Next Article in Journal
SCUBA Diving in Adult Congenital Heart Disease
Previous Article in Journal
The Outcomes of Coronary Artery Bypass Surgery after 18 Months—Is There an Influence of the Initial Right Ventricle Diastolic Dysfunction?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Inflammation and Heart Failure: Searching for the Enemy—Reaching the Entelechy

by
Ioannis Paraskevaidis
1,2,
Dimitrios Farmakis
3,*,
Georgios Papingiotis
4 and
Elias Tsougos
2
1
Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
2
6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
3
Medical School, University of Cyprus, 2029 Nicosia, Cyprus
4
Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
*
Author to whom correspondence should be addressed.
J. Cardiovasc. Dev. Dis. 2023, 10(1), 19; https://doi.org/10.3390/jcdd10010019
Submission received: 15 November 2022 / Revised: 22 December 2022 / Accepted: 29 December 2022 / Published: 4 January 2023

Abstract

:
The pivotal role of inflammation in the pathophysiology of heart-failure (HF) development and progression has long been recognized. High blood levels of pro-inflammatory and inflammatory markers are present and associated with adverse outcomes in patients with HF. In addition, there seems to be an interrelation between inflammation and neurohormonal activation, the cornerstone of HF pathophysiology and management. However, clinical trials involving anti-inflammatory agents have shown inconclusive or even contradictory results in improving HF outcomes. In the present review, we try to shed some light on the reciprocal relationship between inflammation and HF in an attempt to identify the central regulating factors, such as inflammatory cells and soluble mediators and the related inflammatory pathways as potential therapeutic targets.

1. Introduction

Heart failure is a common syndrome in western communities and despite the advances of the last decades, the rates of morbidity and mortality remain high [1]. Although the pathophysiology of this entity has been thoroughly investigated, many questions remain unanswered. In addition to the activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, which are considered the cornerstones of the syndrome’s pathophysiology and management, the role of inflammation has been widely discussed for many years. There further seems to be an interrelation between neurohormonal activation on one hand and inflammation and free radical production on the other. Indeed, many scientific reports suggest the reciprocal relationship of heart-failure syndrome and inflammation. This has been documented by the presence of high blood levels of pro-inflammatory and inflammatory indexes and their association with adverse outcomes in patients with heart failure [2,3,4]. Thus, the pivotal role of inflammation in the pathophysiology of heart-failure development and progression is well recognized. Moreover, there is solid evidence supporting the hypothesis that inflammation and redox disorders are linked with arrhythmia burden [5]. However, anti-inflammatory therapeutic modalities have not yet had a significant impact in cardiovascular medicine since the results of the clinical studies have been ambiguous. The Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) and the Colchicine Cardiovascular Outcomes Trial (COLCOT) were the first two randomized clinical trials that showed promising results in the prevention of cardiovascular medicine [6,7]. However, there are several things to be addressed in the direction of dealing with inflammation in cardiovascular health and the clinical implementation of anti-inflammatory therapies. It seems that early initiation of anti-inflammation therapy has a beneficial effect on the heart [8]. Have we really understood the nature of this reciprocity? Is it possible that there is a central mediator, a “master key” that regulates both conditions and is not yet well defined? It would therefore be of interest to attempt a search for this ‘master key’ that might regulate the relationship between inflammation and heart failure, further providing a potential therapeutic target.

2. Inflammation

Inflammation is defined as the response of the immune system to a variety of stimuli that might be infectious or tissue harmful. Regardless of the initial insult, there is a series of programmed sequelae depending on the ability of the immune system to eliminate the ‘enemy’ and restore the tissues’ normal structure and function. The inflammatory process can be divided, without clearly defined and therefore overlapping borders, into three sequential phases, including the acute phase, the intermediate and the restore/repair phase. However, an alteration of this physiological sequence may occur, leading potentially to a different homeostatic status, namely a chronic phase of inflammation, which might evolve into a catastrophic pathway (Figure 1).
In the early phase, there is a stepwise process that includes inducers (exogenous, endogenous), sensors (pattern recognition receptors), mediators (leucocytes, cytokines etc.) and effectors (tissue targets; Figure 2 and Figure 3). In this early phase of inflammation, there is an activation of the bone marrow and splenic cells, along with the activation of circulating blood cells (leucocytes, mast cells, dendritic cells, etc.) [9]. At the same time, T-naïve lymphocytes are called to produce different pre-inflammatory substances that might be either protective [e.g., interleukin (IL)-10] or harmful (e.g., IL-6, 18, 1b) [9]. The target of this first phase is to eliminate necrotic tissue by activating protection-elimination mechanisms such as autophagy, mitophagy, degradation, fragmentation, etc., aiming at structural restoration and repair. Along with the structural restoration/repair effort, there is neurohormonal activation (renin-angiotensin-aldosterone system, sympathetic nervous system, natriuretic peptide system) that is involved in order to maintain cardiac output, tissue perfusion and oxygenation and hence to support the basic metabolic needs of peripheral tissues.
The end of this early phase signals the beginning of the intermediate and the ensuing repair phase, the latest identified by the up-coming interaction between multicellular protein expression, specialized matrix-protein activation (fibronectin, osteopontin, proteoglycans, etc.) along with cellular sources of participation (cardiomyocytes, fibroblasts, macrophages, vascular cells, structural extracellular matrix), thus leading to the regulation of inflammation and healing response [10]. To do so, the homeostatic process has to proceed to the final maturation phase, in order to restore cardiac function and to satisfy the metabolic needs of peripheral tissues. In the case of failed or deviated maturation, heart failure emerges (Figure 1 and Figure 3) [11]. At this very crucial point, there may be a down-regulation of lipid mediators (lipoxins, resolvins, protectins, etc.) [12,13] and an over-activation of toll-like receptors [14], leading to a new homeostatic status, signaling the chronicity of the homeostatic distortion [15,16,17], thus accentuating cardiac adverse remodeling. As far as this is true, the emerging question, from this point and beyond, is whether the initial index event or the subsequent homeostatic imbalance produces the condition that might be named the real ‘enemy’. Do we face the birth of a self-destruction mechanism? Has the homeostatic process reached its entelechy? There is a need for further investigation in these potential disease-relevant pathways of inflammation and homeostasis. Indeed, if the body fails to eliminate the enemy, new characteristics of inflammation emerge, signaling a new homeostatic status. A status that is dynamic, involves many feedback systems and adapts to the internal environment. Thus, we face a step forward of the homeostasis that passes from the acute face to a different type of adaptation indicating chronic inflammation (Figure 1) [18]. Several reports suggest that passing from the acute to chronic phase is a key step, beyond which heart failure manifests [19,20,21,22,23].

2.1. Following a Self-Catastrophic Path—Missing the Balance

Following an acute index event, the body, as a whole, tries to retain its homeostatic status. If the cause is of minimal aggressiveness, then the homeostatic status remains within normality by using low adaptation mechanisms. However, in the case of a major index event, the body tries to maintain homeostatic status by any means in order to limit the cause, to heal, resolve and ultimately to repair the tissues’ structure and function. In this respect, when a severe disturbance of homeostasis occurs, then the inflammatory process is activated as the acute-intermediaterestore phase, followed, in case of failure of the above-described sequence, by the chronic phase. Regardless of the cause of a sterile inflammation, there is tissue damage and consequently a release of intracellular (nuclear and/or cytosolic proteins, etc.) and extracellular (hyaluronic acid, fibronectin, etc.) products (Figure 3). The release of these proteins activates a series of injury-associated molecular pathways through cardiac receptor signaling. At the beginning, release of inflammatory cytokines, neutrophil aggregation and activation, release of proteases and ROS production occur. Failure of this initial reaction to restore tissue integrity activates a forward step of inflammation, in which the toll and nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) are involved with further accumulation and activation of pro-inflammatory mediators. At this crucial phase, it is very important to maintain equilibrium between protein degradation (cysteine-protease system, ubiquitin proteasome, autophagy, etc.) and protein synthesis. If this equilibrium fails, apoptogenic mediators, misfolded proteins and damaged mitochondria lead to the phase of chronic inflammation (Figure 4). The NLRs, joined by caspase-activity complexes, form the inflammasome (Figure 3) that further stimulates the production of IL-1b and IL-18 that affect left ventricular systolic function, alter mitochondrial function and decrease sympathetic activity [24,25].
The role of NLRP3 inflammasome (NLR family, pyrin domain-containing 3) in heart failure is well documented [26,27,28]. NLRP3 inflammasome sets off the maturation of proinflammatory cytokines (IL-1β and IL-18) to initiate the inflammatory response and plays a key role in modulating chronic inflammation, altering the physiological adaptation of cardiomyocyte and leading to heart failure progression [26]. Recent data showed that two other inflammasomes seem to be involved in the inflammatory process in failing hearts. Inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) have been found to be over-expressed and activated in human-heart tissues as well in vivo animal models. These two other inflammasomes may contribute to the chronic inflammation in heart failure and also a therapeutic target [27]. The inflammasome also defines the interplay between innate and adaptive responses, paving the way toward the development of heart failure. Furthermore, the involvement of the immune process (effect of T and B cells) promotes chronicity according to the self-antigen hypothesis, the production of autoantibodies and tissue fibrosis, suggesting a role for autoimmune mechanisms [22,29]. This self-protection/elimination process integrates the endogenous inducers, cell-, tissue-, plasma- and extracellular matrixderived signals and might develop in an uncontrolled manner. Any injured myocardial cells can maintain a basal, stressed, apoptotic or necrotic state. If the amount of injured tissue is enormous and overpasses the homeostatic capacity to restore cell-tissue normality, then the detrimental chronic inflammatory phase develops [30]. On the other hand, the successful restoration of homeostasis prevents the harmful effect of chronic inflammation [31,32].

2.2. Homeostatic Mechanisms

To achieve homeostasis, a balanced activity between protein synthesis-degradation and organelle capacity to eliminate apoptogenic proteins and damaged mitochondria should be activated and well-functioning. If this is not the case, then the cardiomyocyte death along with extra-cellular cardiac matrix dysregulation, lead to myocardial cellular dysfunction and ultimately to heart failure (Figure 4). In other words, the body tries to protect itself from itself. Indeed, when mitochondrial morphology and function are disturbed (lack of fission, fusion and hence mitophagy), mitochondrial DNA is released into cytosol, and along with the misfolded proteins and the activation of the mitochondria-associated endoplasmic reticulum membranes (MAMs), promotes the enhancement of a self-destruction process, that might involve the entire body [33,34]. In case of a cardiac harmful event, there is an activation of danger-associated molecular patterns (DAMP) released by the nucleus (e.g., DNA, RNA), the mitochondria (e.g., DNA) and the cytosol (e.g., RNA). In this respect, regardless of the initial triggering event (pressure overload, volume overload, myocardial infarction, etc.), there is an activation of an inflammatory process associated with the harmful release of cell proteins along with the activation of the aforementioned self-elimination/protection mechanism. Thus, if there is an imbalance of this sequel, then the chronic inflammation is switched on, and in case of an uncontrolled process, heart failure develops. In other words, it seems that if the homeostatic mechanism (degradation system, autophagy, etc.) is successful, inflammation is limited. On the other hand, if the homeostatic protective mechanism cannot control and limit the harmful events, the self-catastrophic pathway promotes cardiomyocyte death and hence heart failure. The inevitable question that arises is whether the cause of heart failure is inflammation per se or the incapacity of the homeostatic protective mechanisms.
Damaged and un-repaired mitochondria are the source of reactive oxygen species, and along with mitochondrial DNA release, generate proinflammatory cytokines and the activation of inflammasome, promoting inflammation chronicity. This leads to an increase of the rate and amount of myocardial cell death and hence to the development of heart failure. Although the role of inflammasome (and its subfamilies) is not very well understood, it appears that its formation and activation have dual contradictory roles. The first one is to eliminate the ‘enemy’ and restore the normal anatomy and function of the tissue, while the second one, under certain circumstances, could be harmful by distorting the normal activity, which is to avoid chronic inflammation and to promote the protective mechanisms of homeostasis; in other words, to recognize the released material as foreign and to attack these unrecognized substances in order to ‘protect’ the cell and consequently the normal anatomy and function of the tissue [35,36].
It should be stressed that cardiomyocyte homeostasis as described above is different from heart (organ) and body homeostasis. The heart as an organ tries to adapt to stressors and noxious agents mediated by inflammation and redox disorders with an effort to maintain its function in the human body.

2.3. Organelle Communication

The normal function of a cell depends mainly on the structural functional integrity of its constituents, the organelles. The endoplasmic reticulum (ER) is an organelle that regulates important intracellular function, including protein synthesis, calcium transportation, etc. In the case of an index event, the ER is stressed and tries to maintain normality through homeostasis. In fact, ER-associated degradation, the unfolded protein response, reticulophagy, proteostasis, autophagy, etc., are activated in order to maintain normality [37,38,39]. In addition, there is communication with the other organelles, lysosomes, mitochondria, plasma membrane, etc., thus facilitating the normal functions of the cell, including lipid metabolism [40], calcium homeostasis [37,41], ion exchange [40], etc. However, if the index event surpasses the capacity of the cell to retain homeostasis or if ER homeostatic properties are impaired, then the cell-defending mechanisms fail, thus leading to a possible harmful path [42,43,44].
Although there is vast communication among the organelles, it seems that the most important one is between the ER and mitochondria [45,46]. Indeed, these two organelles form the ER-mitochondria contacts (ERMCs) [47], constituted by both lipid and protein complexes [48]. Studies have demonstrated that ERMCs are involved in the progression of several cardiovascular diseases [40,49,50,51,52,53], because they are involved in several biological processes, such as calcium homeostasis, apoptosis, autophagy, protein synthesis and folding, inflammation etc. [54,55,56,57,58,59,60,61]. After an index event, misfolded proteins are accumulated in the ER promoting the activation of the unfolded protein response in order to maintain proteostasis. In the case of failure of the misfolded protein repair, or of a large amount of accumulated unfolded proteins, a vicious circle begins [62,63]. This vicious circle is characterized by the loss of homeostatic capacity, promoting apoptosis. However, ER activation facilitates steroid synthesis, ER stress, phospholipid metabolism in mitochondria, autophagy and apoptosis [63], and under certain circumstances can increase transcription-factor expression (ATF) 6 and 4 and promote apoptosis either alone or in cooperation with mitochondria [64,65,66]. A self-catastrophic sequence thus begins. Indeed, when the collaboration between these two organelles is impaired, a progression to advanced heart failure may occur [67,68]. In fact, it has been stated that uncontrolled ER stress provokes distortion of myocardial architecture, alteration of mitochondrial metabolism and function, leading to an energy deficiency, along with a reduction of calcium transfer and consequently impairment of cardiac contractility and relaxation, hence heart failure [69,70].

2.4. Targeting Inflammation, Oxidative Stress and Mitochondrial Dysfunction

Regardless of whether the inflammation is the cause or the consequence of heart failure, it remains an important factor and a potential therapeutic target [71]. Although, several studies have been conducted in order to investigate the role of anti-inflammatory therapies, the results have hitherto been poor or controversial [72]. Notably, anti-cytokine therapies were tested in the ATTACH and RENEWAL studies with poor results [73,74]. On the other hand, the CANTOS trial has shown that the inhibition of IL-1b with canakinumab was followed by a significant trend for a dose-dependent reduction in the incidence of the composite endpoint of hospitalization for heart failure and heart failure-related mortality [75]. However, this was not the case in other studies, showing that after IL-1b inhibition with canakinumab, substantial residual inflammatory risk remained, related to both IL-18 and IL-6 [76]. Other studies based on anti-inflammatory therapies have been published [77,78,79], among which those using either immunomodulation [80] or anti-inflammatory drugs [81,82,83], showing overall poor results. The same was true when N-terminal pro-B-type natriuretic peptide (NT-pro BNP) or high-sensitivity C-reactive protein (hs-CRP) were used as endpoints [84,85].
These data support the need for a better understanding of the inflammatory process. As it has been pointed out, important inflammatory mediators are released after the activation of the inflammasome, suggesting that the inflammasome could be a therapeutic target. Since the inflammasome is part of homeostatic mechanism, one could speculate that homeostatic controlled response is the master key to investigate and target.
Regarding oxidative stress, its role in pathogenesis of heart disease and heart failure has been thoroughly studied [86,87]. The clinical studies examining the effects of several anti-oxidative strategies have not shown the beneficial effects that preclinical studies described [87]; however, innovative antioxidant perspectives are worth being evaluated. Targeting glutamyl cycle or NAD+ production, the endogenous antioxidant capacity of the cardiomyocyte may be of interest in targeting new treatment modalities in heart-failure patients [88].
As far as mitochondrial dysfunction is concerned as an approach for therapy to improve cardiac function directly, several pathways have been marked as potential pharmacologic targets, such as blocking increased reactive oxygen species, blocking mitochondrial permeability transition pores (MPTP), improving the efficiency of electron-transport complexes and regulation of mitochondrial ion homeostasis [89]. Different molecules (mitoquinone, elamipretide, CGP-37157, cariporide, etc.) have been proposed as therapeutic agents targeting each of the possible above-mentioned pathways; however, further research is warranted in bioenergetic insufficiency in heart failure [90].
Leaving apart all these pharmacological targets, we have to consider that in patients with heart failure, exercise-based approaches have been shown to improve quality of life and functional capacity and to reduce hospital admissions [1]. The pivotal anti-inflammatory role of exercise training has been suggested to be a large number of mediators including macrophages [91,92,93,94,95,96,97]. In contrast to pharmacological interventions, exercise training ameliorates the inflammatory profile, suggesting the capacity of the body to restore the deviation. Is this because we pharmacologically target the inflammasome products rather than the inflammasome per se? In addition to exercise, neuromodulation with low-level transcutaneous vagus nerve stimulation in a pilot randomized clinical trial showed an improvement in cardiac function and in inflammatory cytokines profile in patients with heart failure with preserved ejection fraction [98].
Several studies have shown no promising results even when they used NLRP3 inhibitors [99,100,101,102,103,104,105] or caspase-1 inhibition [106,107,108,109,110,111]. Furthermore, other studies using inhibition of other subunits of the inflammasomes NLRP 1, 6-7, 12, NAIP, NLRC4, and AIM2 show their unknown role in the inflammation process [112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129].
Do we have to suppress inflammasome activity? Is the inflammasome the corner stone of the process? How can we suggest depressing the first defensive mechanism? Shortly, what must be the therapeutic goal—o target the mediators or the inflammasome products? Or do we have to somehow find the way and the tools to re-organize the normal homeostatic status?
Data from the A systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure (BIOSTAT-CHF) study cohort have introduced some potential therapeutic targets, such as the blockage of inducible costimulator ligand (ICOSLG), TNF superfamily member-14 (TNFSF14), CD28, CD70 and the enhancement of interferon-γ production [130].

3. Conclusions

Inflammation in heart failure is a very complex process and many factors, some of them totally unknown, are involved. It seems that on the way to finding out the interaction between inflammation and heart failure, we might miss the real ‘enemy’ that is the deranged and malfunctioning homeostatic properties. A better understanding of inflammatory pathways in cardiomyocyte damage would allow for potential therapeutic targets, pharmacological and non-pharmacological. The research continues; the questions have been set out and the long way towards entelechy has begun.

Author Contributions

Conceptualization, I.P. and D.F.; validation, G.P. and E.T.; investigation, I.P., G.P. and D.F.; data curation, I.P. and D.F.; writing—original draft preparation, I.P. and D.F.; writing—review and editing, G.P. and E.T.; supervision, E.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
  2. Torre-Amione, G.; Kapadia, S.; Lee, J.; Durand, J.B.; Bies, R.D.; Young, J.B.; Mann, D.L. Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors in the Failing Human Heart. Circulation 1996, 93, 704–711. [Google Scholar] [CrossRef] [PubMed]
  3. Vasan, R.S.; Sullivan, L.M.; Roubenoff, R.; Dinarello, C.A.; Harris, T.; Benjamin, E.J.; Sawyer, D.B.; Levy, D.; Wilson, P.W.F.; D’Agostino, R.B. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: The Framingham Heart Study. Circulation 2003, 107, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
  4. Edelmann, F.; Holzendorf, V.; Wachter, R.; Nolte, K.; Schmidt, A.G.; Kraigher-Krainer, E.; Duvinage, A.; Unkelbach, I.; Düngen, H.-D.; Tschöpe, C.; et al. Galectin-3 in patients with heart failure with preserved ejection fraction: Results from the Aldo-DHF trial. Eur. J. Heart Fail. 2015, 17, 214–223. [Google Scholar] [CrossRef] [PubMed]
  5. Andelova, K.; Bacova, B.S.; Sykora, M.; Hlivak, P.; Barancik, M.; Tribulova, N. Mechanisms underlying antiarrhythmic properties of cardioprotective agents impacting inflammation and oxidative stress. Int. J. Mol. Sci. 2022, 23, 1416. [Google Scholar] [CrossRef]
  6. Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
  7. Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
  8. Bouabdallaoui, N.; Tardif, J.-C.; Waters, D.D.; Pinto, F.J.; Maggioni, A.P.; Diaz, R.; Berry, C.; Koenig, W.; Lopez-Sendon, J.; Gamra, H.; et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 2020, 41, 4092–4099. [Google Scholar] [CrossRef]
  9. Zhang, Y.; Bauersachs, J.; Langer, H.F. Immune mechanisms in heart failure. Eur. J. Heart Fail. 2017, 19, 1379–1389. [Google Scholar] [CrossRef] [Green Version]
  10. Frangogiannis, N.G.; Kovacic, J.C. Extracellular matrix in ischemic heart disease, part 4/4: JACC focus seminar. J. Am. Coll. Cardiol. 2020, 75, 2219–2235. [Google Scholar] [CrossRef]
  11. Prabhu, S.D.; Frangogiannis, N.G. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef]
  12. Serhan, C.N.; Savill, J. Resolution of inflammation: The beginning programs the end. Nat. Immunol. 2005, 6, 1191–1197. [Google Scholar] [CrossRef]
  13. Serhan, C.N. Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 2007, 25, 101–137. [Google Scholar] [CrossRef] [Green Version]
  14. Park, J.S.; Gamboni-Robertson, F.; He, Q.; Svetkauskaite, D.; Kim, J.-Y.; Strassheim, D.; Sohn, J.-W.; Yamada, S.; Maruyama, I.; Banerjee, A.; et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 2006, 290, C917–C924. [Google Scholar] [CrossRef]
  15. Jiang, D.; Liang, J.; Fan, J.; Yu, S.; Chen, S.; Luo, Y.; Prestwich, G.D.; Mascarenhas, M.M.; Garg, H.G.; Quinn, D.A.; et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 2005, 11, 1173–1179. [Google Scholar] [CrossRef]
  16. Taylor, K.R.; Trowbridge, J.M.; Rudisill, J.A.; Termeer, C.C.; Simon, J.C.; Gallo, R.L. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem. 2004, 279, 17079–17084. [Google Scholar] [CrossRef] [Green Version]
  17. Teder, P.; Vandivier, R.W.; Jiang, D.; Liang, J.; Cohn, L.; Puré, E.; Henson, P.M.; Noble, P.W. Resolution of lung inflammation by CD44. Science 2002, 296, 155–158. [Google Scholar] [CrossRef]
  18. Drayton, D.L.; Liao, S.; Mounzer, R.H.; Ruddle, N.H. Lymphoid organ development: From ontogeny to neogenesis. Nat. Immunol. 2006, 7, 344–353. [Google Scholar] [CrossRef]
  19. Mallat, Z.; Heymes, C.; Corbaz, A.; Logeart, D.; Alouani, S.; Cohen-Solal, A.; Seidler, T.; Hasenfuss, G.; Chvatchko, Y.; Shah, A.M.; et al. Evidence for altered interleukin (IL)-18 pathway in human heart failure. FASEB J. 2004, 18, 1752–1754. [Google Scholar] [CrossRef]
  20. Proctor, M.J.; McMillan, D.C.; Horgan, P.G.; Fletcher, C.D.; Talwar, D.; Morrison, D.S. Systemic inflammation predicts all-cause mortality: A glasgow inflammation outcome study. PLoS ONE 2015, 10, e0116206. [Google Scholar] [CrossRef]
  21. Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
  22. Youker, K.A.; Assad-Kottner, C.; Cordero-Reyes, A.M.; Trevino, A.R.; Flores-Arredondo, J.H.; Barrios, R.; Fernandez-Sada, E.; Estep, J.D.; Bhimaraj, A.; Torre-Amione, G. High proportion of patients with end-stage heart failure regardless of aetiology demonstrates anti-cardiac antibody deposition in failing myocardium: Humoral activation, a potential contributor of disease progression. Eur. Heart J. 2014, 35, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
  23. Castillo, E.C.; Vázquez-Garza, E.; Yee-Trejo, D.; García-Rivas, G.; Torre-Amione, G. What is the role of the inflammation in the pathogenesis of heart failure? Curr. Cardiol. Rep. 2020, 22, 139. [Google Scholar] [CrossRef] [PubMed]
  24. DeLuca, G.; Cavalli, G.; Campochiaro, C.; Tresoldi, M.; Dagna, L. Myocarditis: An interleukin-1-mediated disease? Front. Immunol. 2018, 9, 1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Toldo, S.; Kannan, H.; Bussani, R.; Anzini, M.; Sonnino, C.; Sinagra, G.; Merlo, M.; Mezzaroma, E.; De-Giorgio, F.; Silvestri, F.; et al. Formation of the inflammasome in acute myocarditis. Int. J. Cardiol. 2014, 171, e119–e121. [Google Scholar] [CrossRef] [PubMed]
  26. Butts, B.; Gary, R.A.; Dunbar, S.B.; Butler, J. The importance of NLRP3 inflammasome in heart failure. J. Card. Fail. 2015, 21, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Onódi, Z.; Ruppert, M.; Kucsera, D.; Sayour, A.A.; Tóth, V.E.; Koncsos, G.; Novák, J.; Brenner, G.B.; Makkos, A.; Baranyai, T.; et al. AIM2-driven inflammasome activation in heart failure. Cardiovasc. Res. 2021, 117, 2639–2651. [Google Scholar] [CrossRef]
  28. Wu, J.; Dong, E.; Zhang, Y.; Xiao, H. The role of the inflammasome in heart failure. Front. Physiol. 2021, 12, 709703. [Google Scholar] [CrossRef]
  29. Adamo, L.; Rocha-Resende, C.; Lin, C.-Y.; Evans, S.; Williams, J.; Dun, H.; Li, W.; Mpoy, C.; Andhey, P.S.; Rogers, B.E.; et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight 2020, 5, e134700. [Google Scholar] [CrossRef] [Green Version]
  30. Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
  31. Kologrivova, I.; Shtatolkina, M.; Suslova, T.; Ryabov, V. Cells of the immune system in cardiac remodeling: Main players in resolution of inflammation and repair after myocardial infarction. Front. Immunol. 2021, 12, 664457. [Google Scholar] [CrossRef] [PubMed]
  32. Isobe, Y.; Kato, T.; Arita, M. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation. Front. Immunol. 2012, 3, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Heineke, J.; Molkentin, J.D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 2006, 7, 589–600. [Google Scholar] [CrossRef]
  34. Stachowski, M.J.; Holewinski, R.J.; Grote, E.; Venkatraman, V.; Van Eyk, J.E.; Kirk, J.A. Phospho-Proteomic Analysis of Cardiac Dyssynchrony and Resynchronization Therapy. Proteomics 2018, 18, e1800079. [Google Scholar] [CrossRef] [PubMed]
  35. Henao-Mejia, J.; Elinav, E.; Strowig, T.; Flavell, R.A. Inflammasomes: Far beyond inflammation. Nat. Immunol. 2012, 13, 321–324. [Google Scholar] [CrossRef]
  36. Missiroli, S.; Patergnani, S.; Caroccia, N.; Pedriali, G.; Perrone, M.; Previati, M.; Wieckowski, M.R.; Giorgi, C. Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis. 2018, 9, 329. [Google Scholar] [CrossRef] [Green Version]
  37. Chen, Y.-J.; Quintanilla, C.G.; Liou, J. Recent insights into mammalian ER–PM junctions. Curr. Opin. Cell Biol. 2019, 57, 99–105. [Google Scholar] [CrossRef]
  38. Hwang, J.; Qi, L. Quality control in the endoplasmic reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem. Sci. 2018, 43, 593–605. [Google Scholar] [CrossRef]
  39. Loi, M.; Molinari, M. Mechanistic insights in recov-ER-phagy: Micro-ER-phagy to recover from stress. Autophagy 2020, 16, 385–386. [Google Scholar] [CrossRef]
  40. Zhou, H.; Wang, S.; Hu, S.; Chen, Y.; Ren, J. ER–mitochondria microdomains in cardiac ischemia–reperfusion injury: A fresh perspective. Front. Physiol. 2018, 9, 755. [Google Scholar] [CrossRef]
  41. Guido, D.; Demaurex, N.; Nunes, P. Junctate boosts phagocytosis by recruiting endoplasmic reticulum Ca2+ stores near phagosomes. J. Cell Sci. 2015, 128, 4074–4082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Ren, J.; Bi, Y.; Sowers, J.R.; Hetz, C.; Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 2021, 18, 499–521. [Google Scholar] [CrossRef] [PubMed]
  43. Pastor-Cantizano, N.; Ko, D.K.; Angelos, E.; Pu, Y.; Brandizzi, F. Functional diversification of ER stress responses in Arabidopsis. Trends Biochem. Sci. 2020, 45, 123–136. [Google Scholar] [CrossRef]
  44. Lebeaupin, C.; Vallée, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 2018, 69, 927–947. [Google Scholar] [CrossRef]
  45. Nunnari, J.; Suomalainen, A. Mitochondria: In sickness and in health. Cell 2012, 148, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
  46. Reddish, F.N.; Miller, C.L.; Gorkhali, R.; Yang, J.J. Calcium dynamics mediated by the endoplasmic/sarcoplasmic reticulum and related diseases. Int. J. Mol. Sci. 2017, 18, 1024. [Google Scholar] [CrossRef] [Green Version]
  47. Szymański, J.; Janikiewicz, J.; Michalska, B.; Patalas-Krawczyk, P.; Perrone, M.; Ziółkowski, W.; Duszyński, J.; Pinton, P.; Dobrzyń, A.; Więckowski, M.R. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int. J. Mol. Sci. 2017, 18, 1576. [Google Scholar] [CrossRef] [Green Version]
  48. Annunziata, I.; Sano, R.; d’Azzo, A. Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death Dis. 2018, 9, 328. [Google Scholar] [CrossRef] [Green Version]
  49. Gao, P.; Yan, Z.; Zhu, Z. Mitochondria-associated endoplasmic reticulum membranes in cardiovascular diseases. Front. Cell Dev. Biol. 2020, 8, 604240. [Google Scholar] [CrossRef]
  50. Silva-Palacios, A.; Zazueta, C.; Pedraza-Chaverri, J. ER membranes associated with mitochondria: Possible therapeutic targets in heart-associated diseases. Pharmacol. Res. 2020, 156, 104758. [Google Scholar] [CrossRef]
  51. Yang, M.; Li, C.; Yang, S.; Xiao, Y.; Xiong, X.; Chen, W.; Zhao, H.; Zhang, Q.; Han, Y.; Sun, L. Mitochondria-associated ER membranes–the origin site of autophagy. Front. Cell Dev. Biol. 2020, 8, 595. [Google Scholar] [CrossRef] [PubMed]
  52. Gomez-Suaga, P.; Paillusson, S.; Stoica, R.; Noble, W.; Hanger, D.P.; Miller, C.C.J. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol. 2017, 27, 371–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Kornmann, B. The molecular hug between the ER and the mitochondria. Curr. Opin. Cell Biol. 2013, 25, 443–448. [Google Scholar] [CrossRef] [PubMed]
  54. Lee, S.; Min, K.-T. The interface between ER and mitochondria: Molecular compositions and functions. Mol. Cells 2018, 41, 1000–1007. [Google Scholar]
  55. Kho, C.; Lee, A.; Hajjar, R.J. Altered sarcoplasmic reticulum calcium cycling—Targets for heart failure therapy. Nat. Rev. Cardiol. 2012, 9, 717–733. [Google Scholar] [CrossRef] [Green Version]
  56. Chan, D.C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 235–259. [Google Scholar] [CrossRef] [Green Version]
  57. Guerriero, C.J.; Brodsky, J.L. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol. Rev. 2012, 92, 537–576. [Google Scholar] [CrossRef] [Green Version]
  58. Bagur, R.; Hajnóczky, G. Intracellular Ca2+ sensing: Its role in calcium homeostasis and signaling. Mol. Cell 2017, 66, 780–788. [Google Scholar] [CrossRef] [Green Version]
  59. Klecker, T.; Böckler, S.; Westermann, B. Making connections: Interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 2014, 24, 537–545. [Google Scholar] [CrossRef]
  60. Senft, D.; Ronai, Z.A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 2015, 40, 141–148. [Google Scholar] [CrossRef] [Green Version]
  61. Rosati, E.; Sabatini, R.; Rampino, G.; DeFalco, F.; DiIanni, M.; Falzetti, F.; Fettucciari, K.; Bartoli, A.; Screpanti, I.; Marconi, P. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood 2010, 116, 2713–2723. [Google Scholar] [CrossRef]
  62. Oakes, S.A.; Papa, F.R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 2015, 10, 173–194. [Google Scholar] [CrossRef] [Green Version]
  63. Wang, Y.; Zhang, X.; Wen, Y.; Li, S.; Lu, X.; Xu, R.; Li, C. Endoplasmic reticulum-mitochondria contacts: A potential therapy target for cardiovascular remodeling-associated diseases. Front. Cell Dev. Biol. 2021, 9, 774989. [Google Scholar] [CrossRef]
  64. Burkewitz, K.; Feng, G.; Dutta, S.; Kelley, C.A.; Steinbaugh, M.; Cram, E.J.; Mair, W.B. Atf-6 regulates lifespan through ER-mitochondrial calcium homeostasis. Cell Rep. 2020, 32, 108125. [Google Scholar] [CrossRef]
  65. Verfaillie, T.; Rubio, N.; Garg, A.D.; Bultynck, G.; Rizzuto, R.; Decuypere, J.-P.; Piette, J.; Linehan, C.; Gupta, S.; Samali, A.; et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 2012, 19, 1880–1891. [Google Scholar] [CrossRef] [Green Version]
  66. Rozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J.A.; Majsterek, I. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med. 2016, 16, 533–544. [Google Scholar] [CrossRef]
  67. Chaanine, A.H.; Gordon, R.E.; Kohlbrenner, E.; Benard, L.; Jeong, D.; Hajjar, R.J. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: Mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ. Heart Fail. 2013, 6, 572–583. [Google Scholar] [CrossRef] [Green Version]
  68. Ma, M.; Chen, W.; Hua, Y.; Jia, H.; Song, Y.; Wang, Y. Aerobic exercise ameliorates cardiac hypertrophy by regulating mitochondrial quality control and endoplasmic reticulum stress through M2AChR. J. Cell. Physiol. 2021, 236, 6581–6596. [Google Scholar] [CrossRef]
  69. Prola, A.; Nichtova, Z.; Pires Da Silva, J.; Piquereau, J.; Monceaux, K.; Guilbert, A.; Gressette, M.; Ventura-Clapier, R.; Garnier, A.; Zahradnik, I.; et al. Endoplasmic reticulum stress induces cardiac dysfunction through architectural modifications and alteration of mitochondrial function in cardiomyocytes. Cardiovasc. Res. 2019, 115, 328–342. [Google Scholar] [CrossRef]
  70. Eisner, V.; Csordás, G.; Hajnóczky, G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle–pivotal roles in Ca2+ and reactive oxygen species signaling. J. Cell Sci. 2013, 126, 2965–2978. [Google Scholar] [CrossRef] [Green Version]
  71. Szabo, T.M.; Frigy, A.; Nagy, E.E. Targeting Mediators of Inflammation in Heart Failure: A Short Synthesis of Experimental and Clinical Results. Int. J. Mol. Sci. 2021, 22, 13053. [Google Scholar] [CrossRef]
  72. Champs, B.; Degboé, Y.; Barnetche, T.; Cantagrel, A.; Ruyssen-Witrand, A.; Constantin, A. Short-term risk of major adverse cardiovascular events or congestive heart failure in patients with psoriatic arthritis or psoriasis initiating a biological therapy: A meta–analysis of randomised controlled trials. RMD Open 2019, 5, e000763. [Google Scholar] [CrossRef] [Green Version]
  73. Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T.; Anti-TNF Therapy against Congestive Heart Failure Investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: Results of the anti-TNF Therapy against Congestive Heart Failure (ATTACH) trial. Circulation 2003, 107, 3133–3140. [Google Scholar]
  74. Mann, D.L.; McMurray, J.J.V.; Packer, M.; Swedberg, K.; Borer, J.S.; Colucci, W.S.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted anticytokine therapy in patients with chronic heart failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef] [Green Version]
  75. Everett, B.M.; Cornel, J.H.; Lainscak, M.; Anker, S.D.; Abbate, A.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 2019, 139, 1289–1299. [Google Scholar] [CrossRef]
  76. Ridker, P.M.; MacFadyen, J.G.; Thuren, T.; Libby, P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: Further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur. Heart J. 2020, 41, 2153–2163. [Google Scholar] [CrossRef] [Green Version]
  77. Kjekshus, J.; Apetrei, E.; Barrios, V.; Böhm, M.; Cleland, J.G.F.; Cornel, J.H.; Dunselman, P.; Fonseca, C.; Goudev, A.; Grande, P.; et al. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med. 2007, 357, 2248–2261. [Google Scholar] [CrossRef]
  78. Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G.; et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1231–1239. [Google Scholar]
  79. Hare, J.M.; Mangal, B.; Brown, J.; Fisher, C.; Freudenberger, R.; Colucci, W.S.; Mann, D.L.; Liu, P.; Givertz, M.M.; Schwarz, R.P.; et al. Impact of oxypurinol in patients with symptomatic heart failure: Results of the OPT-CHF study. J. Am. Coll. Cardiol. 2008, 51, 2301–2309. [Google Scholar] [CrossRef] [Green Version]
  80. Torre-Amione, G.; Anker, S.D.; Bourge, R.C.; Colucci, W.S.; Greenberg, B.H.; Hildebrandt, P.; Keren, A.; Motro, M.; Moyé, L.A.; Otterstad, J.E.; et al. Advanced Chronic Heart Failure Clinical Assessment of Immune Modulation Therapy Investigators. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): A placebo-controlled randomised trial. Lancet 2008, 371, 228–236. [Google Scholar] [CrossRef]
  81. Moreira, D.M.; Vieira, J.L.; Gottschall, C.A.M. The effects of METhotrexate therapy on the physical capacity of patients with ISchemic heart failure: A randomized double-blind, placebo-controlled trial (METIS trial). J. Card. Fail. 2009, 15, 828–834. [Google Scholar] [CrossRef]
  82. Deftereos, S.; Giannopoulos, G.; Panagopoulou, V.; Bouras, G.; Raisakis, K.; Kossyvakis, C.; Karageorgiou, S.; Papadimitriou, C.; Vastaki, M.; Kaoukis, A.; et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: A prospective, randomized study. JACC Heart Fail. 2014, 2, 131–137. [Google Scholar] [CrossRef] [PubMed]
  83. Givertz, M.M.; Anstrom, K.J.; Redfield, M.M.; Deswal, A.; Haddad, H.; Butler, J.; Tang, W.H.W.; Dunlap, M.E.; Le Winter, M.M.; Mann, D.L.; et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: The xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation 2015, 131, 1763–1771. [Google Scholar] [CrossRef]
  84. Yokoe, I.; Kobayashi, H.; Kobayashi, Y.; Giles, J.T.; Yoneyama, K.; Kitamura, N.; Takei, M. Impact of tocilizumab on N-terminal pro-brain natriuretic peptide levels in patients with active rheumatoid arthritis without cardiac symptoms. Scand. J. Rheumatol. 2018, 47, 364–370. [Google Scholar] [CrossRef] [PubMed]
  85. Kleveland, O.; Kunszt, G.; Bratlie, M.; Ueland, T.; Broch, K.; Holte, E.; Michelsen, A.E.; Bendz, B.; Amundsen, B.H.; Espevik, T.; et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: A double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 2016, 37, 2406–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Münzel, T.; Camici, G.G.; Maack, C.; Bonetti, N.R.; Fuster, V.; Kovacic, J.C. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series. J. Am. Coll. Cardiol. 2017, 70, 212–229. [Google Scholar] [CrossRef] [PubMed]
  87. Aimo, A.; Castiglione, V.; Borrelli, C.; Saccaro, L.F.; Franzini, M.; Masi, S.; Emdin, M.; Giannoni, A. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur. J. Prev. Cardiol. 2020, 27, 494–510. [Google Scholar] [CrossRef]
  88. van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef] [Green Version]
  89. Brown, D.A.; Perry, J.B.; Allen, M.E.; Sabbah, H.N.; Stauffer, B.L.; Shaikh, S.R.; Cleland, J.G.F.; Colucci, W.S.; Butler, J.; Voors, A.A.; et al. Expert consensus document: Mitochondrial functionas a therapeutic target in heart failure. Nat. Rev. Cardiol. 2017, 14, 238–250. [Google Scholar] [CrossRef] [Green Version]
  90. Schwemmlein, J.; Maack, C.; Bertero, E. Mitochondria as Therapeutic Targets in Heart Failure. Curr. Heart Fail. Rep. 2022, 19, 27–37. [Google Scholar] [CrossRef]
  91. Sallam, N.; Laher, I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxidative Med. Cell. Longev. 2016, 2016, 7239639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Steensberg, A.; Fischer, C.P.; Keller, C.; Møller, K.; Pedersen, B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. [Google Scholar] [CrossRef] [PubMed]
  94. Schneider, C.P.; Schwacha, M.G.; Chaudry, I.H. The role of interleukin-10 in the regulation of the systemic inflammatory response following trauma-hemorrhage. Biochim. Et Biophys. Acta 2004, 1689, 22–32. [Google Scholar] [CrossRef]
  95. Ross, R.; Dagnone, D.; Jones, P.J.; Smith, H.; Paddags, A.; Hudson, R.; Janssen, I. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: A randomized, controlled trial. Ann. Intern. Med. 2000, 133, 92–103. [Google Scholar] [CrossRef]
  96. Trayhurn, P.; Wood, I.S. Adipokines: Inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 2004, 92, 347–355. [Google Scholar] [CrossRef] [Green Version]
  97. Kawanishi, N.; Yano, H.; Yokogawa, Y.; Suzuki, K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev. 2010, 16, 105–118. [Google Scholar]
  98. Stavrakis, S.; Elkholey, K.; Morris, L.; Niewiadomska, M.; Asad, Z.U.A.; Humphrey, M.B. Neuromodulation of inflammation to treat heart failure with preserved ejection fraction: A pilot randomized clinical trial. J. Am. Heart Assoc. 2022, 11, e023582. [Google Scholar] [CrossRef]
  99. Coll, R.C.; Hill, J.R.; Day, C.J.; Zamoshnikova, A.; Boucher, D.; Massey, N.L.; Chitty, J.L.; Fraser, J.A.; Jennings, M.P.; Robertson, A.A.B.; et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol. 2019, 15, 556–559. [Google Scholar] [CrossRef]
  100. van der Heijden, T.; Kritikou, E.; Venema, W.; van Duijn, J.; van Santbrink, P.J.; Slütter, B.; Foks, A.C.; Bot, I.; Kuiper, J. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E–deficient mice—Brief report. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
  101. Van Hout, G.P.; Bosch, L.; Ellenbroek, G.H.; De Haan, J.J.; Van Solinge, W.W.; Cooper, M.A.; Arslan, F.; de Jager, S.C.A.; Robertson, A.A.B.; Pasterkamp, G.; et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 2017, 38, 828–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  102. Marchetti, C.; Chojnacki, J.; Toldo, S.; Mezzaroma, E.; Tranchida, N.; Rose, S.W.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury following ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol. 2014, 63, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Marchetti, C.; Toldo, S.; Chojnacki, J.; Mezzaroma, E.; Liu, K.; Salloum, F.N.; Nordio, A.; Carbone, S.; Mauro, A.G.; Das, A.; et al. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and non-ischemic injury in the mouse. J. Cardiovasc. Pharmacol. 2015, 66, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Kim, Y.S.; Kim, J.S.; Kwon, J.S.; Jeong, M.H.; Cho, J.G.; Park, J.C.; Kang, J.C.; Ahn, Y. BAY 11-7082, a nuclear factor-κB inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia-reperfusion injury model. Int. Heart J. 2010, 51, 348–353. [Google Scholar] [CrossRef]
  105. Chen, S.; Wang, Y.; Pan, Y.; Liu, Y.; Zheng, S.; Ding, K.; Mu, K.; Yuan, Y.; Li, Z.; Song, H.; et al. Novel Role for Tranilast in Regulating NLRP 3 Ubiquitination, Vascular Inflammation, and Atherosclerosis. J. Am. Heart Assoc. 2020, 9, e015513. [Google Scholar] [CrossRef]
  106. Zeng, C.; Wang, R.; Tan, H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications. Int. J. Biol. Sci. 2019, 15, 1345–1357. [Google Scholar] [CrossRef] [Green Version]
  107. Gage, J.; Hasu, M.; Thabet, M.; Whitman, S.C. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can. J. Cardiol. 2012, 28, 222–229. [Google Scholar] [CrossRef]
  108. Yin, Y.; Li, X.; Sha, X.; Xi, H.; Li, Y.-F.; Shao, Y.; Mai, J.; Virtue, A.; Lopez-Pastrana, J.; Meng, S.; et al. Early hyperlipidemia promotes endothelial activation via a caspase-1-sirtuin 1 pathway. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 804–816. [Google Scholar] [CrossRef] [Green Version]
  109. Rauf, A.; Shah, M.; Yellon, D.M.; Davidson, S.M. Role of caspase 1 in ischemia/reperfusion injury of the myocardium. J. Cardiovasc. Pharmacol. 2019, 74, 194–200. [Google Scholar] [CrossRef]
  110. Li, Y.; Niu, X.; Xu, H.; Li, Q.; Meng, L.; He, M.; Zhang, J.; Zhang, Z.; Zhang, Z. VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis. Exp. Cell Res. 2020, 389, 111847. [Google Scholar] [CrossRef]
  111. Do Carmo, H.; Arjun, S.; Petrucci, O.; Yellon, D.M.; Davidson, S.M. The caspase 1 inhibitor VX-765 protects the isolated rat heart via the RISK pathway. Cardiovasc. Drugs Ther. 2018, 32, 165–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  112. Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef]
  113. Bauernfried, S.; Scherr, M.J.; Pichlmair, A.; Duderstadt, K.E.; Hornung, V. Human NLRP1 is a sensor for double-stranded RNA. Science 2021, 371, eabd0811. [Google Scholar] [CrossRef] [PubMed]
  114. Hollingsworth, L.R.; Sharif, H.; Griswold, A.R.; Fontana, P.; Mintseris, J.; Dagbay, K.B.; Paulo, J.A.; Gygi, S.P.; Bachovchin, D.A.; Wu, H. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature 2021, 592, 778–783. [Google Scholar] [CrossRef] [PubMed]
  115. Huang, M.; Zhang, X.; Toh, G.A.; Gong, Q.; Wang, J.; Han, Z.; Wu, B.; Zhong, F.; Chai, J. Structural and biochemical mechanisms of NLRP1 inhibition by DPP9. Nature 2021, 592, 773–777. [Google Scholar] [CrossRef]
  116. Robinson, K.S.; Teo, D.E.T.; Tan, K.S.; Toh, G.A.; Ong, H.H.; Lim, C.K.; Lay, K.; Au, B.V.; Lew, T.S.; Chu, J.J.H.; et al. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science 2020, 370, eaay2002. [Google Scholar] [CrossRef]
  117. Freeman, L.; Guo, H.; David, C.N.; Brickey, W.J.; Jha, S.; Ting, J.P.-Y. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J. Exp. Med. 2017, 214, 1351–1370. [Google Scholar] [CrossRef] [Green Version]
  118. Liu, L.; Chan, C. IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; Implications for Alzheimer’s disease. Neurobiol. Aging 2014, 35, 309–321. [Google Scholar] [CrossRef] [Green Version]
  119. Denes, A.; Coutts, G.; Lénárt, N.; Cruickshank, S.M.; Pelegrin, P.; Skinner, J.; Rothwell, N.; Allan, S.M.; Brough, D. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc. Natl. Acad. Sci. USA 2015, 112, 4050–4055. [Google Scholar] [CrossRef] [Green Version]
  120. Poh, L.; Kang, S.-W.; Baik, S.-H.; Ng, G.Y.Q.; She, D.T.; Balaganapathy, P.; Dheen, S.T.; Magnus, T.; Gelderblom, M.; Sobey, C.G.; et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav. Immun. 2019, 75, 34–47. [Google Scholar] [CrossRef]
  121. Di Micco, A.; Frera, G.; Lugrin, J.; Jamilloux, Y.; Hsu, E.-T.; Tardivel, A.; De Gassart, A.; Zaffalon, L.; Bujisic, B.; Siegert, S.; et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc. Natl. Acad. Sci. USA 2016, 113, E4671–E4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Hornung, V.; Ablasser, A.; Charrel-Dennis, M.; Bauernfeind, F.; Horvath, G.; Caffrey, D.R.; Latz, E.; Fitzgerald, K.A. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009, 458, 514–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Dang, E.V.; McDonald, J.G.; Russell, D.W.; Cyster, J.G. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell 2017, 171, 1057–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Paulin, N.; Viola, J.R.; Maas, S.L.; Jong, R.; de Fernandes-Alnemri, T.; Weber, C.; Drechsler, M.; Döring, Y.; Soehnlein, O. Double-strand DNA sensing Aim2 inflammasome regulates atherosclerotic plaque vulnerability. Circulation 2018, 138, 321–323. [Google Scholar] [CrossRef] [PubMed]
  125. Wang, X.; Pan, J.; Liu, H.; Zhang, M.; Liu, D.; Lu, L.; Tian, J.; Liu, M.; Jin, T.; An, F. AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model. Life Sci. 2019, 221, 249–258. [Google Scholar] [CrossRef]
  126. Hakimi, M.; Peters, A.; Becker, A.; Böckler, D.; Dihlmann, S. Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. J. Vasc. Surg. 2014, 59, 794–803. [Google Scholar] [CrossRef] [Green Version]
  127. Fidler, T.P.; Xue, C.; Yalcinkaya, M.; Hardaway, B.; Abramowicz, S.; Xiao, T.; Liu, W.; Thomas, D.G.; Hajebrahimi, M.A.; Pircher, J.; et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 2021, 592, 296–301. [Google Scholar] [CrossRef]
  128. Ma, C.; Li, S.; Hu, Y.; Ma, Y.; Wu, Y.; Wu, C.; Liu, X.; Wang, B.; Hu, G.; Zhou, J.; et al. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. J. Exp. Med. 2021, 218, e20201796. [Google Scholar] [CrossRef]
  129. Chou, W.-C.; Guo, Z.; Guo, H.; Chen, L.; Zhang, G.; Liang, K.; Xie, L.; Tan, X.; Gibson, S.A.; Rampanelli, E.; et al. AIM2 in regulatory T cells restrains autoimmune diseases. Nature 2021, 591, 300–305. [Google Scholar] [CrossRef]
  130. Markousis-Mavrogenis, G.; Tromp, J.; Ouwerkerk, W.; Ferreira, J.P.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; Lang, C.C.; Metra, M.; et al. Multimarker profiling identifies protective and harmful immune processes in heart failure: Findings from BIOSTAT-CHF. Cardiovasc. Res. 2022, 118, 1964–1977. [Google Scholar] [CrossRef]
Figure 1. Myocardial inflammatory response to an insult (RAAS—renin-angiotensin-aldosterone system; SNS—sympathetic nervous system; ROS—reactive oxygen species).
Figure 1. Myocardial inflammatory response to an insult (RAAS—renin-angiotensin-aldosterone system; SNS—sympathetic nervous system; ROS—reactive oxygen species).
Jcdd 10 00019 g001
Figure 2. Mechanisms and mediators involved in the inflammatory process (PRRs—pattern recognition receptors; PAMPs—pathogen associated molecular patterns; DAMPs—damage-associated molecular patterns).
Figure 2. Mechanisms and mediators involved in the inflammatory process (PRRs—pattern recognition receptors; PAMPs—pathogen associated molecular patterns; DAMPs—damage-associated molecular patterns).
Jcdd 10 00019 g002
Figure 3. Mechanisms and mediators involved in sterile inflammation (DAMP—damage-associated molecular patterns, TLRs—Toll-like receptors; NF-kB—nuclear factor kappa-beta; NLRs—NOD-like receptors; IL—interleukin).
Figure 3. Mechanisms and mediators involved in sterile inflammation (DAMP—damage-associated molecular patterns, TLRs—Toll-like receptors; NF-kB—nuclear factor kappa-beta; NLRs—NOD-like receptors; IL—interleukin).
Jcdd 10 00019 g003
Figure 4. Deranged homeostasis leading to heart failure.
Figure 4. Deranged homeostasis leading to heart failure.
Jcdd 10 00019 g004
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Paraskevaidis, I.; Farmakis, D.; Papingiotis, G.; Tsougos, E. Inflammation and Heart Failure: Searching for the Enemy—Reaching the Entelechy. J. Cardiovasc. Dev. Dis. 2023, 10, 19. https://doi.org/10.3390/jcdd10010019

AMA Style

Paraskevaidis I, Farmakis D, Papingiotis G, Tsougos E. Inflammation and Heart Failure: Searching for the Enemy—Reaching the Entelechy. Journal of Cardiovascular Development and Disease. 2023; 10(1):19. https://doi.org/10.3390/jcdd10010019

Chicago/Turabian Style

Paraskevaidis, Ioannis, Dimitrios Farmakis, Georgios Papingiotis, and Elias Tsougos. 2023. "Inflammation and Heart Failure: Searching for the Enemy—Reaching the Entelechy" Journal of Cardiovascular Development and Disease 10, no. 1: 19. https://doi.org/10.3390/jcdd10010019

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop