Next Article in Journal / Special Issue
Taxonomy and Phylogeny of Meruliaceae with Descriptions of Two New Species from China
Previous Article in Journal
In Vivo Efficacy of Amphotericin B against Four Candida auris Clades
Previous Article in Special Issue
Species Diversity and Ecological Habitat of Absidia (Cunninghamellaceae, Mucorales) with Emphasis on Five New Species from Forest and Grassland Soil in China
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Three New Species of Hypoxylon (Xylariales, Ascomycota) on a Multigene Phylogeny from Medog in Southwest China

1
Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
2
College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
3
Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
4
Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
5
Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
6
Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
J. Fungi 2022, 8(5), 500; https://doi.org/10.3390/jof8050500
Submission received: 8 April 2022 / Revised: 6 May 2022 / Accepted: 8 May 2022 / Published: 11 May 2022
(This article belongs to the Special Issue Phylogeny and Diversity of Forestry Fungi)

Abstract

:
During a survey of hypoxylaceous fungi in Medog county (Tibet Autonomous Region, China), three new species, including Hypoxylon damuense, Hypoxylon medogense, and Hypoxylon zangii, were described and illustrated based on morphological and multi-gene phylogenetic analyses. Hypoxylon damuense is characterized by its yellow-brown stromatal granules, light-brown to brown ascospores, and frequently indehiscent perispore. Hypoxylon medogense is morphologically and phylogenetically related to H. erythrostroma but differs in having larger ascospores with straight spore-length germ slit and conspicuously coil-like perispore ornamentation. Hypoxylon zangii shows morphological similarities to H. texense but differs in having Amber (47), Fulvous (43) and Sienna (8) KOH-extractable pigments and larger ascospores with straight spore-length germ slit. The multi-gene phylogenetic analyses inferred from the datasets of ITS-RPB2-LSU-TUB2 supported the three new taxa as separate lineages within Hypoxylon. A key to all known Hypoxylon species from China and related species worldwide is provided.

1. Introduction

Polyphasic taxonomic studies based on phylogenetic, chemotaxonomic, and morphological data were extensively applied to identify species and reflect evolutionary relationships of hypoxylaceous fungi in recent years [1,2,3]. Since resurrected and emended by Wendt et al. [2], 15 genera were rearranged and recognized to Hypoxylaceae by having stromatal pigments and a nodulisporium-like anamorph. According to the arrangement of the families in Sordariomycetes by Hyde et al. [4], 19 genera were accepted in Hypoxylaceae as saprobes and endophytes. Interesting, Hypoxylon species in endophytic stages may play an important ecological role in protecting their host plants from pathogens [4], and some species are related to insect vectors [2,5,6,7]. As the main family of Xylariales, Hypoxylaceae exhibits high diversity in tropical and subtropical areas [8,9,10,11]. In the classification system of Ju and Rogers [12], the genus Hypoxylon Bull. contains two subclades, the Annulata and Hypoxylon sections. Then they were segregated and the Annulata section was accepted as a new genus, Annulohypoxylon, based on molecular phylogenetic data inferred from ACT and TUB2 sequences [13]. Hypoxylon species are mainly saprobic on dead and decaying wood of angiospermous plants [14]. In this genus, more than 200 species with 1189 epithets included in the Index Fungorum have been reported so far [4,15,16]. Despite species of Hypoxylon being widely distributed throughout Asia, only 57 species were reported in China currently [17,18,19,20,21].
Medog county, Tibet Autonomous Region is located in southwest China, at the eastern end of the Himalayas and the lower reaches of the Yarlung Zangbo River, and belongs to a subtropical humid climate zone in the Himalayas, with abundant rainfall and an average annual temperature of 18.0 °C [22]. These unique climatic conditions contribute to the abundant resources of macro-fungi. In the current study, we surveyed hypoxylaceous taxa in Medog county, and three undescribed species of Hypoxylon were identified. The morphological characteristics of the three new species were described, and their nucleotide sequences were analyzed phylogenetically to confirm their status within Hypoxylon.

2. Materials and Methods

2.1. Collection of Specimens

The studied specimens were collected from Medog county (Tibet Autonomous Region), which is located in southwestern China. The explored sites are approximately at elevations from 800 to 1600 m above sea level (m.a.s.l.). The collected samples were dried with a portable drier (manufactured in Germany). Dried samples were labeled and then stored by ultrafreezing at −80 °C for a week to kill insects and their eggs before they were ready for studies. The Fungarium of the Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (FCATAS) is responsible for the preservation of specimens.

2.2. Morphological Observations

Sexual structures of the collected specimens were used for morphological observations and identification. The stroma and perithecia were observed, photographed and measured with a VHX-600E 3D microscope from the Keyence Corporation (Osaka, Japan). Fresh material was respectively immersed in water, 10% KOH, and Melzer’s reagent to observe micromorphological structures as determined by Ma et al. and Song et al. [20,21]. The observations, micrographs, and measurements of asci and ascospores were performed by using an Olympus IX73 inverted fluorescence microscope (Olympus, Tokyo, Japan) and the CellSens Dimensions Software (Olympus, Tokyo, Japan). The observations and photographs of ornamentation of ascospores were examined by scanning electron microscope (SEM) (Phenom Corporation, Netherlands) as given in Friebes and Wendelin [23]. The stromatal color and KOH-extractable pigments were assigned following the mycological color chart of Rayner [24]. The present paper contains the following abbreviations: KOH = 10% potassium hydroxide; n = number of measuring objects; M = arithmetical average of sizes of all measuring objects.

2.3. DNA Extraction, Amplification, and Sequencing

Fresh tissue of stroma was used for DNA extraction and sequence generation following the suggestions by Ma et al. and Song et al. [20,21]. Sequences of four DNA loci—ITS (internal transcribed spacer regions), nrLSU (nuclear large subunit ribosomal DNA), RPB2 (RNA polymerase II second largest subunit), and β-tubulin (beta-tubulin) were selected for multi-gene phylogenetic analyses [2,25]. The target sequences were amplified by the primers ITS4/ITS5, LR0R/LR5, fRPB2-7CR/fRPB2-5F, and T1/T22 [26,27,28,29,30]. In total, six ITS, six LSU, six RPB2, and six β-tubulin sequences of new Hypoxylon specimens collected from Medog were obtained and submitted to GenBank.

2.4. Molecular Phylogenetic Analyses

The listed Hypoxylaceae and Xylariaceae species in Table 1 originated from previously published studies. Besides Hypoxylon spp., the backbone tree contained species of related genera including Annulohypoxylon, Daldinia, Hypomontagnella, Jackrogersella, Pyrenopolyporus, Rhopalostroma, and Thamnomyces with Xylaria hypoxylon (L.) Grev. and Biscogniauxia nummularia (Bull.) Kuntze chosen to be outgroups.
The alignment, trimming, and concatenation of sequences followed Song et al. [21]. The multi-gene phylogenetic analyses were performed by using two methods of maximum likelihood (ML) and Bayesian analyses (BA) based on ITS-LSU-RPB2-β-tubulin datasets and ITS-β-tubulin datasets. The latter was used for an added validation to the former. Maximum likelihood analyses used raxmlGUI 2.0 with 1000 bootstrap replicates and GTRGAMMA+G as a substitution model [20,31,32]. Bayesian analyses used MrBayes 3.2.6 with jModelTest 2 conducting model discrimination and Markov chain Monte Carlo (MCMC) sampling. Every 100th generation was sampled as a tree with 1,000,000 generations running for six MCMC chains [20,33]. Phylogenetic trees were viewed and edited by FigTree version 1.4.3 and Photoshop CS6.
This study selected 89 taxa from 10 genera to perform phylogenetic analysis, including 3 Annulohypoxylon spp., 2 Daldinia spp., 3 Hypomontagnella spp., 72 Hypoxylon spp., 2 Jackrogersella spp., 3 Pyrenopolyporus spp., 1 Rhopalostroma sp., and 1 Thamnomyces sp. with X. hypoxylon and B. nummularia added as the outgroups. The sequence datasets comprised 306 sequences with 91 ITS, 62 LSU, 62 RPB2, and 91 β-tubulin sequences. After being aligned and trimmed, the combined dataset contained 3530 characters including gaps with 587 characters for ITS, 867 characters for LSU, 729 characters for RPB2, and 1347 characters for β-tubulin alignment, of which 1537 characters were parsimony-informative.

