce physicians' variability and improve their accuracy for identifying complete response of muscle-invasive bladder cancer to neoadjuvant chemotherapy. Full article
2764 KiB  
Article
A Fully Automated Deep Learning Network for Brain Tumor Segmentation
by Chandan Ganesh Bangalore Yogananda, Bhavya R. Shah, Maryam Vejdani-Jahromi, Sahil S. Nalawade, Gowtham K. Murugesan, Frank F. Yu, Marco C. Pinho, Benjamin C. Wagner, Kyrre E. Emblem, Atle Bjørnerud, Baowei Fei, Ananth J. Madhuranthakam and Joseph A. Maldjian
Tomography 2020, 6(2), 186-193; https://doi.org/10.18383/j.tom.2019.00026 - 1 Jun 2020
Cited by 53 | Viewed by 2602
Abstract
We developed a fully automated method for brain tumor segmentation using deep learning; 285 brain tumor cases with multiparametric magnetic resonance images from the BraTS2018 data set were used. We designed 3 separate 3D-Dense-UNets to simplify the complex multiclass segmentation problem into individual [...] Read more.
We developed a fully automated method for brain tumor segmentation using deep learning; 285 brain tumor cases with multiparametric magnetic resonance images from the BraTS2018 data set were used. We designed 3 separate 3D-Dense-UNets to simplify the complex multiclass segmentation problem into individual binary-segmentation problems for each subcomponent. We implemented a 3-fold cross-validation to generalize the network's performance. The mean cross-validation Dice-scores for whole tumor (WT), tumor core (TC), and enhancing tumor (ET) segmentations were 0.92, 0.84, and 0.80, respectively. We then retrained the individual binary-segmentation networks using 265 of the 285 cases, with 20 cases held-out for testing. We also tested the network on 46 cases from the BraTS2017 validation data set, 66 cases from the BraTS2018 validation data set, and 52 cases from an independent clinical data set. The average Dice-scores for WT, TC, and ET were 0.90, 0.84, and 0.80, respectively, on the 20 held-out testing cases. The average Dice-scores for WT, TC, and ET on the BraTS2017 validation data set, the BraTS2018 validation data set, and the clinical data set were as follows: 0.90, 0.80, and 0.78; 0.90, 0.82, and 0.80; and 0.85, 0.80, and 0.77, respectively. A fully automated deep learning method was developed to segment brain tumors into their subcomponents, which achieved high prediction accuracy on the BraTS data set and on the independent clinical data set. This method is promising for implementation into a clinical workflow. Full article
2603 KiB  
Article
Repeatability and Reproducibility of ADC Histogram Metrics from the ACRIN 6698 Breast Cancer Therapy Response Trial
by David C. Newitt, Ghoncheh Amouzandeh, Savannah C. Partridge, Helga S. Marques, Benjamin A. Herman, Brian D. Ross, Nola M. Hylton, Thomas L. Chenevert and Dariya I. Malyarenko
Tomography 2020, 6(2), 177-185; https://doi.org/10.18383/j.tom.2020.00008 - 1 Jun 2020
Cited by 9 | Viewed by 1136
Abstract
Mean tumor apparent diffusion coefficient (ADC) of breast cancer showed excellent repeatability but only moderate predictive power for breast cancer therapy response in the ACRIN 6698 multicenter imaging trial. Previous single-center studies have shown improved predictive performance for alternative ADC histogram metrics related [...] Read more.
Mean tumor apparent diffusion coefficient (ADC) of breast cancer showed excellent repeatability but only moderate predictive power for breast cancer therapy response in the ACRIN 6698 multicenter imaging trial. Previous single-center studies have shown improved predictive performance for alternative ADC histogram metrics related to low ADC dense tumor volume. Using test/retest (TT/RT) 4 b-value diffusion-weighted imaging acquisitions from pretreatment or early-treatment time-points on 71 ACRIN 6698 patients, we evaluated repeatability for ADC histogram metrics to establish confidence intervals and inform predictive models for future therapy response analysis. Histograms were generated using regions of interest (ROIs) defined separately for TT and RT diffusion-weighted imaging. TT/RT repeatability and intra- and inter-reader reproducibility (on a 20-patient subset) were evaluated using wCV and Bland–Altman limits of agreement for histogram percentiles, low-ADC dense tumor volumes, and fractional volumes (normalized to total histogram volume). Pearson correlation was used to reveal connections between metrics and ROI variability across the sample cohort. Low percentiles (15th and 25th) were highly repeatable and reproducible, wCV < 8.1%, comparable to mean ADC values previously reported. Volumetric metrics had higher wCV values in all cases, with fractional volumes somewhat better but at least 3 times higher than percentile wCVs. These metrics appear most sensitive to ADC changes around a threshold of 1.2 μm2/ms. Volumetric results were moderately to strongly correlated with ROI size. In conclusion, Lower histogram percentiles have comparable repeatability to mean ADC, while ADC-thresholded volumetric measures currently have poor repeatability but may benefit from improvements in ROI techniques. Full article
1828 KiB  
Article
Quantitative Comparison of Prone and Supine PERCIST Measurements in Breast Cancer
by Jennifer G. Whisenant, Jason M. Williams, Hakmook Kang, Lori R. Arlinghaus, Richard G. Abramson, Vandana G. Abramson, Kareem Fakhoury, A. Bapsi Chakravarthy and Thomas E. Yankeelov
Tomography 2020, 6(2), 170-176; https://doi.org/10.18383/j.tom.2020.00002 - 1 Jun 2020
Cited by 2 | Viewed by 815
Abstract
Positron emission tomography (PET) is typically performed in the supine position. However, breast magnetic resonance imaging (MRI) is performed in prone, as this improves visibility of deep breast tissues. With the emergence of hybrid scanners that integrate molecular information from PET and functional [...] Read more.
Positron emission tomography (PET) is typically performed in the supine position. However, breast magnetic resonance imaging (MRI) is performed in prone, as this improves visibility of deep breast tissues. With the emergence of hybrid scanners that integrate molecular information from PET and functional information from MRI, it is of great interest to determine if the prognostic utility of prone PET is equivalent to supine. We compared PERCIST (PET Response Criteria in Solid Tumors) measurements between prone and supine FDG-PET in patients with breast cancer and the effect of orientation on predicting pathologic complete response (pCR). In total, 47 patients were enrolled and received up to 6 cycles of neoadjuvant therapy. Prone and supine FDG-PET were performed at baseline (t0; n = 46), after cycle 1 (t1; n = 1) or 2 (t2; n = 10), or after all neoadjuvant therapy (t3; n = 19). FDG uptake was quantified by maximum and peak standardized uptake value (SUV) with and without normalization to lean body mass; that is, SUVmax, SUVpeak, SULmax, and SULpeak. PERCIST measurements were performed for each paired baseline and post-treatment scan. Receiver operating characteristic analysis for the prediction of pCR was performed using logistic regression that included age and tumor size as covariates. SUV and SUL metrics were significantly different between orientation (P < .001), but were highly correlated (P > .98). Importantly, no differences were observed with the PERCIST measurements (P > .6). Overlapping 95% confidence intervals for the receiver operating characteristic analysis suggested no difference at predicting pCR. Therefore, prone and supine PERCIST in this data set were not statistically different. Full article
2797 KiB  
Article
Radiomic Features of Multiparametric MRI Present Stable Associations with Analogous Histological Features in Patients with Brain Cancer
by Samuel A. Bobholz, Allison K. Lowman, Alexander Barrington, Michael Brehler, Sean McGarry, Elizabeth J. Cochran, Jennifer Connelly, Wade M. Mueller, Mohit Agarwal, Darren O'Neill, Andrew S. Nencka, Anjishnu Banerjee and Peter S. LaViolette
Tomography 2020, 6(2), 160-169; https://doi.org/10.18383/j.tom.2019.00029 - 1 Jun 2020
Cited by 22 | Viewed by 1428
Abstract
Magnetic resonance (MR)-derived radiomic features have shown substantial predictive utility in modeling different prognostic factors of glioblastoma and other brain cancers. However, the biological relationship underpinning these predictive models has been largely unstudied, and the generalizability of these models had been called into [...] Read more.
Magnetic resonance (MR)-derived radiomic features have shown substantial predictive utility in modeling different prognostic factors of glioblastoma and other brain cancers. However, the biological relationship underpinning these predictive models has been largely unstudied, and the generalizability of these models had been called into question. Here, we examine the localized relationship between MR-derived radiomic features and histology-derived “histomic” features using a data set of 16 patients with brain cancer. Tile-based radiomic features were collected on T1, post-contrast T1, FLAIR, and diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC) images acquired before patient death, with analogous histomic features collected for autopsy samples coregistered to the magnetic resonance imaging. Features were collected for each original image, as well as a 3D wavelet decomposition of each image, resulting in 837 features per MR and histology image. Correlative analyses were used to assess the degree of association between radiomic–histomic pairs for each magnetic resonance imaging. The influence of several confounds was also assessed using linear mixed-effect models for the normalized radiomic–histomic distance, testing for main effects of different acquisition field strengths. Results as a whole were largely heterogeneous, but several features showed substantial associations with their histomic analogs, particularly those derived from the FLAIR and postcontrast T1W images. These features with the strongest association typically presented as stable across field strengths as well. These data suggest that a subset of radiomic features can consistently capture texture information on underlying tissue histology. Full article
1709 KiB  
Article
Discrimination of Malignant and Benign Breast Lesions Using Quantitative Multiparametric MRI: A Preliminary Study
by Kurt Li, Archana Machireddy, Alina Tudorica, Brendan Moloney, Karen Y. Oh, Neda Jafarian, Savannah C. Partridge, Xin Li and Wei Huang
Tomography 2020, 6(2), 148-159; https://doi.org/10.18383/j.tom.2019.00028 - 1 Jun 2020
Cited by 11 | Viewed by 1143
Abstract
We aimed to compare diagnostic performance in discriminating malignant and benign breast lesions between two intravoxel incoherent motion (IVIM) analysis methods for diffusion-weighted magnetic resonance imaging (DW-MRI) data and between DW- and dynamic contrast-enhanced (DCE)-MRI, and to determine if combining DW- and DCE-MRI [...] Read more.
We aimed to compare diagnostic performance in discriminating malignant and benign breast lesions between two intravoxel incoherent motion (IVIM) analysis methods for diffusion-weighted magnetic resonance imaging (DW-MRI) data and between DW- and dynamic contrast-enhanced (DCE)-MRI, and to determine if combining DW- and DCE-MRI further improves diagnostic accuracy. DW-MRI with 12 b-values and DCE-MRI were performed on 26 patients with 28 suspicious breast lesions before biopsies. The traditional biexponential fitting and a 3-b-value method were used for independent IVIM analysis of the DW-MRI data. Simulations were performed to evaluate errors in IVIM parameter estimations by the two methods across a range of signal-to-noise ratio (SNR). Pharmacokinetic modeling of DCE-MRI data was performed. Conventional radiological MRI reading yielded 86% sensitivity and 21% specificity in breast cancer diagnosis. At the same sensitivity, specificity of individual DCE- and DW-MRI markers improved to 36%–57% and that of combined DCE- or combined DW-MRI markers to 57%–71%, with DCE-MRI markers showing better diagnostic performance. The combination of DCE- and DW-MRI markers further improved specificity to 86%–93% and the improvements in diagnostic accuracy were statistically significant (P < .05) when compared with standard clinical MRI reading and most individual markers. At low breast DW-MRI SNR values (<50), like those typically seen in clinical studies, the 3-b-value approach for IVIM analysis generates markers with smaller errors and with comparable or better diagnostic performances compared with biexponential fitting. This suggests that the 3-b-value method could be an optimal IVIM-MRI method to be combined with DCE-MRI for improved diagnostic accuracy. Full article
3108 KiB  
Article
Intrasession Reliability of Arterial Spin-Labeled MRI–Measured Noncontrast Perfusion in Glioblastoma at 3 T
by Limin Zhou, Yiming Wang, Marco C. Pinho, Edward Pan, Yin Xi, Joseph A. Maldjian and Ananth J. Madhuranthakam
Tomography 2020, 6(2), 139-147; https://doi.org/10.18383/j.tom.2020.00010 - 1 Jun 2020
Cited by 5 | Viewed by 1002
Abstract
Arterial spin-labeled magnetic resonance imaging can provide quantitative perfusion measurements in the brain and can be potentially used to evaluate therapy response assessment in glioblastoma (GBM). The reliability and reproducibility of this method to measure noncontrast perfusion in GBM, however, are lacking. We [...] Read more.
Arterial spin-labeled magnetic resonance imaging can provide quantitative perfusion measurements in the brain and can be potentially used to evaluate therapy response assessment in glioblastoma (GBM). The reliability and reproducibility of this method to measure noncontrast perfusion in GBM, however, are lacking. We evaluated the intrasession reliability of brain and tumor perfusion in both healthy volunteers and patients with GBM at 3 T using pseudocontinuous labeling (pCASL) and 3D turbo spin echo (TSE) using Cartesian acquisition with spiral profile reordering (CASPR). Two healthy volunteers at a single time point and 6 newly diagnosed patients with GBM at multiple time points (before, during, and after chemoradiation) underwent scanning (total, 14 sessions). Compared with 3D GraSE, 3D TSE-CASPR generated cerebral blood flow maps with better tumor-to-normal background tissue contrast and reduced image distortions. The intraclass correlation coefficient between the 2 runs of 3D pCASL with TSE-CASPR was consistently high (≥0.90) across all normal-appearing gray matter (NAGM) regions of interest (ROIs), and was particularly high in tumors (0.98 with 95% confidence interval [CI]: 0.97–0.99). The within-subject coefficients of variation were relatively low in all normal-appearing gray matter regions of interest (3.40%–7.12%), and in tumors (4.91%). Noncontrast perfusion measured using 3D pCASL with TSE-CASPR provided robust cerebral blood flow maps in both healthy volunteers and patients with GBM with high intrasession repeatability at 3 T. This approach can be an appropriate noncontrast and noninvasive quantitative perfusion imaging method for longitudinal assessment of therapy response and management of patients with GBM. Full article
2764 KiB  
Article
Computational Modeling of Interstitial Fluid Pressure and Velocity in Head and Neck Cancer Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging: Feasibility Analysis
by Eve LoCastro, Ramesh Paudyal, Yousef Mazaheri, Vaios Hatzoglou, Jung Hun Oh, Yonggang Lu, Amaresha Shridhar Konar, Kira vom Eigen, Alan Ho, James R. Ewing, Nancy Lee, Joseph O. Deasy and Amita Shukla-Dave
Tomography 2020, 6(2), 129-138; https://doi.org/10.18383/j.tom.2020.00005 - 1 Jun 2020
Cited by 14 | Viewed by 1268
Abstract
We developed and tested the feasibility of computational fluid modeling (CFM) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for quantitative estimation of interstitial fluid pressure (IFP) and velocity (IFV) in patients with head and neck (HN) cancer with locoregional lymph node metastases. [...] Read more.
We developed and tested the feasibility of computational fluid modeling (CFM) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for quantitative estimation of interstitial fluid pressure (IFP) and velocity (IFV) in patients with head and neck (HN) cancer with locoregional lymph node metastases. Twenty-two patients with HN cancer, with 38 lymph nodes, underwent pretreatment standard MRI, including DCE-MRI, on a 3-Tesla scanner. CFM simulation was performed with the finite element method in COMSOL Multiphysics software. The model consisted of a partial differential equation (PDE) module to generate 3D parametric IFP and IFV maps, using the Darcy equation and Ktrans values (min−1, estimated from the extended Tofts model) to reflect fluid influx into tissue from the capillary microvasculature. The Spearman correlation (ρ) was calculated between total tumor volumes and CFM estimates of mean tumor IFP and IFV. CFM-estimated tumor IFP and IFV mean ± standard deviation for the neck nodal metastases were 1.73 ± 0.39 (kPa) and 1.82 ± 0.9 × (10−7 m/s), respectively. High IFP estimates corresponds to very low IFV throughout the tumor core, but IFV rises rapidly near the tumor boundary where the drop in IFP is precipitous. A significant correlation was found between pretreatment total tumor volume and CFM estimates of mean tumor IFP (ρ = 0.50, P = 0.004). Future studies can validate these initial findings in larger patients with HN cancer cohorts using CFM of the tumor in concert with DCE characterization, which holds promise in radiation oncology and drug-therapy clinical trials. Full article
1242 KiB  
Article
Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Data Sets
by M. McNitt-Gray, S. Napel, A. Jaggi, S.A. Mattonen, L. Hadjiiski, M. Muzi, D. Goldgof, Y. Balagurunathan, L.A. Pierce, P.E. Kinahan, E.F. Jones, A. Nguyen, A. Virkud, H.P. Chan, N. Emaminejad, M. Wahi-Anwar, M. Daly, M. Abdalah, H. Yang, L. Lu, W. Lv, A. Rahmim, A. Gastounioti, S. Pati, S. Bakas, D. Kontos, B. Zhao, J. Kalpathy-Cramer and K. Farahaniadd Show full author list remove Hide full author list
Tomography 2020, 6(2), 118-128; https://doi.org/10.18383/j.tom.2019.00031 - 1 Jun 2020
Cited by 57 | Viewed by 1987
Abstract
Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included standardized feature definitions and common image data sets. [...] Read more.
Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included standardized feature definitions and common image data sets. Ten sites (9 from the NCI's Quantitative Imaging Network] positron emission tomography–computed tomography working group plus one site from outside that group) participated in this project. Nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture. The common image data sets were: three 3D digital reference objects (DROs) and 10 patient image scans from the Lung Image Database Consortium data set using a specific lesion in each scan. Each object (DRO or lesion) was accompanied by an already-defined volume of interest, from which the features were calculated. Feature values for each object (DRO or lesion) were reported. The coefficient of variation (CV), expressed as a percentage, was calculated across software packages for each feature on each object. Thirteen sets of results were obtained for the DROs and patient data sets. Five of the 9 features showed excellent agreement with CV < 1%; 1 feature had moderate agreement (CV < 10%), and 3 features had larger variations (CV ≥ 10%) even after attempts at harmonization of feature calculations. This work highlights the value of feature definition standardization as well as the need to further clarify definitions for some features. Full article
2863 KiB  
Article
Stanford DRO Toolkit: Digital Reference Objects for Standardization of Radiomic Features
by Akshay Jaggi, Sarah A. Mattonen, Michael McNitt-Gray and Sandy Napel
Tomography 2020, 6(2), 111-117; https://doi.org/10.18383/j.tom.2019.00030 - 1 Jun 2020
Cited by 12 | Viewed by 1349
Abstract
Several institutions have developed image feature extraction software to compute quantitative descriptors of medical images for radiomics analyses. With radiomics increasingly proposed for use in research and clinical contexts, new techniques are necessary for standardizing and replicating radiomics findings across software implementations. We [...] Read more.
Several institutions have developed image feature extraction software to compute quantitative descriptors of medical images for radiomics analyses. With radiomics increasingly proposed for use in research and clinical contexts, new techniques are necessary for standardizing and replicating radiomics findings across software implementations. We have developed a software toolkit for the creation of 3D digital reference objects with customizable size, shape, intensity, texture, and margin sharpness values. Using user-supplied input parameters, these objects are defined mathematically as continuous functions, discretized, and then saved as DICOM objects. Here, we present the definition of these objects, parameterized derivations of a subset of their radiomics values, computer code for object generation, example use cases, and a user-downloadable sample collection used for the examples cited in this paper. Full article
3310 KiB  
Article
Comparison of Segmentation Methods in Assessing Background Parenchymal Enhancement as a Biomarker for Response to Neoadjuvant Therapy
by Alex Anh-Tu Nguyen, Vignesh A. Arasu, Fredrik Strand, Wen Li, Natsuko Onishi, Jessica Gibbs, Ella F. Jones, Bonnie N. Joe, Laura J. Esserman, David C. Newitt and Nola M. Hylton
Tomography 2020, 6(2), 101-110; https://doi.org/10.18383/j.tom.2020.00009 - 1 Jun 2020
Cited by 7 | Viewed by 996
Abstract
Breast parenchymal enhancement (BPE) has shown association with breast cancer risk and response to neoadjuvant treatment. However, BPE quantification is challenging, and there is no standardized segmentation method for measurement. We investigated the use of a fully automated breast fibroglandular tissue segmentation method [...] Read more.
Breast parenchymal enhancement (BPE) has shown association with breast cancer risk and response to neoadjuvant treatment. However, BPE quantification is challenging, and there is no standardized segmentation method for measurement. We investigated the use of a fully automated breast fibroglandular tissue segmentation method to calculate BPE from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for use as a predictor of pathologic complete response (pCR) following neoadjuvant treatment in the I-SPY 2 TRIAL. In this trial, patients had DCE-MRI at baseline (T0), after 3 weeks of treatment (T1), after 12 weeks of treatment and between drug regimens (T2), and after completion of treatment (T3). A retrospective analysis of 2 cohorts was performed: one with 735 patients and another with a final cohort of 340 patients, meeting a high-quality benchmark for segmentation. We evaluated 3 subvolumes of interest segmented from bilateral T1-weighted axial breast DCE-MRI: full stack (all axial slices), half stack (center 50% of slices), and center 5 slices. The differences between methods were assessed, and a univariate logistic regression model was implemented to determine the predictive performance of each segmentation method. The results showed that the half stack method provided the best compromise between sampling error from too little tissue and inclusion of incorrectly segmented tissues from extreme superior and inferior regions. Our results indicate that BPE calculated using the half stack segmentation approach has potential as an early biomarker for response to treatment in the hormone receptor–negative and human epidermal growth factor receptor 2–positive subtype. Full article
6712 KiB  
Article
The Longitudinal Imaging Tracker (BrICS-LIT):A Cloud Platform for Monitoring Treatment Response in Glioblastoma Patients
by Karthik Ramesh, Saumya S. Gurbani, Eric A. Mellon, Vicki Huang, Mohammed Goryawala, Peter B. Barker, Lawrence Kleinberg, Hui-Kuo G. Shu, Hyunsuk Shim and Brent D. Weinberg
Tomography 2020, 6(2), 93-100; https://doi.org/10.18383/j.tom.2020.00001 - 1 Jun 2020
Cited by 7 | Viewed by 1019
Abstract
Glioblastoma is a common and aggressive form of brain cancer affecting up to 20,000 new patients in the US annually. Despite rigorous therapies, current median survival is only 15–20 months. Patients who complete initial treatment undergo follow-up imaging at routine intervals to assess [...] Read more.
Glioblastoma is a common and aggressive form of brain cancer affecting up to 20,000 new patients in the US annually. Despite rigorous therapies, current median survival is only 15–20 months. Patients who complete initial treatment undergo follow-up imaging at routine intervals to assess for tumor recurrence. Imaging is a central part of brain tumor management, but MRI findings in patients with brain tumor can be challenging to interpret and are further confounded by interpretation variability. Disease-specific structured reporting attempts to reduce variability in imaging results by implementing well-defined imaging criteria and standardized language. The Brain Tumor Reporting and Data System (BT-RADS) is one such framework streamlined for clinical workflows and includes quantitative criteria for more objective evaluation of follow-up imaging. To facilitate accurate and objective monitoring of patients during the follow-up period, we developed a cloud platform, the Brain Imaging Collaborative Suite's Longitudinal Imaging Tracker (BrICS-LIT). BrICS-LIT uses semiautomated tumor segmentation algorithms of both T2-weighted FLAIR and contrast-enhanced T1-weighted MRI to assist clinicians in quantitative assessment of brain tumors. The LIT platform can ultimately guide clinical decision-making for patients with glioblastoma by providing quantitative metrics for BT-RADS scoring. Further, this platform has the potential to increase objectivity when measuring efficacy of novel therapies for patients with brain tumor during their follow-up. Therefore, LIT will be used to track patients in a dose-escalated clinical trial, where spectroscopic MRI has been used to guide radiation therapy (Clinicaltrials.gov NCT03137888), and compare patients to a control group that received standard of care. Full article
3889 KiB  
Article
Retrospective Correction of ADC for Gradient Nonlinearity Errors in Multicenter Breast DWI Trials: ACRIN6698 Multiplatform Feasibility Study
by Dariya I. Malyarenko, David C. Newitt, Ghoncheh Amouzandeh, Lisa J. Wilmes, Ek T. Tan, Luca Marinelli, Ajit Devaraj, Johannes M. Peeters, Shivraman Giri, Axel Vom Endt, Nola M. Hylton, Savannah C. Partridge and Thomas L. Chenevert
Tomography 2020, 6(2), 86-92; https://doi.org/10.18383/j.tom.2019.00025 - 1 Jun 2020
Cited by 8 | Viewed by 828
Abstract
The presented analysis of multisite, multiplatform clinical oncology trial data sought to enhance quantitative utility of the apparent diffusion coefficient (ADC) metric, derived from diffusion-weighted magnetic resonance imaging, by reducing technical interplatform variability owing to systematic gradient nonlinearity (GNL). This study tested the [...] Read more.
The presented analysis of multisite, multiplatform clinical oncology trial data sought to enhance quantitative utility of the apparent diffusion coefficient (ADC) metric, derived from diffusion-weighted magnetic resonance imaging, by reducing technical interplatform variability owing to systematic gradient nonlinearity (GNL). This study tested the feasibility and effectiveness of a retrospective GNL correction (GNC) implementation for quantitative quality control phantom data, as well as in a representative subset of 60 subjects from the ACRIN 6698 breast cancer therapy response trial who were scanned on 6 different gradient systems. The GNL ADC correction based on a previously developed formalism was applied to trace-DWI using system-specific gradient-channel fields derived from vendor-provided spherical harmonic tables. For quantitative DWI phantom images acquired in typical breast imaging positions, the GNC improved interplatform accuracy from a median of 6% down to 0.5% and reproducibility of 11% down to 2.5%. Across studied trial subjects, GNC increased low ADC (<1 µm2/ms) tumor volume by 16% and histogram percentiles by 5%–8%, uniformly shifting percentile-dependent ADC thresholds by ∼0.06 µm2/ms. This feasibility study lays the grounds for retrospective GNC implementation in multiplatform clinical imaging trials to improve accuracy and reproducibility of ADC metrics used for breast cancer treatment response prediction. Full article
5601 KiB  
Article
Impact of MRI Protocol Adherence on Prediction of Pathological Complete Response in the I-SPY 2 Neoadjuvant Breast Cancer Trial
by Natsuko Onishi, Wen Li, Jessica Gibbs, Lisa J. Wilmes, Alex Nguyen, Ella F. Jones, Vignesh Arasu, John Kornak, Bonnie N. Joe, Laura J. Esserman, David C. Newitt and Nola M. Hylton
Tomography 2020, 6(2), 77-85; https://doi.org/10.18383/j.tom.2020.00006 - 1 Jun 2020
Cited by 6 | Viewed by 1083
Abstract
We investigated the impact of magnetic resonance imaging (MRI) protocol adherence on the ability of functional tumor volume (FTV), a quantitative measure of tumor burden measured from dynamic contrast-enhanced MRI, to predict response to neoadjuvant chemotherapy. We retrospectively reviewed dynamic contrast-enhanced breast MRIs [...] Read more.
We investigated the impact of magnetic resonance imaging (MRI) protocol adherence on the ability of functional tumor volume (FTV), a quantitative measure of tumor burden measured from dynamic contrast-enhanced MRI, to predict response to neoadjuvant chemotherapy. We retrospectively reviewed dynamic contrast-enhanced breast MRIs for 990 patients enrolled in the multicenter I-SPY 2 TRIAL. During neoadjuvant chemotherapy, each patient had 4 MRI visits (pretreatment [T0], early-treatment [T1], inter-regimen [T2], and presurgery [T3]). Protocol adherence was rated for 7 image quality factors at T0–T2. Image quality factors confirmed by DICOM header (acquisition duration, early phase timing, field of view, and spatial resolution) were adherent if the scan parameters followed the standardized imaging protocol, and changes from T0 for a single patient's visits were limited to defined ranges. Other image quality factors (contralateral image quality, patient motion, and contrast administration error) were considered adherent if imaging issues were absent or minimal. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of FTV change (percent change of FTV from T0 to T1 and T2) in predicting pathological complete response. FTV changes with adherent image quality in all factors had higher estimated AUC than those with non-adherent image quality, although the differences did not reach statistical significance (T1, 0.71 vs. 0.66; T2, 0.72 vs. 0.68). These data highlight the importance of MRI protocol adherence to predefined scan parameters and the impact of data quality on the predictive performance of FTV in the breast cancer neoadjuvant setting. Full article
3551 KiB  
Article
Multisite Technical and Clinical Performance Evaluation of Quantitative Imaging Biomarkers from 3D FDG PET Segmentations of Head and Neck Cancer Images
by Brian J. Smith, John M. Buatti, Christian Bauer, Ethan J. Ulrich, Payam Ahmadvand, Mikalai M. Budzevich, Robert J. Gillies, Dmitry Goldgof, Milan Grkovski, Ghassan Hamarneh, Paul E. Kinahan, John P. Muzi, Mark Muzi, Charles M. Laymon, James M. Mountz, Sadek Nehmeh, Matthew J. Oborski, Binsheng Zhao, John J. Sunderland and Reinhard R. Beichel
Tomography 2020, 6(2), 65-76; https://doi.org/10.18383/j.tom.2020.00004 - 1 Jun 2020
Cited by 4 | Viewed by 1007
Abstract
Quantitative imaging biomarkers (QIBs) provide medical image–derived intensity, texture, shape, and size features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical translation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission tomography images are [...] Read more.
Quantitative imaging biomarkers (QIBs) provide medical image–derived intensity, texture, shape, and size features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical translation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission tomography images are prone to measurement errors owing to differences in image processing factors such as the tumor segmentation method used to define volumes of interest over which to calculate QIBs. We illustrate a new Bayesian statistical approach to characterize the robustness of QIBs to different processing factors. Study data consist of 22 QIBs measured on 47 head and neck tumors in 10 positron emission tomography/computed tomography scans segmented manually and with semiautomated methods used by 7 institutional members of the NCI Quantitative Imaging Network. QIB performance is estimated and compared across institutions with respect to measurement errors and power to recover statistical associations with clinical outcomes. Analysis findings summarize the performance impact of different segmentation methods used by Quantitative Imaging Network members. Robustness of some advanced biomarkers was found to be similar to conventional markers, such as maximum standardized uptake value. Such similarities support current pursuits to better characterize disease and predict outcomes by developing QIBs that use more imaging information and are robust to different processing factors. Nevertheless, to ensure reproducibility of QIB measurements and measures of association with clinical outcomes, errors owing to segmentation methods need to be reduced. Full article
504 KiB  
Article
Clinical Trial Design and Development Work Group Within the Quantitative Imaging Network
by Ella F. Jones, John M. Buatti, Hui-Kuo Shu, Richard L. Wahl, Brenda F. Kurland, Hannah M. Linden, David A. Mankoff, Daniel L. Rubin, Darrell Tata, Robert J. Nordstrom, Lubomir Hadjiyski, Matthias Holdhoff and Lawrence H. Schwartz
Tomography 2020, 6(2), 60-64; https://doi.org/10.18383/j.tom.2019.00022 - 1 Jun 2020
Cited by 2 | Viewed by 1331
Abstract
The Clinical Trial Design and Development Working Group within the Quantitative Imaging Network focuses on providing support for the development, validation, and harmonization of quantitative imaging (QI) methods and tools for use in cancer clinical trials. In the past 10 years, the Group [...] Read more.
The Clinical Trial Design and Development Working Group within the Quantitative Imaging Network focuses on providing support for the development, validation, and harmonization of quantitative imaging (QI) methods and tools for use in cancer clinical trials. In the past 10 years, the Group has been working in several areas to identify challenges and opportunities in clinical trials involving QI and radiation oncology. The Group has been working with Quantitative Imaging Network members and the Quantitative Imaging Biomarkers Alliance leadership to develop guidelines for standardizing the reporting of quantitative imaging. As a validation platform, the Group led a multireader study to test a semi-automated positron emission tomography quantification software. Clinical translation of QI tools cannot be possible without a continuing dialogue with clinical users. This article also highlights the outreach activities extended to cooperative groups and other organizations that promote the use of QI tools to support clinical decisions. Full article
844 KiB  
Perspective
Quantitative Imaging Enters the Clinical Arena: A Personal Viewpoint
by Robert J. Nordstrom
Tomography 2020, 6(2), 56-59; https://doi.org/10.18383/j.tom.2020.00028 - 1 Jun 2020
Cited by 1 | Viewed by 695
Abstract
The National Cancer Institute's Quantitative Imaging Network (QIN) has thrived over the past 12 years with an emphasis on the development of image-based decision support software tools for improving measurements of imaging metrics. An overarching goal has been to develop advanced tools that [...] Read more.
The National Cancer Institute's Quantitative Imaging Network (QIN) has thrived over the past 12 years with an emphasis on the development of image-based decision support software tools for improving measurements of imaging metrics. An overarching goal has been to develop advanced tools that could be translated into clinical trials to provide for improved prediction of response to therapeutic interventions. This article provides an overview of the successes in development and translation of new algorithms into the clinical workflow by the many research teams of the Quantitative Imaging Network. Full article
79 KiB  
Editorial
Quantitative Imaging Network: 12 Years of Accomplishments
by Lubomir M. Hadjiiski and Robert J. Nordstrom
Tomography 2020, 6(2), 55; https://doi.org/10.18383/j.tom.2020.00504 - 1 Jun 2020
Cited by 1 | Viewed by 690
Abstract
The June 2020 special issue of Tomography is a collection of articles from over 20 research teams that are members of the Quantitative Imaging Network (QIN) supported and organized by the National Institutes of Health (NIH).[...] Full article
Previous Issue
Next Issue
Back to TopTop