3. Results

3.1. Phylogenetic Analysis

The best-scoring ML tree was built with a final ML optimization likelihood value of −77,579.198447. Bayesian posterior probabilities were calculated with a final average standard deviation of split frequencies of less than 0.01. Phylogenetic trees of BA and ML analyses were found to be highly similar in topology, and the ML tree is represented in Figure 1. ML bootstrap support (BS) ≥ 50% and Bayesian posterior probabilities (PP) ≥ 0.95 were labelled along the branches, while branches with BS ≥ 70% and PP ≥ 0.98 were considered to be significant.
Multi-gene phylogeny shows that our new species are clustered within the clades H2 and H3. Hypoxylon damuense and H. zangii are phylogenetically well differentiated. Hypoxylon damuense clustered with H. hypomiltum Mont. and H. wujiangense Y.H. Pi, Q.R. Li in a full support subclade (BS = 100%, PP = 1) in clade H2. Hypoxylon zangii clustered together with H. guilanense Pourmogh., C. Lamb. and H. texense Kuhnert, Sir in a full support subclade as a sister to H. rubiginosum (Pers.) Fr. Hypoxylon medogense formed a subclade with H. erythrostroma J.H. Mill. with full support in clade H3. The phylogenetic tree shows that Hypoxylon is a paraphyletic group with other genera embedded (e.g., Annulohypoxylon, Daldinia, and Hypomontagnella).

3.2. Taxonomy

Hypoxylon damuense Hai X. Ma, Z.K. Song and Y. Li, sp. nov., Figure 2.
MycoBank: MB 843581
Diagnosis. Differs from H. rubiginosum in its larger asci, light-brown to brown ascospores with conspicuous coil-like ornamentation and most of the perispore indehiscent. Differs from H. hypomiltum in its smaller perithecia, larger asci and apical apparatus. Differs from H. wujiangense in its larger stromata and stromatal KOH-extractable pigments.
Etymology. Damuense (Lat.): referring to the holotype locality of species in Damu Township.
Holotype. CHINA: Tibet Autonomous Region, Medog County, Damu Township, Kabu Village, 29°38′42″ N, 95°37′44″ E, alt. 1280 m, saprobic on the bark of dead wood, 2 October 2021, Haixia Ma, Col. XZ207 (FCATAS 4207).
Teleomorph. Stromata pulvinate to effused-pulvinate, 1–9 cm long × 0.4–2 cm broad × 0.6–0.9 mm thick; with inconspicuous to conspicuous perithecial mounds; surface Bay (6), Rust (39) and Livid Purple (81), exposing black subsurface layer when colored coating worn off; with yellow-brown granules immediately beneath the surface and between perithecia; yielding luteous (12) and ochreous (44) to fulvous (43) KOH-extractable pigments; tissue below the perithecial layer black, 0.1–0.46 mm thick. Perithecia ovoid, black, 0.16–0.3 mm broad × 0.3–0.45 mm high. Ostioles umbilicate, opening lower than the stromatal surface or at the same level as the stromatal surface. Asci cylindrical with eight obliquely uniseriate ascospores, long-stipitate, 102–242 µm total length, the spore-bearing portion 60–72 µm long × 6.2–8.6 µm broad, and stipes 41–174 µm long, with amyloid apical apparatus bluing in Melzer’s reagent, discoid, 0.8–1.5 µm high × 1.6–2.4 µm broad. Ascospores light-brown to brown, unicellular, ellipsoid-inequilateral, with narrowly rounded ends, 8.2–10.5 × 4.1–5.5 µm (n = 60, M = 9.2 × 4.8 µm), with straight spore-length germ slit on the convex side; most of the perispore indehiscent in 10% KOH, occasionally dehiscent, with conspicuous coil-like ornamentation in SEM; epispore smooth.
Additional specimens examined. CHINA: Tibet Autonomous Region, Medog County, Damu Township, Kabu Village, 29°38′48″ N, 95°37′46″ E, alt. 1310 m, saprobic on the bark of dead wood, 2 October 2021, Haixia Ma, Col. XZ321(FCATAS 4321).
Note. Hypoxylon damuense was found in the subtropics, and characterized by large pulvinate stromata, long asci stipes, amyloid apical apparatus, light-brown to brown ascospores with straight germ slit, most of the perispore indehiscent in 10% KOH, with conspicuous coil-like ornamentation. The new species is quite similar to H. rubiginosum in ascospore dimensions and KOH-extractable pigments, but the latter has darker colored ascospores, smaller asci (100–170 µm total length), dehiscent perispores and smooth or with inconspicuous coil-like ornamentation. Hypoxylon rubiginosum sensu stricto was always discovered in the temperate northern hemisphere except for samples reported in Florida [12,15,48]. Moreover, the status of H. damuense as a new species is also supported in the phylogenetic trees, where it appears distant from H. rubiginosum.
Although phylogenetic analyses showed that H. damuense clustered with H. hypomiltum and H. wujiangense in a clade with strong supported values (100%/1), there are distinct morphological differences among them. Hypoxylon hypomiltum differs in having larger perithecia ((0.2–)0.3–0.5 mm broad × 0.5–0.7 mm high), smaller asci (90–132(–145) µm total length), smaller apical apparatus (0.3–0.6 µm high × 1.2–1.5 µm broad) and slightly oblique to sigmoid germ slit [12]. Hypoxylon wujiangense can be distinguished by its smaller stromata with white pruina surface, Sienna (8) KOH-extractable pigments and larger apical apparatus 1.5–2 µm high × 2.5–3 µm broad [19].
Hypoxylon medogense Hai X. Ma, Z.K. Song and Y. Li, sp. nov., Figure 3.
MycoBank: MB 843582
Diagnosis. Differs from H. erythrostroma in its larger ascospores with straight spore-length germ slit and very conspicuous coil-like perispore ornamentation. Differs from H. laschii in ovoid to obovoid perithecia, shorter asci, and larger ascospores with very conspicuous coil-like perispore ornamentation.
Etymology. Medogense (Lat.): referring to the holotype locality of species in Medog county.
Holotype. CHINA: Tibet Autonomous Region, Medog County, Dexing Township, Deguo village, 29°24′58″ N, 95°23′6″ E, alt. 814 m, saprobic on the bark of dead wood, 25 September 2021, Haixia Ma, Col. XZ61 (FCATAS 4061).
Teleomorph. Stromata plane, pulvinate to effused-pulvinate, 3.9–16.5 cm long × 2.5–6.2 cm broad × 0.52–0.72 mm thick; with inconspicuous to conspicuous perithecial mounds; surface cinnamon (62), fulvous (43), ochreous (44) and bay (6); with orange or reddish-orange granules immediately beneath the surface and between perithecia; yielding amber (47), orange (7) or scarlet (5) KOH-extractable pigments; tissue below the perithecial layer inconspicuous, black. Perithecia ovoid to obovoid, black, 0.16–0.3 mm broad × 0.25–0.4 mm high. Ostioles with conical black papillae, opening higher than the stromatal surface. Asci cylindrical, eight-spored, uniseriate, 91–142 µm total length, the spore-bearing portion 60–79 µm long × 6.9–9.4 µm broad, and stipes 25–85 µm long, with amyloid apical apparatus bluing in Melzer’s reagent, discoid, 0.9–1.4 µm high × 2.4–2.9 µm broad. Ascospores brown to dark brown, unicellular, ellipsoid-inequilateral, with narrowly rounded ends, 9.9–12.8 × 4.6–7 µm (n = 60, M = 11.1 × 5.7 µm), with straight spore-length germ slit on the convex side; perispore dehiscent in 10% KOH, with very conspicuous coil-like ornamentation in SEM; epispore smooth.
Additional specimens examined. CHINA: Tibet Autonomous Region, Medog County, Dexing Township, Deguo village, 29°25′28″ N, 95°23′26″ E, alt. 808 m, saprobic on the bark of dead wood, 25 September 2021, Haixia Ma, Col. XZ320 (FCATAS 4320).
Note.Hypoxylon medogense is characterized by having a bright orange red waxy layer beneath the surface, orange (7) or scarlet (5) KOH-extractable pigments, ostioles higher than the stromatal surface, brown to dark brown ascospores with straight germ slit and dehiscent perispore with very conspicuous coil-like ornamentation. Although the phylogenetic trees (Figure 1 and Figure S1) show that H. medogense and H. erythrostroma are closely related, as well as similar to each other in stromatal morphology and KOH-extractable pigments, H. erythrostroma was originally described and illustrated by Miller (1933) from Florida, and can be distinguished from H. medogense by having smaller ascospores (6.5–9.5 × 3–4.5 µm) and a shorter spore-bearing portion of asci (40–50 µm). Ju and Rogers [12] reexamined the isotype of H. erythrostroma (GAM 2374) from the USA and other specimens from Brazil, French Guiana, Madagascar, Mexico, Papua New Guinea, and Puerto Rico, and found that the fungi has smaller ascospores ((7–)7.5–9.5 × 3–4.5 µm) with sigmoid germ slit spore-length and inconspicuous coil-like perispore ornamentation; the species was also reported in Guadeloupe (French West Indies) by Fournier et al. [10].
Notably, Hypoxylon medogense shows morphological similarities to H. crocopeplum Berk., M.A. Curtis and H. laschii Nitschke in stromatal morphology. Hypoxylon crocopeplum can be distinguished by obovoid to long tubular perithecia (0.1–0.3(–0.4) mm broad × 0.2–1.5 mm high), longer asci ((100–)120–205(–217) µm total length) and slightly larger ascospores ((9–)9.5–15(–17.5) × 4–7(–7.5) µm) with inconspicuous to conspicuous coil-like perispore ornamentation. Hypoxylon laschii has longer asci (165–190 µm total length) and smaller ascospores (8–10 × 3.5–4.5 µm) with no perspore ornamentation [12]. In the phylogenetic trees, H. medogense is distant from the two species.
Hypoxylon zangii Hai X. Ma, Z.K. Song and Y. Li, sp. nov., Figure 4.
MycoBank: MB 843580
Diagnosis. Differs from H. fendleri and H. retpela in its smaller ascospores. Differs from H. rubiginosum in its stromatal granules and a subtropical distribution. Differs from H. texense in its stromatal KOH-extractable pigments and larger ascospores. Differs from H. guilanense in its stromatal morphology.
Etymology.Zangii (Lat.): referring in honor to Chinese mycologist Dr. Zang Mu, who is also the author of “Field Records in the Mountains and Valleys: Discovery Journey to the Third Pole—Notes and Drawings of Zang Mu Scientific Expeditions”.
Holotype. CHINA: Tibet Autonomous Region, Medog County, Yarlung Zangbo River, the large bend of Linduo, 29°27′52″ N, 95°26′39″ E, alt. 781 m, saprobic on the bark of dead wood, 24 September 2021, Haixia Ma, Col. XZ29 (FCATAS 4029).
Teleomorph. Stromata effused-pulvinate, 1.2–4.1 cm long × 0.8–1 cm broad × 0.25–0.45 mm thick; with conspicuous perithecial mounds; surface livid red (56) and vinaceous (57); with orange or reddish orange granules immediately beneath the surface and between perithecia; yielding amber (47), fulvous (43) and sienna (8) KOH-extractable pigments; tissue below the perithecial layer inconspicuous, brown. Perithecia spherical, ovoid to obovoid, black, 0.2–0.4 mm broad × 0.3–0.5 mm high. Ostioles umbilicate, sometimes overlain with conspicuous white substance, opening lower than the stromatal surface. Asci cylindrical, eight-spored, uniseriate, 85–145 µm total length, the spore-bearing portion 65–92 µm long × 7.1–10.9 µm broad, and stipes 12–66 µm long, with amyloid apical apparatus bluing in Melzer’s reagent, discoid, 0.8–1.3 µm high × 2–2.9 µm broad. Ascospores light-brown to brown, unicellular, ellipsoid-inequilateral, with slightly acute to narrowly rounded ends, 10.9–14.6 × 4.8–6.4 µm (n = 60, M = 12.2 × 5.5 µm), with straight spore-length germ slit on the convex side; perispore dehiscent in 10% KOH, with inconspicuous coil-like ornamentation in SEM; epispore smooth.
Additional specimens examined. CHINA: Tibet Autonomous Region, Medog County, Yarlung Zangbo River, the larger bend of Linduo, 29°27′35″ N, 95°26′32″ E, alt. 780 m, saprobic on the bark of dead wood, 24 September 2021, Haixia Ma, Col. XZ319 (FCATAS 4319).
Note. The stromatal morphology of H. zangii is similar to H. fendleri Berk. ex Cooke, H. retpela Van der Gucht, Van der Veken and H. rubiginosum. However, H. fendleri differs by having slightly thicker stromata at 0.5–0.8 mm, smaller ascospores ((8–)9–12 × 4–5.5 µm) with sigmoid germ slit spore-length, while H. retpela has thicker stromata at 0.5–0.8 mm, and smaller ascospores ((9–)9.5–12 × 4.5–5 µm) with very conspicuous coil-like ornamentation [12]. Hypoxylon rubiginosum can also be distinguished by its yellowish-brown or brown stromatal granules, thicker stromata (0.5–1.2(–1.5) mm) and smaller ascospores ((8–)9–12 × 4–5.5 µm). In addition, H. rubiginosum prefers to distribute in the northern temperate region, while H. zangii was found in subtropical region [12,15,47]. These three species are distant from H. zangii in the phylogenetic trees (Figure 1).
Hypoxylon zangii clustered with H. guilanense and H. texense in a strong support clade in the phylogenetic trees. Hypoxylon texense shows morphological similarities to H. zangii with reddish-orange stromatal granules, but differs in having rust (39) to dark brick (86) instead of amber (47), fulvous (43) and sienna (8) KOH-extractable pigments, and smaller ascospores ((9–)9.5–12 × 4.5–5 µm) with straight to slightly sigmoid germ slit spore-length [37]. Hypoxylon guilanense differs from H. zangii in having hemispherical to pulvinate stromata with sienna (8), umber (9) to buff (45) surface colors, with conspicuous perithecial mounds, and slightly larger ascospores (12–15 × 5–6 µm) with conspicuous coil-like ornamentation [15].
        Dichotomous key to Hypoxylon species from China
             and related species worldwide
1. Ascospores nearly equilateral ............................................................................................. 2
1. Ascospores inequilateral ...................................................................................................... 8
2. Ostiolar barely to slightly higher than the stromatal surface ......................................... 3
2. Ostioles lower than the stromatal surface ......................................................................... 4
3. Perithecia spherical, (0.2–)0.3–0.4 mm broad .................................................. H. croceum
3. Perithecia spherical to tubular, 0.3–0.6 mm broad × 0.4–0.8 mm high. H. parksianum
4. Perispore dehiscent in 10% KOH ............................................................... H. hypomiltum
4. Perispore indehiscent in 10% KOH .................................................................................... 5
5. Perithecia tubular to long tubular ....................................................................................... 6
5. Perithecia obovoid ................................................................................................................ 7
6. KOH-extractable pigments orange (7) ................................................... H. cinnabarinum
6. KOH-extractable pigments greenish yellow (16), dull green (70), or dark green
(21) ...................................................................................................................... H. investiens
7. Stromatal surface brown vinaceous (84), sepia (63), or chestnut (40); without apparent
KOH-extractable pigments or with dilute grayish sepia (106) to blackish
pigments ........................................................................................................ H. dieckmannii
7. Stromatal surface fawn (87) or umber (9); KOH-extractable pigments hazel
(88) ................................................................................................................... H. gilbertsonii
8. Ostiolar barely to slightly higher than the stromatal surface ......................................... 9
8. Ostioles lower than the stromatal surface ....................................................................... 15
9. Perithecia tubular.................................................................................... H. lienhwacheense
9. Perithecia spherical, ovoid to obovoid ............................................................................. 10
10. Stromatal granules black ............................................................................... H. hainanense
10. Stromatal granules colored ................................................................................................ 11
11. Stromata glomerate; KOH-extractable pigments hazel (88) .................. H. lenormandii
11. Stromata pulvinate; KOH-extractable pigments orange (7) ......................................... 12
12. Sigmoid germ slit ................................................………......................... H. erythrostroma
12. Straight germ slit ................................................................................................................. 13
13. Perispore with very conspicuous coil-like ornamentation ....................... H. medogense
13. Perispore smooth or with inconspicuous coil-like ornamentation .............................. 14
14. Stromata pulvinate to discoid, erumpent, usually encircled with ruptured plant tissue;
perithecia 0.2–0.4(–0.5) mm diam ............................................................ H. laschii
14. Stromata pulvinate to effused-pulvinate, sometimes hemispherical, plane; perithecia
0.1–0.2 mm diam ................................................................................................... H. rutilum
15. Sigmoid germ slit .........................................………........................………………… 16
15. Straight or slightly sigmoid germ slit ............................................................................... 19
16. Perispore with conspicuous coil-like ornamentation ................... H. cyclobalanopsidis
16. Perispore smooth or with inconspicuous coil-like ornamentation .............................. 17
17. Sigmoid germ slit much less than spore-length; stromata glomerate, with conspicuous
perithecial mounds; KOH-extractable pigments pure yellow (14) with citrine (13) tone,
greenish olivaceous (90), or orange (7) ............................. H. musceum
17. Sigmoid germ slit spore-length; stromata pulvinate or effused-pulvinate, with inconsp
icuous to conspicuous perithecial mounds; KOH-extractable pigments with other
colors ..................……................................................................................................. 18
18. KOH-extractable pigments orange (7) ..................……..................................... H. fendleri
18. KOH-extractable pigments vinaceous purple (101) ............…..................... H. fuscoides
19. Perispore infrequently dehiscent in 10% KOH .................…….....................……......... 20
19. Perispore dehiscent in 10% KOH .................…….........................…................................ 22
20. Stromata saprobic on surface of dead bamboo ................................... H. wuzhishanense
20. Stromata saprobic on the bark of dicot wood ................................................................. 21
21. Ascospores light-brown to brown, 8.2–10.5 × 4.1–5.5 µm, with straight germslit spore-
length ....................................................................................................... H. damuense
21. Ascospores brown to dark brown, (10–)10.5–11.5(–12.5) × 5–6.5 µm, with straight germ
slit slightly less than spore-length .............................................................. H. dengii
22. Perispore with conspicuous coil-like ornamentation .................................................... 23
22. Perispore smooth or with inconspicuous coil-like ornamentation .............................. 28
23. Stromata pulvinate to effused-pulvinate ......................................................................... 24
23. Stromata glomerate or hemispherical .............................................................................. 25
24. Perithecia tubular to long tubular or obovoid, 0.2–0.3 mm broad × 0.6–0.9 mm high;
ascospores light brown to dark brown, 10.3–13.6 × (4.2–) 4.7–6.1 μm, with conspicuous
straight germ slit .................................................................... H. jianfengense
24. Perithecia spherical to obovoid, 0.2–0.3 mm broad × 0.2–0.5 mm high; ascospores
brown to dark brown, (9–)9.5–12 × 4.5–5 μm, with straight to slightly sigmoid germ
slit ............................................................................................................................. H. retpela
25. KOH-extractable pigments orange (7) ............................................................................. 26
25. KOH-extractable pigments with other colors ................................................................. 27
26. Stromata glomerate to pulvinate; stromatal granules dull yellow
or rust ............................................................................................................. H. baihualingense
26. Stromata hemispherical to pulvinate; stromatal granules scarlet (5) to orange
(7) ....................................................................................................................... H. guilanense
27. Stromatal granules pale brown to dull reddish-brown; KOH-extractable pigments pale
luteous (11), honey (60) and ochreous (44); apical apparatus highly reduced or lacking,
not bluing in Melzer’s reagent; ascospores light-brown to brown, with slightly broad
rounded ends, 8–10.6(–11.1) × 4.1–6.3(–7.1) µm ... H. chrysalidosporum
27. Stromatal granules dull reddish-brown to blackish; KOH-extractable pigments
isabelline (65) or amber (47); apical apparatus bluing in Melzer’s reagent; ascospores
brown to dark brown, with narrowly rounded ends, 9.5–13(–14.5) × 4.5–6.5
µm ........................................................................................................................... H. duranii
28. KOH-extractable pigments greenish to olivaceous ........................................................ 29
28. KOH-extractable pigments with other colors ................................................................. 33
29. Stromata pulvinate to effused-pulvinate ......................................................................... 30
29. Stromata glomerate or hemispherical .............................................................................. 31
30. Ascospores brown to dark brown, 8.5–13.5 × 4–6 μm .......................... H. anthochroum
30. Ascospores light brown to brown, 5.5–8 × 2.5–3.5 μm ........................... H. brevisporum
31. Apical apparatus highly reduced or lacking, not bluing in Melzer’s rea
gent .................................................................................................................. H. notatum
31. Apical apparatus bluing in Melzer’s reagent .................................................................. 32
32. Perithecia spherical to obovoid, 0.1–0.3(–0.4) mm broad × 0.2–0.5 mm high; slightly
sigmoid germ slit ................................................................................................... H. fuscum
32. Perithecia long tubular, 0.3–0.6 mm broad × (0.6–)0.8–2 mm high; straight germ
slit ................................................................................................................. H. placentiforme
33. Stromata hemispherical ...................................................................................................... 34
33. Stromata pulvinate to effused-pulvinate ......................................................................... 37
34. Perithecia long tubular .......................................................................... H. haematostroma
34. Perithecia spherical to obovoid ......................................................................................... 35
35. KOH-extractable pigments amber (47) with greenish yellow (16) tone, or greenish
yellow (16) with citrine (13) tone ................................................................ H. perforatum
35. KOH-extractable pigments orange (7) ............................................................................. 36
36. Apical apparatus bluing in Melzer’s reagent, 0.8–1.2 μm high × 2.2–2.8 μm broad;
ascospores (10.5–)11–15 × 5–6.5(–7) μm ....................................................... H. fragiforme
36. Apical apparatus bluing in Melzer’s reagent, 0.4–0.8 μm high × 1.2–2 μm broad;
ascospores 7–9.5(–10) × 3–4.5 μm ................................................................. H. howeanum
37. Perithecia tubular ................................................................................................................ 38
37. Perithecia spherical to obovoid ......................................................................................... 42
38. Stromatal granules black; KOH-extractable pigments dark livid (80) .... H. lividicolor
38. Stromatal granules colored; KOH-extractable pigments with other colors ............... 39
39. KOH-extractable pigments pure yellow (14) or amber (47) ......................... H. trugodes
39. KOH-extractable pigments orange (7) ............................................................................. 40
40. Apical apparatus bluing in Melzer’s reagent, 0.2–0.5 μm high × 1–1.5 μm
broad ................................................................................................................... H. jecorinum
40. Apical apparatus lightly bluing or bluing in Melzer’s reagent, more than 1.5 μm
broad ..................................................................................................................................... 41
41. Perithecia spherical, obovoid to long tubular, up to 1.5 mm high; ascospores (9–)9.5
–15(–17.5) × 4–7(–7.5) μm; Virgariella-like conidiogenous structure
........................................................................................................ H. crocopeplum
41. Perithecia obovoid to tubular, up to 0.7 mm high; ascospores 7–11 × 3.5–5 μm;
Nodulisporium-like conidiogenous structure ................................................ H. subgilvum
42. Stromata saprobic on dead bamboo .......................................................... H. pilgerianum
42. Stromata saprobic on dicot wood ..................................................................................... 43
43. Ascospores 15.5–22.9(–23.6) × 7.3–10.6 μm ....................................................... H. larissae
43. Ascospores length less than 15 µm ................................................................................... 44
44. Perithecia subglobose, 0.5–0.7 mm broad; straight or slightly sigmoid germ slit nearly
spore-length ...................................................................................... H. wujiangense
44. Perithecia less than 0.5 mm broad; straight germ slit spore-length ............................. 45
45. Stromatal granules orange or reddish orange; ascospores light-brown ..................... 46
45. Stromatal granules yellowish-brown or dull purplish-brown; ascospores dark
brown .................................................................................................................................... 47
46. KOH-extractable pigments rust (39) to dark brick (86); ascospore (8.7–)9.1–10.8(–11.5)
× (4.0–)4.5–5.4 μm .................................................................................................. H. texense
46. KOH-extractable pigments amber (47), fulvous (43) and sienna (8); ascospore 10.9–14.6
× 4.8–6.4 µm ............................................................................................. H. zangii
47. Stromatal granules yellowish-brown or brown; perithecia 0.2–0.5 mm broad × 0.3–0.6
mm high; smooth or with inconspicuous coil-like ornamentation perispore; Periconiella-
like conidiogenous structure .................................................. H. rubiginosum
47. Stromatal granules dull purplish-brown; perithecia 0.1–0.2 mm broad × 0.2–0.3 mm
high; smooth perispore; Nodulisporium-like conidiogenous structure
.............................................................................................. H. vinosopulvinatum

4. Discussion

In the present study, three species of Hypoxylon from Medog in China, H. damuense, H. medogense, and H. zangii, are described as new species based on molecular analyses and morphological features. Phylogenetic analyses on the species of Hypoxylon presented confirmed that Hypoxylon is a polyphyletic genus. The species analyzed appeared mainly distributed in six separate clades (except H. papillatum Ellis, Everh. and H. dieckmannii Theiss.). Hypoxylon damuense and H. zangii were clearly separated from other sampled species of Hypoxylon and from each other in the clade H2, and H. medogense was included in clade H3 containing H. fragiforme (Pers.) J. Kickx f., the type species of the genus. The phylogenetic tree shows that the classification of Hypoxylon is confusing. It did not suggest any apparent correlation in morphological features with the distribution of species in the phylogenetic trees. Therefore, more collections, more gene sequences and new taxonomic features, as well as the application of polyphasic taxonomic approaches based on morphological (sexual and asexual), chemotaxonomic, and phylogenetic data of this genus are needed in the further studies. Previously numerous new species have been found in Southwest China [49,50], and present paper confirmed that more known fungal species in the area.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof8050500/s1, Figure S1: ML phylogram inferred from ITS-TUB2 sequences. ML bootstrap support (BS) ≥ 50% and Bayesian posterior probabilities (PP) ≥ 0.95 are labelled above or below the respective branches (BS/PP). Species in bold were sequenced in the this study.

Author Contributions

Z.-K.S., A.-H.Z., Z.-D.L., Z.Q. and H.-X.M. prepared the samples; Z.-K.S. made morphological examinations and performed molecular sequencing; A.-H.Z. performed phylogenetic analyses. Z.-K.S., A.-H.Z. and H.-X.M. wrote the manuscript; Y.L. revised the language of the text; H.-X.M. conceived and supervised the work. All authors have read and agreed to the published version of the manuscript.

Funding

The research was supported by the National Natural Science Foundation of China (No. 31972848, 31770023), and Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (No. 1630032022001, 1630052022003, 1630052022042).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All newly generated sequences were deposited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accessed on 15 March 2022; Table 1). All new taxa were deposited in MycoBank (https://www.mycobank.org/, accessed on 12 March 2022; MycoBank identifiers follow new taxa).

Acknowledgments

We express our gratitude to Zhu-nian Wang, Qing-long Wang, Hu-biao Yang, Shi-song Xu (Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences), Rong-jie Zhu (Tibet Academy of Agricultural and Animal Husbandry Sciences), and Xue-da Chen (Tibet Agriculture and Animal Husbandry University) for help during field collections. We gratefully acknowledge Guo-dao Liu for his helpful suggestions to improve the nomenclature of the new species. Special thanks to Xiao-wei Qin and Ting-yu Bai (Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences) for assistance in micrographs produced by SEM.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Stadler, M.; Fournier, J. Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae (Xylariaceae). Rev. Iberoam. Micol. 2006, 23, 160–170. [Google Scholar] [CrossRef]
  2. Wendt, L.; Sir, E.B.; Kuhnert, E.; Heitkämper, S.; Lambert, C.; Hladki, A.I.; Romero, A.I.; Luangsaard, J.J.; Srikitikulchai, P.; Per, D.; et al. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol. Prog. 2018, 17, 115–154. [Google Scholar] [CrossRef] [Green Version]
  3. Kuhnert, E.; Navarro-Muñoz, J.C.; Becker, K.; Stadler, M.; Collemare, J.; Cox, R.J. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud. Mycol. 2021, 99, 100118. [Google Scholar] [CrossRef] [PubMed]
  4. Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.-F.; Boonmee, S.; Calabon, M.; et al. Refined families of Sordariomycetes. Mycosphere 2020, 11, 305–1059. [Google Scholar] [CrossRef]
  5. Pažoutová, S.; Follert, S.; Bitzer, J.; Keck, M.; Surup, F.; Šrůtka, P.; Holuša, J.; Stadler, M. A new endophytic insect-associated Daldinia species, recognised from a comparison of secondary metabolite profiles and molecular phylogeny. Fungal Divers. 2013, 60, 107–123. [Google Scholar] [CrossRef]
  6. Pažoutová, S.; Šrůtka, P.; Holuša, J.; Chudickova, M.; Kolarik, M. The phylogenetic position of Obolarina dryophila (Xylariales). Mycol. Prog. 2010, 9, 501–507. [Google Scholar] [CrossRef]
  7. Pažoutová, S.; Šrůtka, P.; Holuša, J.; Chudíčková, M.; Kolařík, M. Diversity of xylariaceous symbionts in Xiphydria woodwasps: Role of vector and a host tree. Fungal Ecol. 2010, 3, 392–401. [Google Scholar] [CrossRef]
  8. Rogers, J.D. Thoughts and musings on tropical Xylariaceae. Mycol. Res. 2000, 104, 1412–1420. [Google Scholar] [CrossRef]
  9. Kuhnert, E.; Fournier, J.; Per, D.; Luangsaard, J.J.D.; Stadler, M. New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers. 2014, 64, 181–203. [Google Scholar] [CrossRef]
  10. Fournier, J.; Lechat, C.; Courtecuisse, R. The genus Hypoxylon (Xylariaceae) in Guadeloupe and Martinique (French West Indies). Ascomycete. Org. 2016, 7, 145–212. [Google Scholar]
  11. Sir, E.B.; Kuhnert, E.; Lambert, C.; Hladki, A.I.; Romero, A.I.; Stadler, M. New species and reports of Hypoxylon from Argentina recognized by a polyphasic approach. Mycol. Prog. 2016, 15, 42. [Google Scholar] [CrossRef]
  12. Ju, Y.M.; Rogers, J.D. A Revision of the Genus Hypoxylon; American Phytopathological Society Press: St. Paul, MN, USA, 1996; p. 365. [Google Scholar]
  13. Hsieh, H.; Ju, Y.M.; Rogers, J.D. Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 2005, 97, 844–865. [Google Scholar] [CrossRef] [PubMed]
  14. Stadler, M. Importance of secondary metabolites in the Xylariaceae as parameters for assessment of their taxonomy, phylogeny, and functional biodiversity. Curr. Res. Envion. Appl. Mycol. 2011, 1, 75–133. [Google Scholar] [CrossRef]
  15. Pourmoghaddam, M.J.; Lambert, C.; Surup, F.; Khodaparast, S.A.; Krisai-Greilhuber, I.; Voglmayr, H.; Stadler, M. Discovery of a new species of the Hypoxylon rubiginosum complex from Iran and antagonistic activities of Hypoxylon spp. Against the Ash Dieback pathogen, Hymenoscyphus fraxineus, in dual culture. MycoKeys 2020, 66, 105–133. [Google Scholar] [CrossRef] [Green Version]
  16. Index Fungorum. Available online: http://www.indexfungorum.org/names/names.asp (accessed on 23 March 2022).
  17. Chi, S.Q.; Xu, J.; Lu, B.S. Three New Chinese Records of Hypoxylon. J. Fungal Res. 2016, 14, 218–221. [Google Scholar]
  18. Ma, H.X.; Qiu, J.Z.; Xu, B.; Li, Y. Two Hypoxylon species from Yunnan Province based on morphological and molecular characters. Phytotaxa 2018, 376, 027–036. [Google Scholar] [CrossRef]
  19. Pi, Y.H.; Zhang, X.; Liu, L.L.; Long, Q.D.; Shen, X.C.; Kang, Y.Q.; Hyde, K.D.; Boonmee, S.; Kang, J.C.; Li, Q.R. Contributions to species of Xylariales in China—4 Hypoxylon wujiangensis sp. nov. Phytotaxa 2020, 455, 21–30. [Google Scholar] [CrossRef]
  20. Ma, H.; Song, Z.; Pan, X.; Li, Y.; Yang, Z.; Qu, Z. Multi-gene phylogeny and taxonomy of Hypoxylon (Hypoxylaceae, Ascomycota) from China. Diversity 2022, 14, 37. [Google Scholar] [CrossRef]
  21. Song, Z.K.; Pan, X.Y.; Li, C.T.; Ma, H.X.; Li, Y. Two new species of Hypoxylon (Hypoxylaceae) from China based on morphological and DNA sequence data analyses. Phytotaxa 2022, 538, 213–224. [Google Scholar] [CrossRef]
  22. Feng, M.; Zhu, R.J.; Zhao, G.F. Utilization of wild plant resources and development suggestions of agricultural industry in Motuo tropical area of Tibet. Chin. J. Trop. Agric. 2022, 42, 38–41. [Google Scholar]
  23. Friebes, G.; Wendelin, I. Studies on Hypoxylon ferrugineum (Xylariaceae), a rarely reported species collected in the urban area of Graz (Austria). Ascomycete. Org. 2016, 8, 83–90. [Google Scholar]
  24. Rayner, R.W. A Mycological Colour Chart; Cmi. & British Mycological Society Kew: London, UK, 1970. [Google Scholar]
  25. Kuhnert, E.; Sir, E.B.; Lambert, C.; Hyde, K.D.; Hladki, A.I.; Romero, A.I.; Rohde, M.; Stadler, M. Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Divers. 2017, 85, 1–43. [Google Scholar] [CrossRef]
  26. Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Eco. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
  27. O‘donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef] [PubMed]
  28. White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics—science direct. PCR Protoc. 1990, 18, 315–322. [Google Scholar]
  29. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [Green Version]
  30. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
  31. Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
  32. Cedeño-Sanchez, M.; Wendt, L.; Stadler, M.; Mejía, L.C. Three new species of Hypoxylon and new records of Xylariales from Panama. Mycosphere 2020, 11, 1457–1476. [Google Scholar] [CrossRef]
  33. Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
  34. Stadler, M.; Læssøe, T.; Fournier, J.; Decock, C.; Schmieschek, B.; Tichy, H.V.; Peršoh, D. A polyphasic taxonomy of Daldinia (Xylariaceae). Stud. Mycol. 2014, 77, 1–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Lambert, C.; Wendt, L.; Hladki, A.I.; Stadler, M.; Sir, E.B. Hypomontagnella (Hypoxylaceae): A new genus segregated from Hypoxylon by a polyphasic taxonomic approach. Mycol. Prog. 2019, 18, 187–201. [Google Scholar] [CrossRef]
  36. Vicente, T.F.L.; Goncalves, M.F.M.; Brandao, C.; Fidalgo, C.; Alves, A. Diversity of fungi associated with macroalgae from an estuarine environment and description of Cladosporium rubrum sp. nov. and Hypoxylon aveirense sp. nov. Int. J Syst. Evol. Micr. 2021, 71, 004630. [Google Scholar] [CrossRef] [PubMed]
  37. Lambert, C.; Pourmoghaddam, M.J.; Cedeño‒Sanchez, M.; Surup, F.; Khodaparast, S.A.; Krisai-Greilhuber, I.; Voglmayr, H.; Stradal, T.E.B.; Stadler, M. Resolution of the Hypoxylon fuscum complex (Hypoxylaceae, Xylariales) and discovery and biological characterization of two of its prominent secondary metabolites. J. Fungi 2021, 7, 131. [Google Scholar] [CrossRef]
  38. Sir, E.B.; Becker, K.; Lambert, C.; Bills, G.F.; Kuhnert, E. Observations on Texas hypoxylons, including two new Hypoxylon species and widespread environmental isolates of the H. croceum complex identified by a polyphasic approach. Mycologia 2019, 11, 832–856. [Google Scholar] [CrossRef] [PubMed]
  39. Sir, E.B.; Kuhnert, E.; Surup, F.; Hyde, K.D.; Stadler, M. Discovery of new mitorubrin derivatives from Hypoxylon fulvosulphureum sp. nov. (Ascomycota, Xylariales). Mycol. Prog. 2015, 14, 28. [Google Scholar] [CrossRef]
  40. Vu, D.; Groenewald, M.; Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
  41. Bitzer, J.; Læssøe, T.; Fournier, J.; Kummer, V.; Decock, C.; Tichy, H.V.; Piepenbring, M.; Peršoh, D.; Stadler, M. Affinities of Phylacia and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. Mycol. Res. 2008, 112, 251–270. [Google Scholar] [CrossRef]
  42. Becker, K.; Lambert, C.; Wieschhaus, J.; Stadler, M. Phylogenetic assignment of the fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and investigation of its secondary metabolites. Microorganisms 2020, 8, 1397. [Google Scholar] [CrossRef]
  43. Kuhnert, E.; Surup, F.; Sir, E.B.; Lambert, C.; Hyde, K.D.; Hladki, A.I.; Romero, A.I.; Stadler, M. Lenormandins A—G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii sp. nov., recognised by chemotaxonomic data. Fungal Divers. 2015, 71, 165–184. [Google Scholar] [CrossRef]
  44. Dai, D.Q.; Phookamsak, R.; Wijayawardene, N.N.; Li, W.J.; Bhat, D.J.; Xu, J.C.; Taylor, J.E.; Hyde, K.D.; Chukeatirote, E. Bambusicolous fungi. Fungal Divers. 2017, 82, 1–105. [Google Scholar] [CrossRef]
  45. Bills, G.F.; González-Menéndez, V.; Martín, J.; Platas, G.; Fournier, J.; Peršoh, D.; Stadler, M. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. PLoS ONE 2012, 7, e46687. [Google Scholar] [CrossRef] [PubMed]
  46. Stadler, M.; Kuhnert, E.; Peršoh, D.; Fournier, J. The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept. Mycology 2013, 4, 5–21. [Google Scholar]
  47. Stadler, M.; Fournier, J.; Laessøe, T.; Chlebicki, A.; Lechat, C.; Flessa, F.; Rambold, G.; Peršoh, D. Chemotaxonomic and phylogenetic studies of Thamnomyces (Xylariaceae). Mycoscience 2010, 51, 189–207. [Google Scholar] [CrossRef]
  48. Stadler, M.; Fournier, J.; Beltrán-Tejera, E.; Granmo, A. The “red Hypoxylons” of the temperate and subtropical Northern Hemisphere. N. Am. Fungi 2008, 3, 73–125. [Google Scholar] [CrossRef] [Green Version]
  49. Dai, Y.C.; Yang, Z.L.; Cui, B.K.; Wu, G.; Yuan, H.S.; Zhou, L.W.; He, S.H.; Ge, Z.W.; Wu, F.; Wei, Y.L.; et al. Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 2021, 40, 770–805. [Google Scholar]
  50. Wang, K.; Chen, S.L.; Dai, Y.C.; Jia, Z.F.; Li, T.H.; Liu, T.Z.; Phurbu, D.; Mamut, R.; Sun, G.Y.; Bau, T.; et al. Overview of China’ s nomenclature novelties of fungi in the new century (2000–2020). Mycosystema 2021, 40, 822–833. [Google Scholar]
Figure 1. Phylogram of the best ML trees of the Hypoxylon species from an analysis based on multi-gene alignment of ITS-LSU-RPB2-β-tubulin. ML bootstrap support (BS) ≥ 50% and Bayesian posterior probabilities (PP) ≥ 0.95 are labelled above or below the respective branches (BS/PP). Species in bold were sequenced in this study.
Figure 1. Phylogram of the best ML trees of the Hypoxylon species from an analysis based on multi-gene alignment of ITS-LSU-RPB2-β-tubulin. ML bootstrap support (BS) ≥ 50% and Bayesian posterior probabilities (PP) ≥ 0.95 are labelled above or below the respective branches (BS/PP). Species in bold were sequenced in this study.
Jof 08 00500 g001
Figure 2. Hypoxylon damuense (holotype FCATAS 4207). (a,b) Stromata on the bark of dead wood. (c) Stromatal surface. (d,e) Stroma in vertical section showing perithecia and ostioles. (f) KOH-extractable pigments. (g) Asci in water. (h) Asci in Melzer’s reagent. (i) Ascospores in water. (j) Ascospore in 10% KOH showing germ slit. (k) Apical apparatus in Melzer’s reagent. (l) Ascospores in 10% KOH. (m,n) Ascospores under SEM. Scale bars: (a) = 1 cm; (b) = 1000 µm; (c) = 500 µm; (d,e) = 200 µm; (gl) = 10 µm; (m,n) = 5 µm.
Figure 2. Hypoxylon damuense (holotype FCATAS 4207). (a,b) Stromata on the bark of dead wood. (c) Stromatal surface. (d,e) Stroma in vertical section showing perithecia and ostioles. (f) KOH-extractable pigments. (g) Asci in water. (h) Asci in Melzer’s reagent. (i) Ascospores in water. (j) Ascospore in 10% KOH showing germ slit. (k) Apical apparatus in Melzer’s reagent. (l) Ascospores in 10% KOH. (m,n) Ascospores under SEM. Scale bars: (a) = 1 cm; (b) = 1000 µm; (c) = 500 µm; (d,e) = 200 µm; (gl) = 10 µm; (m,n) = 5 µm.
Jof 08 00500 g002
Figure 3. Hypoxylon medogense (holotype FCATAS 4061). (a,b) Stromata on the bark of dead wood. (c) Stromatal surface. (d,e) Stroma in vertical section showing perithecia and ostioles. (f) Asci in water. (g) Asci in Melzer’s reagent. (h) Apical apparatus in Melzer’s reagent. (i) KOH-extractable pigments. (j) Ascospore in 10% KOH. (k) Ascospore in water showing germ slit. (l) Ascospores in water. (m,n) Ascospore under SEM. Scale bars: (a) = 1 cm; (b) = 2 mm; (ce) = 200 µm; (fh,jl) = 10 µm; (m) = 5 µm; (n) = 8 µm.
Figure 3. Hypoxylon medogense (holotype FCATAS 4061). (a,b) Stromata on the bark of dead wood. (c) Stromatal surface. (d,e) Stroma in vertical section showing perithecia and ostioles. (f) Asci in water. (g) Asci in Melzer’s reagent. (h) Apical apparatus in Melzer’s reagent. (i) KOH-extractable pigments. (j) Ascospore in 10% KOH. (k) Ascospore in water showing germ slit. (l) Ascospores in water. (m,n) Ascospore under SEM. Scale bars: (a) = 1 cm; (b) = 2 mm; (ce) = 200 µm; (fh,jl) = 10 µm; (m) = 5 µm; (n) = 8 µm.
Jof 08 00500 g003
Figure 4. Hypoxylon zangii (holotype FCATAS 4029). (a) Stroma on the bark of dead wood. (b,c) Stromatal surface. (d,e) Stroma in vertical section showing perithecia and ostioles. (f) KOH-extractable pigments. (g,h) Asci in water. (i) Ascospores in water showing germ slit. (j) Apical apparatus in Melzer’s reagent. (k) Ascospore in 10% KOH. (l,m) Ascospores in water. (n,o) Ascospores under SEM. Scale bars: (a) = 1 cm; (b) = 1 mm; (ce) = 200 µm; (g,im) = 10 µm; (h) = 20 µm; (n) = 5 µm; (o) = 8 µm.
Figure 4. Hypoxylon zangii (holotype FCATAS 4029). (a) Stroma on the bark of dead wood. (b,c) Stromatal surface. (d,e) Stroma in vertical section showing perithecia and ostioles. (f) KOH-extractable pigments. (g,h) Asci in water. (i) Ascospores in water showing germ slit. (j) Apical apparatus in Melzer’s reagent. (k) Ascospore in 10% KOH. (l,m) Ascospores in water. (n,o) Ascospores under SEM. Scale bars: (a) = 1 cm; (b) = 1 mm; (ce) = 200 µm; (g,im) = 10 µm; (h) = 20 µm; (n) = 5 µm; (o) = 8 µm.
Jof 08 00500 g004
Table 1. GenBank accession numbers of sequences used in the multi-gene phylogenetic analyses. T and ET represent holotype and epitype specimens, respectively. Species in bold were derived from this study. N/A: not available.
Table 1. GenBank accession numbers of sequences used in the multi-gene phylogenetic analyses. T and ET represent holotype and epitype specimens, respectively. Species in bold were derived from this study. N/A: not available.
Species NameSpecimen No.LocalityGenBank Accession No. References
ITSLSURPB2β-TubulinStatus
Annulohypoxylon annulatumCBS 140775USAKU604559KY610418KY624263KX376353ET[2,11,25]
A. moriformeCBS 123579MartiniqueKX376321KY610425KY624289KX271261 [25]
A. truncatumCBS 140778USAKX376329KY610419KY624277KX376352ET[2,25]
Daldinia dennisiiCBS 114741AustraliaJX658477KY610435KY624244KC977262T[2,9,34]
D. petriniaeMUCL 49214AustriaJX658512KY610439KY624248KC977261ET[2,9,34]
Hypomontagnella barbarensisSTMA 14081ArgentinaMK131720MK131718MK135891MK135893T[35]
Hypom. monticulosaMUCL 54604French GuianaKY610404KY610487KY624305KX271273ET[2]
Hypom. submonticulosaCBS 115280FranceKC968923KY610457KY624226KC977267 [2,9]
Hypoxylon addisMUCL 52797EthiopiaKC968931N/AN/AKC977287T[9]
H. anthochroumYMJ 9MexicoJN660819N/AN/AAY951703 [13]
H. aveirenseCMG 29PortugalMN053021N/AN/AMN066636T[36]
H.baihualingenseFCATAS 477ChinaMG490190N/AN/AMH790276T[18]
H.baruenseUCH 9545PanamaMN056428N/AN/AMK908142 [32]
H. begaeYMJ 215USAJN660820N/AN/AAY951704 [13]
H. bellicolorUCH 9543PanamaMN056425N/AN/AMK908139 [32]
H. brevisporumYMJ 36Puerto RicoJN660821N/AN/AAY951705 [13]
H. carneumMUCL 54177FranceKY610400KY610480KY624297KX271270 [2]
H. cercidicolaCBS 119009FranceKC968908KY610444KY624254KX271270 [2,9]
H. chrysalidosporumFCATAS 2710ChinaOL467294OL615106OL584222OL584229T[20]
H. crocopeplumCBS 119004FranceKC968907KY610445KY624255KC977268 [2]
H. cyclobalanopsidisFCATAS 2714ChinaOL467298OL615108OL584225OL584232T[20]
H. damuenseFCATAS4207ChinaON075427ON075433ON093251ON093245TThis study
H. damuenseFCATAS4321ChinaON075428ON075434ON093252ON093246 This study
H. dieckmanniiYMJ 89041203ChinaJN979413N/AN/AAY951713 [13]
H. duraniiYMJ 85ChinaJN979414N/AN/AAY951714 [13]
H. erythrostromaYMJ 90080602ChinaJN979416N/AN/AAY951716 [13]
H. eurasiaticumMUCL 57720IranMW367851N/AMW373852MW373861 [37]
H. fendleriDSM 107927USAMK287533MK287545MK287558MK287571 [38]
H. ferrugineumCBS 141259AustriaKX090079N/AN/AKX090080 [23]
H. fragiformeMUCL 51264GermanyKM186294KM186295KM186296KM186293ET[38]
H. fraxinophilumMUCL 54176FranceKC968938N/AN/AKC977301ET[9]
H. fulvosulphureumMFLUCC 13-0589ThailandKP401576N/AN/AKP401584T[39]
H. fuscumCBS 113049FranceKY610401KY610482KY624299KX271271ET[2]
H. griseobrunneumCBS 331.73IndiaKY610402MH872399KY624300KC977303T[2,9,40]
H. guilanenseMUCL 57726IranMT214997MT214992MT212235MT212239T[15]
H. haematostromaMUCL 53301MartiniqueKC968911KY610484KY624301KC977291ET[35]
H. hinnuleumMUCL 3621USAMK287537MK287549MK287562MK287575T[38]
H. howeanumMUCL 47599GermanyAM749928KY610448KY624258KC977277 [2,9,41]
H. hypomiltumMUCL 51845GuadeloupeKY610403KY610449KY624302KX271249 [2]
H. invadensMUCL 51475FranceMT809133MT809132MT813037MT813038T[42]
H. investiensCBS 118183MalaysiaKC968925KY610450KY624259KC977270 [2,9]
H. isabellinumSTMA 10247MartiniqueKC968935N/AN/AKC977295T[9]
H. jecorinumYMJ 39MexicoJN979429N/AN/AAY951731 [13]
H.jianfengenseFACATAS845ChinaMW984546MZ029707MZ047260MZ047264T[21]
H. larissaeFACATAS844ChinaMW984548MZ029706MZ047258MZ047262T[21]
H. lateripigmentumMUCL 53304MartiniqueKC968933KY610486KY624304KC977290T[2,9]
H. lenormandiiCBS 135869CameroonKY610390KY610453KY624262KM610295 [2,43]
H. liviaeCBS 115282NorwayNR155154N/AN/AKC977265ET[9]
H. lividicolorYMJ 70ChinaJN979432N/AN/AAY951734 [13]
H. lividipigmentumYMJ 233MexicoJN979433N/AN/AAY951735 [13]
H. macrosporumYMJ 47CanadaJN979434N/AN/AAY951736 [13]
H. medogenseFCATAS4061ChinaON075425ON075431ON093249ON093243TThis study
H. medogenseFCATAS4320ChinaON075426ON075432ON093250ON093244 This study
H. musceumMUCL 53765GuadeloupeKC968926KY610488KY624306KC977280 [2,9]
H. notatumYMJ 250USAJQ009305N/AN/AAY951739 [13]
H. olivaceopigmentumDSM 10792USAMK287530MK287542MK287555MK287568T[38]
H. papillatumATCC 58729USANR155153KY610454KY624223KC977258T[2,9]
H. perforatumCBS 115281FranceKY610391KY610455KY624224KX271250 [2]
H. petriniaeCBS 114746FranceNR155185KY610491KY624279KX271274T[2]
H. pilgerianumSTMA 13455MartiniqueKY610412N/AKY624308KY624315 [2]
H. porphyreumCBS 119022FranceKC968921KY610456KY624225KC977264 [2,9]
H. pseudofendleriMFLUCC 11-0639ThailandKU940156KU863144N/AN/A [44]
H. pseudofuscum18264GermanyMW367857MW367848MW373858MW373867T[37]
H. pulicicidumCBS 122622MartiniqueJX183075KY610492KY624280JX183072T[2,45]
H. rickiiMUCL 53309MartiniqueKC968932KY610416KY624281KC977288ET[2]
H. rubiginosumMUCL 52887GermanyKC477232KY610469KY624266KY624311ET[2,46]
H. rutilumYMJ 181FranceN/AN/AN/AAY951752 [13]
H. samuelsiiMUCL 51843GuadeloupeKC968916KY610466KY624269KC977286ET[2,9]
H. sheariiYMJ 29MexicoEF026142N/AN/AAY951753 [13]
H. spegazzinianumSTMA 14082ArgentinaKU604573N/AN/AKU604582T[11]
H. sporistriatatunicumUCH 9542PanamaMN056426N/AN/AMK908140T[32]
H. subgilvumYMJ 88113007ChinaJQ009315N/AN/AAY951755 [13]
H. sublenormandiiJF 13026Sri LankaKM610291N/AN/AKM610303T[43]
H. texenseDSM 107933USAMK287536MK287548MK287561MK287574T[38]
H. ticinenseCBS 115271FranceJQ009317KY610471KY624272AY951757 [2,13]
H. trugodesMUCL 54794Sri LankaKF234422NG066380KY624282KF300548ET[2,9]
H. ulmophilumYMJ 350RussiaJQ009320N/AN/AAY951760 [13]
H. vogesiacumCBS 115273FranceKC968920KY610417KY624283KX271275 [2]
H. wujiangenseGMBC0213ChinaMT568854MT568853MT585802MT572481T[19]
H. wuzhishanenseFCATAS2708ChinaOL467292OL615104OL584220OL584227T[20]
H. zangiiFCATAS4029ChinaON075423ON075429ON093247ON093241TThis study
H. zangiiFCATAS4319ChinaON075424ON075430ON093248ON093242 This study
Jackrogersella cohaerensCBS 119126GermanyKY610396KY610497KY624270KY624314 [2]
J. multiformisCBS 119016GermanyKC477234KY610473KY624290KX271262ET[2,9]
Pyrenopolyporus hunteriMUCL 52673Ivory CoastKY610421KY610472KY624309KU159530ET[2,25]
P. laminosusMUCL 53305MartiniqueKC968934KY610485KY624303KC977292T[2,9]
P. nicaraguensisCBS 117739Burkina FasoAM749922KY610489KY624307KC977272 [2,9,41]
Rhopalostroma angolenseCBS 126414Ivory CoasKY610420KY610459KY624228KX271277 [2]
Thamnomyces dendroideaCBS 123578French GuianaFN428831KY610467KY624232KY624313T[2,47]
Xylaria hypoxylonCBS 122620SwedenKY610407KY610495KY624231KX271279ET[2]
Biscogniauxia nummulariaMUCL 51395FranceKY610382KY610427KY624236KX271241 [2]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Song, Z.-K.; Zhu, A.-H.; Liu, Z.-D.; Qu, Z.; Li, Y.; Ma, H.-X. Three New Species of Hypoxylon (Xylariales, Ascomycota) on a Multigene Phylogeny from Medog in Southwest China. J. Fungi 2022, 8, 500. https://doi.org/10.3390/jof8050500

AMA Style

Song Z-K, Zhu A-H, Liu Z-D, Qu Z, Li Y, Ma H-X. Three New Species of Hypoxylon (Xylariales, Ascomycota) on a Multigene Phylogeny from Medog in Southwest China. Journal of Fungi. 2022; 8(5):500. https://doi.org/10.3390/jof8050500

Chicago/Turabian Style

Song, Zi-Kun, An-Hong Zhu, Zhen-Dong Liu, Zhi Qu, Yu Li, and Hai-Xia Ma. 2022. "Three New Species of Hypoxylon (Xylariales, Ascomycota) on a Multigene Phylogeny from Medog in Southwest China" Journal of Fungi 8, no. 5: 500. https://doi.org/10.3390/jof8050500

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop