Next Article in Journal
Unsteady Magnetohydrodynamic Convective Fluid Flow of Oldroyd-B Model Considering Ramped Wall Temperature and Ramped Wall Velocity
Next Article in Special Issue
Quasi-Isometric Mesh Parameterization Using Heat-Based Geodesics and Poisson Surface Fills
Previous Article in Journal
The Geometry of the Generalized Gamma Manifold and an Application to Medical Imaging
Previous Article in Special Issue
A New Class of 2q-Point Nonstationary Subdivision Schemes and Their Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Construction and Application of Nine-Tic B-Spline Tensor Product SS

by
Abdul Ghaffar
1,†,
Mudassar Iqbal
1,†,
Mehwish Bari
2,†,
Sardar Muhammad Hussain
1,†,
Raheela Manzoor
3,†,
Kottakkaran Sooppy Nisar
4,*,† and
Dumitru Baleanu
5,6,†
1
Department of Mathematical Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan
2
Department of Mathematics, NCBA&E, Bahawalpur 63100, Pakistan
3
Department of Mathematics, SBK Women University, Quetta 87300, Pakistan
4
Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia
5
Department of Mathematics, Cankaya University, Ankara 06530, Turkey
6
Institute of Space Sciences, Magurele-Bucharest 76900, Romania
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2019, 7(8), 675; https://doi.org/10.3390/math7080675
Submission received: 23 June 2019 / Revised: 18 July 2019 / Accepted: 25 July 2019 / Published: 29 July 2019
(This article belongs to the Special Issue Discrete and Computational Geometry)

Abstract

:
In this paper, we propose and analyze a tensor product of nine-tic B-spline subdivision scheme (SS) to reduce the execution time needed to compute the subdivision process of quad meshes. We discuss some essential features of the proposed SS such as continuity, polynomial generation, joint spectral radius, holder regularity and limit stencil. Some results of the SS using surface modeling with the help of computer programming are shown.

1. Introduction

Computer Aided Geometric Design (CAGD) considers the mathematical description of curves and surfaces utilized in computer graphics, data structure and computational algebra. CAGD has many fields of research interests. However, surface modeling is one of the important studies and an interesting area in the field of CAGD and computer graphics. Subdivision schemes (SSs) are iterative algorithms of surface modeling in CAGD. They are a type of models from discrete to discrete data having methods of generating curves/surfaces more effectively.
Nowadays, CAGD is the most common tool in the presentation of curves/surfaces. In CAGD, geometric shapes are related to the mathematical representations that satisfy approximation and interpolation properties of curves and surfaces. One of the common tools in CAGD are SSs, which provide an elegant way to describe curves and surfaces. Rham [1] was the first scholar who started work on SSs. He constructed a SS which generated a function with the first derivative. Chaikin [2] also used subdivision to design a curve. SSs gained importance when people generalized the tensor product in an arbitrary topology. This idea was presented by Doo and Sabin [3]. Catmull and Clark [4] used SSs to surface design and to control meshes in an arbitrary topology. Dyn et al. [5] generalized the SS of Dubuc and Deslauriers, known as butterfly SS, and concluded that the SS has C 1 smoothness in a certain range of shape parameter. In 1995, Dyn and Levin [6] introduced a technique for analyzing the Hermite-Type SSs for surface designs. In 1998, Stam [7] showed that surfaces and their derivatives can be described in terms of eigen basis functions. In 2002, Hassan et al. [8,9] worked on arity and number of control points. In 2005, Mustafa and Liu [10] worked on the SS of Bajaj with a new parameter that controlled the shape of models and gave them more flexibility to design a model over the soft and rough mesh network. Beccari et al. [11] produced an interpolating SS, which produced conic curve shapes. Mustafa et al. [12] unified the m-point approximating SS and showed that his SS has higher smoothness as compared to other SSs. Aslam et al. [13] introduced a formula that gives the mask of ( 2 n - 1 ) -point ternary interpolating as well as approximating SSs.
Zheng et al. [14] used B-spline to construct a 2 n -ary SS. In 2013, Mustafa et al. [15] worked on odd point ternary families of approximating SSs, in which they showed that their SSs have high smoothness. They also worked on subdivision regularization, in which they proposed that unified framework can work well for both over-fitting and noise removal in subdivision as well as regularization. In 2013, Ghaffar et al. [16] designed a three-point tensor product SS and showed some of its applications. Mustafa et al. [17] described a family of ( 2 n - 1 ) -point binary approximating SSs with tension parameters for generating curves. Again, Mustafa et al. [18] presented a general algorithm to generate a new class of binary approximating SSs and also have the derivation of some family members. In 2016, Hameed and Mustafa [19] constructed and analyzed binary SSs using Lane-Riesenfeld algorithm for curves and surfaces with Chaikin SS. In 2016, Ghaffar and Mustafa [20] proposed three different algorithms for approximating SS with application in curve modeling. In 2017, Cheng and Zhou [21] explained the necessary conditions of SSs with finite masks. During 2017, Akram et al. [22] discussed the properties of the binary four-point interpolating non-stationary SS [11]. In 2018, Manan et al. [23] focused on an algorithm to solve the third-order boundary value problem using eight-point approximating SS. In 2019, Kanwal et al. [24] formulated a numerical approximating collocation algorithm that is based on binary six-point approximating SS to generate the curves. Ghaffar et al. [25] introduced odd and even point non-stationary binary SSs for curve designing.
A simple smoothing tool for polygonal meshes is introduced which provide the motivation of our proposed work. The refine versions of the models are achieved by applying smoothing operation. The significance of the research problem to the success of such a model is that the transitions between the different resolutions of the meshes are almost imperceptible. This paper aims to construct a tensor product of nine-tic B-spline subdivision scheme to reduce the execution time needed to compute the subdivision process of quad meshes. The scheme, when computing the tetrahedron (four faces), as the number of faces increases, shows that the suggested technique performs better in model computation. The numerical results illustrate that the proposed SS reconstruct refined version of the models by using smoothing operation on regular meshes, but it doesn’t reproduced parametric curves/surfaces that have logarithmic functions and division terms i.e non-exponential polynomials, which actually needs non-uniform masks of SS for the exact reproduction of such models.
The remainder of this work is organized as follows. Section 2 describe properties of the SS. Section 3 is devoted to the construction and analysis of nine-tic B-spline tensor product SS. Section 4 gives numerical examples. Section 5 is concerned with the conclusion.

2. Properties of the SS

Here, firstly we introduce the nine-tic B-spline SS. We analyze the SS by examining the important features: continuity, hölder exponent, polynomial generation and reproduction, joint spectral radius, local analysis with invariant neighborhood and limiting curve produced by the nine-tic B-spline SS. It is defined as:
μ 2 i k + 1 = 10 512 μ i - 2 k + 120 512 μ i - 1 k + 252 512 μ i k + 120 512 μ i + 1 k + 10 512 μ i + 2 k , μ 2 i + 1 k + 1 = 1 512 μ i - 2 k + 45 512 μ i - 1 k + 210 512 μ i k + 210 512 μ i + 1 k + 45 512 μ i + 2 k + 1 512 μ i + 3 k .

2.1. Smoothness of the SS

Theorem 1
([26]). The SS is convergent if and only if the SS S d is contractive, then for contractiveness d n < 1 for some n > 0 with d n = max Σ u | d v - 2 u l n | : 0 v < 2 n , where d u n are the coefficients of the SS S d n with symbol d n ( x ) = d ( x ) d ( x 2 ) . . . d ( x 2 n - 1 ) .
Theorem 2.
If S η converges, then the limit curves can be denoted by η ( x ) = ( 1 + x 2 ) q d ( x ) . S d is the SS for the qth divided differences.
Proof. 
Laurent polynomial of proposed SS (Equation (1)) can be elaborated as:
η ( x ) = ( 1 + x ) 10 512 ,
where
η ( x ) = x 10 + 10 x 9 + 45 x 8 + 120 x 7 + 210 x 6 + 252 x 5 + 210 x 4 + 120 x 3 + 45 x 2 + 10 x + 1 / 512 .
To prove C 0 continuity of the SS S η related to η ( x ) , we have to show the convergence of d 1 ( x ) . To see this we generate another SS S μ 1 related to μ 1 ( x ) collected from d 1 ( x ) as:
η ( x ) = 1 + x 2 d 1 ( x )
where
d 1 ( x ) = 1 + 9 x + 36 x 2 + 84 x 3 + 126 x 4 + 126 x 5 + 84 x 6 + 36 x 7 + 9 x 8 + x 9 / 256 .
The SS S μ 1 is contractive. For this, we have,
S μ 1 = 1 2 max 1 + 36 + 126 + 84 + 9 256 , 9 + 84 + 126 + 36 + 1 256 , S μ 1 = 1 2 max 1 256 + 36 256 + 126 256 + 84 256 + 9 256 , 1 256 + 36 256 + 126 256 + 84 256 + 9 256 ,
S μ 1 = 1 2 max 1 256 + 36 256 + 126 256 + 84 256 + 9 256 , 1 256 + 36 256 + 126 256 + 84 256 + 9 256 < 1 .
Thus, SS S μ 1 is contractive, S d 1 is convergent and S η is C 0 continuous.
For C 1 continuity of the SS, we can rewrite as:
η ( x ) = 1 + x 2 2 d 2 ( x ) ,
where
d 2 ( x ) = 1 + 8 x + 28 x 2 + 56 x 3 + 70 x 4 + 56 x 5 + 28 x 6 + 8 x 7 + x 8 / 128 .
To prove C 1 continuity of the SS S η related to η ( x ) , we have to show the convergence of d 2 ( x ) . To see this, we generate another SS S μ 2 related to μ 2 ( x ) collected from d 2 ( x ) as:
μ 2 ( x ) = x - 5 + 8 x - 4 + 28 x - 3 + 56 x - 2 + 70 x - 1 + 56 x 0 + 28 x 1 + 8 x 2 + x 3 / 128 .
For the contractivity of the SS S μ 2 , we have
S μ 2 = 1 2 max 1 128 + 28 128 + 70 128 + 28 128 + 1 128 , 8 128 + 56 128 + 56 128 + 8 128 < 1 .
Thus, SS S μ 2 is contractive, S d 2 is convergent and S η is C 1 continuous.
For C 8 continuity of the SS, we can rewrite as
η ( x ) = 1 + x 2 9 d 9 ( x ) ,
where
d 9 ( x ) = 1 + x .
To prove C 8 continuity of the SS S η related to η ( x ) , we have to show the convergence of d 9 ( x ) . To see this, we generate another SS S μ 9 related to μ 9 ( x ) collected from d 9 ( x ) as:
μ 9 ( x ) = x - 5 + x - 4 .
For the contractivity of the SS S μ 9 , we have
S μ 9 = 1 2 max 1 2 , 1 2 < 1 .
Hence, the SS S μ 9 is contractive. This implies the S η has C 8 smoothness. □

2.2. Holder Exponent

Here, we find holder continuity of the nine-tic B-spline.
Theorem 3.
Consider that the SS (Equation (1)) S η with symbol η ( x ) = 1 + x 2 l d ( x ) produces limit curves with Holder continuity r l - log 2 d m m for some m.
Proof. 
The symbol of the SS (Equation (1)) is:
η ( x ) = x - 5 512 1 + 10 x + 45 x 2 + 120 x 3 + 210 x 4 + 252 x 5 + 210 x 6 + 120 x 7 + 45 x 8 + 10 x 9 + x 10 = 1 + x 2 10 d ( x ) ,
where
d ( x ) = 2 x 5 .
Here, l = 10 and d = [ 2 ] , which implies that r 10 - log 2 ( 2 ) = 9 .

2.3. Polynomial Generation and Reproduction

In this section, we discuss the degree of polynomial generation and polynomial reproduction of nine-tic B-spline SS.
Theorem 4.
The degree of polynomial generation of SS (Equation (1)) is 9.
Proof. 
Since the Laurent polynomial η ( x ) of the SS (Equation (1)) is
η ( x ) = ( 1 + x ) ( 9 + 1 ) d ( x ) ,
where
d ( x ) = 1 512 x 5 1 + x ,
then 9 is the degree of polynomial generation.
η ( x ) = ( 1 + x ) 9 + 1 1 512 x 5 ,
which shows that degree of polynomial generation is 9. □
Theorem 5.
The polynomial reproduction of SS (Equation (1)) is primal parameterization.
Proof. 
For any SS that generates linear functions with symbol
η ( x ) = ( 1 + x ) 10 d ( x ) ,
let τ = a ( x ) 2 attach the data μ u v to parameter
t u v = - τ + u + τ 2 v
then the SS also reproduces linear functions. The Laurent polynomial of the SS (Equation (1)) is:
η ( x ) = x - 5 512 1 + 10 x + 45 x 2 + 120 x 3 + 210 x 4 + 252 x 5 + 210 x 6 + 120 x 7 + 45 x 8 + 10 x 9 + x 10 , = 1 + x 2 10 d ( x ) .
η ( x ) = { - 5 x - 6 - 40 x - 5 - 135 x - 4 - 240 x - 3 - 210 x - 2 + 210 + 240 x + 135 x 2 + 40 x 3 + 5 x 4 } / 512 .
After putting x = 1 , we get
η ( 1 ) = { - 5 - 40 - 135 - 240 - 210 + 210 + 240 + 135 + 40 + 5 } / 512 = 0 .
Thus, the value of τ = η ( 1 ) 2 = 0 2 = 0 , putting the value of τ in above Equation (2):
t u v = - τ + u + τ 2 v ,
t u v = 0 + u + 0 2 v = u 2 v .
Thus, the nine-tic B-spline SS generates linear reproduction with respect to primal parameterization. This SS is primal parameterization. □

2.4. Local Analysis with Invariant Neighborhood

In this section, we calculate the limit stencil of Nine-tic B-Spline SS by using local analysis. Using limit stencil, we locate the confine position of control point of initial control polygon on the point of confinement curve. For this, by considering the SS (Equation (1)), we can write it in matrix form as:
μ - 4 u μ - 3 u μ - 2 u μ - 1 u μ 0 u μ 1 u μ 2 u μ 3 u μ 4 u = [ 10 512 120 512 252 512 120 512 10 512 0 0 0 0 1 512 45 512 210 512 210 512 45 512 1 512 0 0 0 0 10 512 120 512 252 512 120 512 10 512 0 0 0 0 1 512 45 512 210 512 210 512 45 512 1 512 0 0 0 0 10 512 120 512 252 512 120 512 10 512 0 0 0 0 1 512 45 512 210 512 210 512 45 512 1 512 0 0 0 0 10 512 120 512 252 512 120 512 10 512 0 0 0 0 1 512 45 512 210 512 210 512 45 512 1 512 0 0 0 0 10 512 120 512 252 512 120 512 10 512 ] μ - 4 u - 1 μ - 3 u - 1 μ - 2 u - 1 μ - 1 u - 1 μ 0 u - 1 μ 1 u - 1 μ 2 u - 1 μ 3 u - 1 μ 4 u - 1
The local subdivision matrix of the presented SS is:
S = 10 512 120 512 252 512 120 512 10 512 0 0 0 0 1 512 45 512 210 512 210 512 45 512 1 512 0 0 0 0 10 512 120 512 252 512 120 512 10 512 0 0 0 0 1 512 45 512 210 512 210 512 45 512 1 512 0 0 0 0 10 512 120 512 252 512 120 512 10 512 0 0 0 0 1 512 45 512 210 512 210 512 45 512 1 512 0 0 0 0 10 512 120 512 252 512 120 512 10 512 0 0 0 0 1 512 45 512 210 512 210 512 45 512 1 512 0 0 0 0 10 512 120 512 252 512 120 512 10 512
The proposed SS has invariant neighborhood size 9 and the corresponding eigenvalues of the subdivision matrix S are λ = { 1 , 1 2 , 1 4 , 1 8 , 1 16 , 1 32 , 1 64 , 1 128 , 1 256 } . For eigenvectors related to eigenvalues, we obtain:
1 1 2 1 4 1 8 1 16 1 32 1 64 1 128 1 256 1 - 1 1 1 1 - 1 1 - 1 - 1 - 1 8 - 13 36 1 7 13 - 16 29531 223 3044 229 1069 - 3 4 - 101 1068 1 28 - 1 18 1 19 91 - 331 29531 - 19 1522 - 11 1069 - 1 2 13 534 - 1 56 1 36 1 1 91 236 29531 9 3044 - 11 1069 - 1 4 - 7 1068 1 70 0 1 - 5 91 - 205 29531 0 13 1069 0 0 - 1 56 - 1 36 1 1 91 236 29531 - 9 3044 - 11 1069 1 4 7 1068 11 28 1 18 1 19 91 - 331 29531 19 1522 - 11 1069 1 2 - 13 534 - 1 8 13 36 1 7 13 - 16 29531 - 223 3044 229 1069 3 4 101 1068 1 1 1 1 1 1 1 1 1
Thus,
Q = 1 - 1 8 1 28 - 1 56 1 70 - 1 56 1 28 - 1 8 1 - 1 - 13 36 - 1 18 1 36 0 - 1 36 1 18 13 36 1 1 1 1 1 1 1 1 1 1 1 7 13 19 91 1 91 - 5 91 1 91 19 91 7 13 1 1 - 16 29531 - 331 29531 236 29531 - 205 29531 236 29531 - 331 29531 - 16 29531 1 - 1 223 3044 - 19 1522 9 3044 0 - 9 3044 19 1522 - 223 3044 1 1 229 1069 - 11 1069 - 11 1069 13 1069 - 11 1069 - 11 1069 229 1069 1 - 1 - 3 4 - 1 2 - 1 4 0 1 4 1 2 3 4 1 - 1 - 101 1068 13 534 - 7 1068 0 7 1068 - 13 534 101 1068 1
and
Q - 1 = 1 9 - 1 80 1 362880 13 8640 29531 90720 - 761 2520 1069 17280 - 1 10080 - 89 480 - 8 9 - 27 40 251 181440 767 4320 - 29531 45360 761 420 11759 8640 - 41 1680 - 89 80 28 9 - 67 40 913 22680 1547 1080 - 29531 11340 - 761 180 - 1069 540 - 289 720 1513 240 - 56 9 217 40 44117 181440 1001 4320 502027 45360 761 180 - 45967 8640 - 809 720 - 2047 240 70 9 0 15619 36288 - 3185 864 - 147655 9072 0 20311 1728 0 0 - 56 9 - 217 40 44117 181440 1001 4320 502027 45360 - 761 180 - 45967 8640 809 720 2047 240 28 9 67 40 913 22680 1547 1080 - 29531 11340 761 180 - 1069 540 289 720 - 1513 240 - 8 9 27 40 251 181440 767 4320 - 29531 45360 - 761 420 11759 8640 41 1680 89 80 1 9 1 80 1 362880 13 8640 29531 90720 761 2520 1069 17280 1 10080 89 480
and the eigen decomposition of S is
S = Q Q - 1 ,
where
= 1 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 0 0 1 16 0 0 0 0 0 0 0 0 0 1 32 0 0 0 0 0 0 0 0 0 1 64 0 0 0 0 0 0 0 0 0 1 128 0 0 0 0 0 0 0 0 0 1 256
Using diagonalization process of a matrix = S - 1 A S , whereas ∧ = diagonal matrix, S = Q Q - 1 indicates that S u = Q u Q - 1 , where = S - 1 A S , and A = S S - 1 shows that A u = S u S - 1 . Since ∧ is a diagonal matrix, for some diagonal matrix, 2 means square of entries diagonally and so on. Thus,
u = 1 0 0 0 0 0 0 0 0 0 1 2 u 0 0 0 0 0 0 0 0 0 1 4 u 0 0 0 0 0 0 0 0 0 1 8 u 0 0 0 0 0 0 0 0 0 1 16 u 0 0 0 0 0 0 0 0 0 1 32 u 0 0 0 0 0 0 0 0 0 1 64 u 0 0 0 0 0 0 0 0 0 1 128 u 0 0 0 0 0 0 0 0 0 1 256 u
In addition, then S u = Q u Q - 1 . Thus, using eigen decomposition of S , we have, X u = S X u - 1 = S ( S X u - 2 ) = S 2 X u - 2 and so on. X u = S u X 0 shows that X u = ( Q u Q - 1 ) X 0 . Now, by applying limit u , X = lim u S u X 0 = S X 0 implies that X = Q Q - 1 X 0 .
μ - 4 u μ - 3 u μ - 2 u μ - 1 u μ 0 u μ 1 u μ 2 u μ 3 u μ 4 u = 1 9 - 1 80 1 362880 13 8640 29531 90720 - 761 2520 1069 17280 - 1 10080 - 89 480 - 1 9 1 80 - 1 362880 - 13 8640 - 29531 90720 761 2520 - 1069 17280 1 10080 89 480 1 9 - 1 80 1 362880 13 8640 29531 90720 - 761 2520 1069 17280 - 1 10080 - 89 480 1 9 - 1 80 1 362880 13 8640 29531 90720 - 761 2520 1069 17280 - 1 10080 - 89 480 1 9 - 1 80 1 362880 13 8640 29531 90720 - 761 2520 1069 17280 - 1 10080 - 89 480 - 1 9 1 80 - 1 362880 - 13 8640 - 29531 90720 761 2520 - 1069 17280 1 10080 89 480 1 9 - 1 80 1 362880 13 8640 29531 90720 - 761 2520 1069 17280 - 1 10080 - 89 480 - 1 9 1 80 - 1 362880 - 13 8640 - 29531 90720 761 2520 - 1069 17280 1 10080 89 480 - 1 9 1 80 - 1 362880 - 13 8640 - 29531 90720 761 2520 - 1069 17280 1 10080 89 480 μ - 4 u - 1 μ - 3 u - 1 μ - 2 u - 1 μ - 1 u - 1 μ 0 u - 1 μ 1 u - 1 μ 2 u - 1 μ 3 u - 1 μ 4 u - 1 .
Hence, the limit stencils are: [ 1 9 , - 1 80 , 1 362880 , 13 8640 , 29531 90720 , - 761 2520 , 1069 17280 , - 1 10080 , - 89 480 ] .

3. Construction and Analysis of Nine-tic B-Spline Tensor Product SS

3.1. Preliminaries

In this section, we construct nine-tic B-Spline tensor product SS. We analyze the SS by reviewing the continuity of the SS and limiting behavior of the curve generated by nine-tic B-spline tensor product SS. The Laurent polynomial of tensor product SS can be acquired by the accompanying principle:
η ( x ) = η ( x 1 , x 2 ) = η ( x 1 ) η ( x 2 ) ,
where η ( x 1 ) and η ( x 2 ) are the Laurent polynomials of univariate SSs.
A general compact form of binary SS S which maps a polygon μ k = { μ u , v k } u , v Z to a refined polygon μ k + 1 = { μ u , v k + 1 } u , v Z is defined by
μ δ k + 1 = γ Z s η δ - 2 γ μ γ k , δ Z s .
where S = 1 for curve and S = 2 for surface. In the case of univariate SSs, the two rules ( for u is even and odd) are given below as:
Let u = 2 m , then
μ 2 m k + 1 = v Z η 2 m - 2 v μ u k .
To get second rule, we assume u = 2 m + 1 , then
μ 2 l + 1 k + 1 = v Z η ( 2 m + 1 ) - 2 v μ u k .
In the case of tensor product (bivariate) SS, we have four rules subject to the uniformity of each component in the multi-index u = ( u 1 , u 2 ) .
μ 2 u 1 , 2 u 2 k + 1 = l 1 , l 2 Z η 2 l 1 , 2 l 2 μ u 1 - l 1 , u 2 - l 2 k , μ 2 u 1 + 1 , 2 u 2 k + 1 = l 1 , l 2 Z η 2 l 1 + 1 , 2 l 2 μ u 1 - l 1 , u 2 - l 2 k ,
μ 2 u 1 , 2 u 2 + 1 k + 1 = l 1 , l 2 Z η 2 l 1 , 2 l 2 + 1 μ u 1 - l 1 , u 2 - l 2 k , μ 2 u 1 + 1 , 2 u 2 + 1 k + 1 = l 1 , l 2 Z η 2 l 1 + 1 , 2 l 2 + 1 μ u 1 - l 1 , u 2 - l 2 k .
A necessary condition for uniform convergence of SS (Equation (5)) is given in the following theorem.
Theorem 6 
([26]). Let η ( x ) = η ( x 1 , x 2 ) = u , v η u , v x 1 u x 2 v be the symbol or Laurent polynomial of bivariate SS S , which is defined on quad-meshes. Then, a necessary condition for the convergence of S is:
γ Z 2 η δ - 2 γ = 1 , δ { ( 0 , 0 ) , ( 0 , 1 ) , ( 1 , 0 ) , ( 1 , 1 ) } .
This implies that:
η ( 1 , 1 ) = 4 , η ( - 1 , 1 ) = η ( 1 , - 1 ) = η ( - 1 , - 1 ) = 0 .
Theorem 7 
([26]). Suppose the SSs with symbols η [ 1 ] ( x ) = η ( x ) 1 + x 1 = ( 1 + x 2 ) b ( x ) and η [ 2 ] ( x ) = η ( x ) 1 + x 2 = ( 1 + x 1 ) b ( x ) , are both contractive, namely
lim k ( S η [ 1 ] ) k μ 0 = 0 , lim k ( S η [ 2 ] ) k μ 0 = 0 ,
for any initial data μ 0 then the SS S η with the symbol: η ( x ) = ( 1 + x 1 ) ( 1 + x 2 ) b ( x ) , x = ( x 1 , x 2 ) , is convergent. Conversely, if S η is convergent, then S η [ 1 ] and S η [ 2 ] are contractive.
Remark 1 
([26]). Thus, convergence is checked in this case by checking the contractivity of two SSs S η 1 , S η 2 . If b ( x 1 , x 2 ) = b ( x 2 , x 1 ) , which is typical for SSs having the symmetry of the square grid, then η ( x 1 , x 2 ) = η ( x 2 , x 1 ) , and the contractivity of only one SS has to be checked.
Theorem 8 
([26]). Let
η ( x 1 , x 2 ) = ( 1 + x 1 ) n ( 1 + x 2 ) n b ( x ) .
If the SSs with the masks
η u , v ( x 1 , x 2 ) = 2 u + v η ( x 1 , x 2 ) ( 1 + x 1 ) u ( 1 + x 2 ) v , u , v = 0 , . . . , n
are convergent, then S η generate C n function.
Remark 2 
([26]). For C n continuity of S η , we have to show that the SSs S u , v , corresponding to masks η u , v ( x 1 , x 2 ) for u , v = 0 , 1 , . . . , n are convergent and it is equivalent to checking whether SSs S u , v [ 1 ] and S u , v [ 2 ] corresponding to the masks η u , v [ 1 ] ( x 1 , x 2 ) = η u , v ( x 1 , x 2 ) 1 + x 1 and η u , v [ 2 ] ( x 1 , x 2 ) = η u , v ( x 1 , x 2 ) 1 + x 2 are contractive, which is equivalent to checking whether 1 2 S u , v [ 1 ] L < 1 and 1 2 S u , v [ 2 ] L < 1 , for some integer L > 0 . Since there are four rules for computing the values at next refinement level, we define the norm as:
1 2 S u , v [ k ] = 1 2 max s , t Z | η 2 s , 2 t [ k ] | , s , t Z | η 2 s + 1 , 2 t [ k ] | , s , t Z | η 2 s , 2 t + 1 [ k ] | , s , t Z | η 2 s + 1 , 2 t + 1 [ k ] | ,
where k = 1 , 2 .

3.2. Construction of Nine-tic B-Spline Tensor Product SS

Consider the proposed nine-tic B-spline SS (Equation (1)), and its mask is:
η = . . . , 0 , 0 , 1 512 , 10 512 , 45 512 , 120 512 , 210 512 , 252 512 , 210 512 , 120 512 , 45 512 , 10 512 , 1 512 , 0 , 0 , . . . ,
and its Laurent polynomial is given as:
η ( x ) = x - 5 512 1 + 10 x + 45 x 2 + 120 x 3 + 210 x 4 + 252 x 5 + 210 x 6 + 120 x 7 + 45 x 8 + 10 x 9 + x 10 .
This implies that
η ( x 1 ) = x 1 - 5 512 1 + 10 x 1 + 45 x 1 2 + 120 x 1 3 + 210 x 1 4 + 252 x 1 5 + 210 x 1 6 + 120 x 1 7 + 45 x 1 8 + 10 x 1 9 + x 1 10 , η ( x 2 ) = x 2 - 5 512 1 + 10 x 2 + 45 x 2 2 + 120 x 2 3 + 210 x 2 4 + 252 x 2 5 + 210 x 2 6 + 120 x 2 7 + 45 x 2 8 + 10 x 2 9 + x 2 10 .
Since η ( x 1 , x 2 ) = η ( x 1 ) η ( x 2 ) , then we have the following Laurent polynomial of nine-tic B-spline SS S η :-
η ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 262144 ( 1 + 45 x 1 2 + 25200 x 1 4 x 2 7 + 9450 x 1 4 x 2 8 + 2100 x 1 4 x 2 9 + 45 x 2 2 + 45 x 2 8 + 1200 x 1 3 x 2 9 + 5400 x 1 3 x 2 8 + 210 x 1 4 x 2 10 + 2520 x 1 5 x 2 + 11340 x 1 5 x 2 2 + 30240 x 1 5 x 2 3 + 52920 x 1 5 x 2 4 + 63504 x 1 5 x 2 5 + 52920 x 1 5 x 2 6 + 30240 x 1 5 x 2 7 + 11340 x 1 5 x 2 8 + 2520 x 1 5 x 2 9 + 252 x 1 5 x 2 10 + 2100 x 1 6 x 2 + 9450 x 1 6 x 2 2 + 25200 x 1 6 x 2 3 + 44100 x 1 6 x 2 4 + 52920 x 1 6 x 2 5 + 44100 x 1 6 x 2 6 + 25200 x 1 6 x 2 7 + 9450 x 1 6 x 2 8 + 2100 x 1 6 x 2 9 + 210 x 1 6 x 2 10 + 1200 x 1 7 x 2 + 5400 x 1 7 x 2 2 + 14400 x 1 7 x 2 3 + 25200 x 1 7 x 2 4 + 30240 x 1 7 x 2 5 + 25200 x 1 7 x 2 6 + 14400 x 1 7 x 2 7 + 5400 x 1 7 x 2 8 + 1200 x 1 7 x 2 9 + 120 x 1 7 x 2 10 + 450 x 1 8 x 2 + 2025 x 1 8 x 2 2 + 5400 x 1 8 x 2 3 + 9450 x 1 8 x 2 4 + 11340 x 1 8 x 2 5 + 9450 x 1 8 x 2 6 + 5400 x 1 8 x 2 7 + 2025 x 1 8 x 2 8 + 450 x 1 8 x 2 9 + 45 x 1 8 x 2 10 + 100 x 1 9 x 2 + 450 x 1 9 x 2 2 + 1200 x 1 9 x 2 3 + 2100 x 1 9 x 2 4 + 2520 x 1 9 x 2 5 + 2100 x 1 9 x 2 6 + 1200 x 1 9 x 2 7 + 450 x 1 9 x 2 8 + 100 x 1 9 x 2 9 + 10 x 1 9 x 2 10 + 10 x 1 10 x 2 + 45 x 1 10 x 2 2 + 120 x 1 10 x 2 3 + 210 x 1 10 x 2 4 + 252 x 1 10 x 2 5 + 210 x 1 10 x 2 6 + 120 x 1 10 x 2 7 + 45 x 1 10 x 2 8 + 10 x 1 10 x 2 9 + x 1 10 x 2 10 + 210 x 2 4 + 44100 x 1 4 x 2 4 + 52920 x 1 4 x 2 5 + 44100 x 1 4 x 2 6 + 252 x 2 5 + 210 x 2 6 + 120 x 2 7 + x 2 10 + 120 x 2 3 + 10 x 2 9 + 252 x 1 5 + 210 x 1 4 + 120 x 1 3 + 120 x 1 7 + 210 x 1 6 + 45 x 1 8 + x 1 10 + 10 x 1 9 + 100 x 1 x 2 + 450 x 1 x 2 2 + 1200 x 1 x 2 3 + 2100 x 1 x 2 4 + 2520 x 1 x 2 5 + 2100 x 1 x 2 6 + 1200 x 1 x 2 7 + 450 x 1 x 2 8 + 100 x 1 x 2 9 + 10 x 1 x 2 10 + 450 x 1 2 x 2 + 2025 x 1 2 x 2 2 + 5400 x 1 2 x 2 3 + 9450 x 1 2 x 2 4 + 11340 x 1 2 x 2 5 + 9450 x 1 2 x 2 6 + 5400 x 1 2 x 2 7 + 2025 x 1 2 x 2 8 + 450 x 1 2 x 2 9 + 45 x 1 2 x 2 10 + 1200 x 1 3 x 2 + 5400 x 1 3 x 2 2 + 14400 x 1 3 x 2 3 + 25200 x 1 3 x 2 4 + 30240 x 1 3 x 2 5 + 25200 x 1 3 x 2 6 + 14400 x 1 3 x 2 7 + 2100 x 1 4 x 2 + 9450 x 1 4 x 2 2 + 120 x 1 3 x 2 10 + 10 x 1 + 10 x 2 + 25200 x 1 4 x 2 3 ) . = x 1 - 5 x 2 - 5 262144 1 + x 1 10 1 + x 2 10 .
From Equation (1), we suggest the following nine-tic B-spline tensor product SS:
μ 2 u , 2 v k + 1 = 100 262144 μ u - 2 , v - 2 k + 1200 262144 μ u - 1 , v - 2 k + 2520 262144 μ u , v - 2 k + 1200 262144 μ u + 1 , v - 2 k + 100 262144 μ u + 2 , v - 2 k + 1200 262144 μ u - 2 , v - 1 k + 14400 262144 μ u - 1 , v - 1 k + 30240 262144 μ u , v - 1 k + 14400 262144 μ u + 1 , v - 1 k + 1200 262144 μ u + 2 , v - 1 k + 2520 262144 μ u - 2 , v k + 30240 262144 μ u - 1 , v k + 63504 262144 μ u , v k + 30240 262144 μ u + 1 , v k + 2520 262144 μ u + 2 , v k + 1200 262144 μ u - 2 , v + 1 k + 14400 262144 μ u - 1 , v + 1 k + 30240 262144 μ u , v + 1 k + 14400 262144 μ u + 1 , v + 1 k + 1200 262144 μ u + 2 , v + 1 k + 100 262144 μ u - 2 , v + 2 k + 1200 262144 μ u - 1 , v + 2 k + 2520 262144 μ u , v + 2 k + 1200 262144 μ u + 1 , v + 2 k + 100 262144 μ u + 2 , v + 2 k , μ 2 u + 1 , 2 v k + 1 = 10 262144 μ u - 2 , v - 2 k + 450 262144 μ u - 1 , v - 2 k + 2100 262144 μ u , v - 2 k + 2100 262144 μ u + 1 , v - 2 k + 450 262144 μ u + 2 , v - 2 k + 10 262144 μ u + 3 , v - 2 k + 120 262144 μ u - 2 , v - 1 k + 5400 262144 μ u - 1 , v - 1 k + 25200 262144 μ u , v - 1 k + 25200 262144 μ u + 1 , v - 1 k + 5400 262144 μ u + 2 , v - 1 k + 120 262144 μ u + 3 , v - 1 k + 252 262144 μ u - 2 , v k + 11340 262144 μ u - 1 , v k + 52920 262144 μ u , v k + 52920 262144 μ u + 1 , v k + 11340 262144 μ u + 2 , v k + 252 262144 μ u + 3 , v k + 120 262144 μ u - 2 , v + 1 k + 5400 262144 μ u - 1 , v + 1 k + 25200 262144 μ u , v + 1 k + 25200 262144 μ u + 1 , v + 1 k + 5400 262144 μ u + 2 , v + 1 k + 120 262144 μ u + 3 , v + 1 k + 10 262144 μ u - 2 , v + 2 k + 450 262144 μ u - 1 , v + 2 k + 2100 262144 μ u , v + 2 k + 2100 262144 μ u + 1 , v + 2 k + 450 262144 μ u + 2 , v + 2 k + 10 262144 μ u + 3 , v + 2 k , μ 2 u , 2 v + 1 k + 1 = 10 262144 μ u - 2 , v - 2 k + 120 262144 μ u - 1 , v - 2 k + 252 262144 μ u , v - 2 k + 120 262144 μ u + 1 , v - 2 k + 10 262144 μ u + 2 , v - 2 k + 450 262144 μ u - 2 , v - 1 k + 5400 262144 μ u - 1 , v - 1 k + 11340 262144 μ u , v - 1 k + 5400 262144 μ u + 1 , v - 1 k + 450 262144 μ u + 2 , v - 1 k + 2100 262144 μ u - 2 , v k + 25200 262144 μ u - 1 , v k + 52920 262144 μ u , v k + 25200 262144 μ u + 1 , v k + 2100 262144 μ u + 2 , v k + 2100 262144 μ u - 2 , v + 1 k + 25200 262144 μ u - 1 , v + 1 k + 52920 262144 μ u , v + 1 k + 25200 262144 μ u + 1 , v + 1 k + 2100 262144 μ u + 2 , v + 1 k + 450 262144 μ u - 2 , v + 2 k + 5400 262144 μ u - 1 , v + 2 k + 11340 262144 μ u , v + 2 k + 5400 262144 μ u + 1 , v + 2 k + 450 262144 μ u + 2 , v + 2 k + 10 262144 μ u - 2 , v + 3 k + 120 262144 μ u - 1 , v + 3 k + 252 262144 μ u , v + 3 k + 120 262144 μ u + 1 , v + 3 k + 10 262144 μ u + 2 , v + 3 k , μ 2 u + 1 , 2 v + 1 k + 1 = 1 262144 μ u - 2 , v - 2 k + 45 262144 μ u - 1 , v - 2 k + 210 262144 μ u , v - 2 k + 210 262144 μ u + 1 , v - 2 k + 45 262144 μ u + 2 , v - 2 k + 1 262144 μ u + 3 , v - 2 k + 45 262144 μ u - 2 , v - 1 k + 2025 262144 μ u - 1 , v - 1 k + 9450 262144 μ u , v - 1 k + 9450 262144 μ u + 1 , v - 1 k + 2025 262144 μ u + 2 , v - 1 k + 45 262144 μ u + 3 , v - 1 k + 210 262144 μ u - 2 , v k + 9450 262144 μ u - 1 , v k + 44100 262144 μ u , v k + 44100 262144 μ u + 1 , v k + 9450 262144 μ u + 2 , v k + 210 262144 μ u + 3 , v k + 210 262144 μ u - 2 , v + 1 k + 9450 262144 μ u - 1 , v + 1 k + 44100 262144 μ u , v + 1 k + 44100 262144 μ u + 1 , v + 1 k + 9450 262144 μ u + 2 , v + 1 k + 210 262144 μ u + 3 , v + 1 k + 45 262144 μ u - 2 , v + 2 k + 2025 262144 μ u - 1 , v + 2 k + 9450 262144 μ u , v + 2 k + 9450 262144 μ u + 1 , v + 2 k + 2025 262144 μ u + 2 , v + 2 k + 45 262144 μ u + 3 , v + 2 k + 1 262144 μ u - 2 , v + 3 k + 45 262144 μ u - 1 , v + 3 k + 210 262144 μ u , v + 3 k + 210 262144 μ u + 1 , v + 3 k + 45 262144 μ u + 2 , v + 3 k + 1 262144 μ u + 3 , v + 3 k .

3.3. Analysis of Nine-tic B-Spline Tensor Product SS

In this section, we present C 9 continuous nine-tic B-Spline tensor product SS. To check the continuity of the nine-tic B-Spline tensor product SS (Equation (11)), we apply similar analysis tools to those in the case. From Equation (8) for u = 0 , v = 0 and then from Equation (9), we get
η 0 , 0 ( x 1 , x 2 ) = η ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 262144 1 + x 1 10 1 + x 2 10 .
This implies
η 0 , 0 ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 262144 ( 1 + 45 x 1 2 + 25200 x 1 4 x 2 7 + 9450 x 1 4 x 2 8 + 2100 x 1 4 x 2 9 + 45 x 2 2 + 45 x 2 8 + 1200 x 1 3 x 2 9 + 5400 x 1 3 x 2 8 + 210 x 1 4 x 2 10 + 2520 x 1 5 x 2 + 11340 x 1 5 x 2 2 + 30240 x 1 5 x 2 3 + 52920 x 1 5 x 2 4 + 63504 x 1 5 x 2 5 + 52920 x 1 5 x 2 6 + 30240 x 1 5 x 2 7 + 11340 x 1 5 x 2 8 + 2520 x 1 5 x 2 9 + 252 x 1 5 x 2 10 + 2100 x 1 6 x 2 + 9450 x 1 6 x 2 2 + 25200 x 1 6 x 2 3 + 44100 x 1 6 x 2 4 + 52920 x 1 6 x 2 5 + 44100 x 1 6 x 2 6 + 25200 x 1 6 x 2 7 + 9450 x 1 6 x 2 8 + 2100 x 1 6 x 2 9 + 210 x 1 6 x 2 10 + 1200 x 1 7 x 2 + 5400 x 1 7 x 2 2 + 14400 x 1 7 x 2 3 + 25200 x 1 7 x 2 4 + 30240 x 1 7 x 2 5 + 25200 x 1 7 x 2 6 + 14400 x 1 7 x 2 7 + 5400 x 1 7 x 2 8 + 1200 x 1 7 x 2 9 + 120 x 1 7 x 2 10 + 450 x 1 8 x 2 + 2025 x 1 8 x 2 2 + 5400 x 1 8 x 2 3 + 9450 x 1 8 x 2 4 + 11340 x 1 8 x 2 5 + 9450 x 1 8 x 2 6 + 5400 x 1 8 x 2 7 + 2025 x 1 8 x 2 8 + 450 x 1 8 x 2 9 + 45 x 1 8 x 2 10 + 100 x 1 9 x 2 + 450 x 1 9 x 2 2 + 1200 x 1 9 x 2 3 + 2100 x 1 9 x 2 4 + 2520 x 1 9 x 2 5 + 2100 x 1 9 x 2 6 + 1200 x 1 9 x 2 7 + 450 x 1 9 x 2 8 + 100 x 1 9 x 2 9 + 10 x 1 9 x 2 10 + 10 x 1 10 x 2 + 45 x 1 10 x 2 2 + 120 x 1 10 x 2 3 + 210 x 1 10 x 2 4 + 252 x 1 10 x 2 5 + 210 x 1 10 x 2 6 + 120 x 1 10 x 2 7 + 45 x 1 10 x 2 8 + 10 x 1 10 x 2 9 + x 1 10 x 2 10 + 210 x 2 4 + 44100 x 1 4 x 2 4 + 52920 x 1 4 x 2 5 + 44100 x 1 4 x 2 6 + 252 x 2 5 + 210 x 2 6 + 120 x 2 7 + x 2 10 + 120 x 2 3 + 10 x 2 9 + 252 x 1 5 + 210 x 1 4 + 120 x 1 3 + 120 x 1 7 + 210 x 1 6 + 45 x 1 8 + x 1 10 + 10 x 1 9 + 100 x 1 x 2 + 450 x 1 x 2 2 + 1200 x 1 x 2 3 + 2100 x 1 x 2 4 + 2520 x 1 x 2 5 + 2100 x 1 x 2 6 + 1200 x 1 x 2 7 + 450 x 1 x 2 8 + 100 x 1 x 2 9 + 10 x 1 x 2 10 + 450 x 1 2 x 2 + 2025 x 1 2 x 2 2 + 5400 x 1 2 x 2 3 + 9450 x 1 2 x 2 4 + 11340 x 1 2 x 2 5 + 9450 x 1 2 x 2 6 + 5400 x 1 2 x 2 7 + 2025 x 1 2 x 2 8 + 450 x 1 2 x 2 9 + 45 x 1 2 x 2 10 + 1200 x 1 3 x 2 + 5400 x 1 3 x 2 2 + 14400 x 1 3 x 2 3 + 25200 x 1 3 x 2 4 + 30240 x 1 3 x 2 5 + 25200 x 1 3 x 2 6 + 14400 x 1 3 x 2 7 + 2100 x 1 4 x 2 + 9450 x 1 4 x 2 2 + 120 x 1 3 x 2 10 + 10 x 1 + 10 x 2 + 25200 x 1 4 x 2 3 ) .
If S 0 , 0 [ 1 ] and S 0 , 0 [ 2 ] are SSs corresponding to the masks η 0 , 0 [ 1 ] ( x 1 , x 2 ) and η 0 , 0 [ 2 ] ( x 1 , x 2 ) , respectively, then
η 0 , 0 [ 1 ] ( x 1 , x 2 ) = η 0 , 0 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 262144 1 + x 1 9 1 + x 2 10
and
η 0 , 0 [ 2 ] ( x 1 , x 2 ) = η 0 , 0 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 262144 1 + x 1 10 1 + x 2 9 .
This implies
η 0 , 0 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 262144 { 1 + 1260 x 1 5 x 2 9 + 5670 x 1 4 x 2 8 + 3780 x 1 6 x 2 2 + 5670 x 1 5 x 2 8 + 15120 x 1 5 x 2 7 + 3780 x 1 3 x 2 2 + 26460 x 1 5 x 2 6 + 31752 x 1 5 x 2 5 + 9 x 1 + 26460 x 1 5 x 2 4 + 15120 x 1 5 x 2 3 + 5670 x 1 5 x 2 2 + 84 x 1 3 + 126 x 1 4 x 2 10 + 1260 x 1 5 x 2 + 15120 x 1 4 x 2 7 + 126 x 1 4 + 1260 x 1 4 x 2 9 + 26460 x 1 4 x 2 6 + 126 x 1 5 + 840 x 1 6 x 2 + 84 x 1 6 + 36 x 1 2 + 45 x 2 2 + 10 x 2 + 360 x 1 2 x 2 + 9 x 1 x 2 10 + 90 x 1 x 2 9 + 405 x 1 x 2 8 + 1080 x 1 x 2 7 + 1890 x 1 x 2 6 + 2268 x 1 x 2 5 + 1890 x 1 x 2 4 + 1080 x 1 x 2 3 + 405 x 1 x 2 2 + 90 x 1 x 2 + 7560 x 1 2 x 2 4 + 4320 x 1 2 x 2 3 + 1620 x 1 2 x 2 2 + 9072 x 1 2 x 2 5 + 36 x 1 7 + 31752 x 1 4 x 2 5 + 36 x 1 2 x 2 10 + 360 x 1 2 x 2 9 + 1620 x 1 2 x 2 8 + 4320 x 1 2 x 2 7 + 7560 x 1 2 x 2 6 + 4320 x 1 7 x 2 3 + 1620 x 1 7 x 2 2 + 360 x 1 7 x 2 + 84 x 1 6 x 2 10 + 840 x 1 6 x 2 9 + 3780 x 1 6 x 2 8 + 10080 x 1 6 x 2 7 + 17640 x 1 6 x 2 6 + 21168 x 1 6 x 2 5 + 17640 x 1 6 x 2 4 + 10080 x 1 6 x 2 3 + 840 x 1 3 x 2 + 360 x 1 7 x 2 9 + 1620 x 1 7 x 2 8 + 4320 x 1 7 x 2 7 + 7560 x 1 7 x 2 6 + 9072 x 1 7 x 2 5 + 7560 x 1 7 x 2 4 + 26460 x 1 4 x 2 4 + 9 x 1 8 + 405 x 1 8 x 2 2 + 90 x 1 8 x 2 + 36 x 1 7 x 2 10 + 1890 x 1 8 x 2 4 + 1080 x 1 8 x 2 3 + 90 x 1 8 x 2 9 + 405 x 1 8 x 2 8 + 1080 x 1 8 x 2 7 + 1890 x 1 8 x 2 6 + 120 x 2 3 + 2268 x 1 8 x 2 5 + 120 x 1 9 x 2 3 + 45 x 1 9 x 2 2 + 10 x 1 9 x 2 + 9 x 1 8 x 2 10 + x 1 9 + 15120 x 1 4 x 2 3 + 10 x 1 9 x 2 9 + 45 x 1 9 x 2 8 + 120 x 1 9 x 2 7 + 210 x 1 9 x 2 6 + 252 x 1 9 x 2 5 + 210 x 1 9 x 2 4 + 210 x 2 4 + 252 x 2 5 + 1260 x 1 4 x 2 + 84 x 1 3 x 2 10 + 5670 x 1 4 x 2 2 + x 1 9 x 2 10 + 840 x 1 3 x 2 9 + 120 x 2 7 + 10080 x 1 3 x 2 7 + 45 x 2 8 + 210 x 2 6 + 3780 x 1 3 x 2 8 + 126 x 1 5 x 2 10 + 17640 x 1 3 x 2 6 + x 2 10 + 17640 x 1 3 x 2 4 + 10080 x 1 3 x 2 3 + 10 x 2 9 + 21168 x 1 3 x 2 5 } ,
and
η 0 , 0 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 262144 { 1 + 252 x 1 5 x 2 9 + 1890 x 1 4 x 2 8 + 7560 x 1 6 x 2 2 + 2268 x 1 5 x 2 8 + 9072 x 1 5 x 2 7 + 4320 x 1 3 x 2 2 + 21168 x 1 5 x 2 6 + 31752 x 1 5 x 2 5 + 10 x 1 + 31752 x 1 5 x 2 4 + 21168 x 1 5 x 2 3 + 9072 x 1 5 x 2 2 + 120 x 1 3 + 2268 x 1 5 x 2 + 7560 x 1 4 x 2 7 + 210 x 1 4 + 210 x 1 4 x 2 9 + 17640 x 1 4 x 2 6 + 252 x 1 5 + 1890 x 1 6 x 2 + 210 x 1 6 + 45 x 1 2 + 36 x 2 2 + 9 x 2 + 405 x 1 2 x 2 + 10 x 1 x 2 9 + 90 x 1 x 2 8 + 360 x 1 x 2 7 + 840 x 1 x 2 6 + 1260 x 1 x 2 5 + 1260 x 1 x 2 4 + 840 x 1 x 2 3 + 360 x 1 x 2 2 + 90 x 1 x 2 + 5670 x 1 2 x 2 4 + 3780 x 1 2 x 2 3 + 1620 x 1 2 x 2 2 + 5670 x 1 2 x 2 5 + 120 x 1 7 + 26460 x 1 4 x 2 5 + 45 x 1 2 x 2 9 + 405 x 1 2 x 2 8 + 1620 x 1 2 x 2 7 + 3780 x 1 2 x 2 6 + 10080 x 1 7 x 2 3 + 4320 x 1 7 x 2 2 + 1080 x 1 7 x 2 + 210 x 1 6 x 2 9 + 1890 x 1 6 x 2 8 + 7560 x 1 6 x 2 7 + 17640 x 1 6 x 2 6 + 26460 x 1 6 x 2 5 + 26460 x 1 6 x 2 4 + 17640 x 1 6 x 2 3 + 1080 x 1 3 x 2 + 120 x 1 7 x 2 9 + 1080 x 1 7 x 2 8 + 4320 x 1 7 x 2 7 + 10080 x 1 7 x 2 6 + 15120 x 1 7 x 2 5 + 15120 x 1 7 x 2 4 + 26460 x 1 4 x 2 4 + 45 x 1 8 + 1620 x 1 8 x 2 2 + 405 x 1 8 x 2 + 5670 x 1 8 x 2 4 + 3780 x 1 8 x 2 3 + 45 x 1 8 x 2 9 + 405 x 1 8 x 2 8 + 1620 x 1 8 x 2 7 + 3780 x 1 8 x 2 6 + 84 x 2 3 + 5670 x 1 8 x 2 5 + 840 x 1 9 x 2 3 + 360 x 1 9 x 2 2 + 90 x 1 9 x 2 + 10 x 1 9 + 17640 x 1 4 x 2 3 + 10 x 1 9 x 2 9 + 90 x 1 9 x 2 8 + 360 x 1 9 x 2 7 + 840 x 1 9 x 2 6 + 1260 x 1 9 x 2 5 + 1260 x 1 9 x 2 4 + 126 x 2 4 + 126 x 2 5 + 1890 x 1 4 x 2 + 7560 x 1 4 x 2 2 + 120 x 1 3 x 2 9 + 36 x 2 7 + 4320 x 1 3 x 2 7 + 9 x 2 8 + 84 x 2 6 + 1080 x 1 3 x 2 8 + 10080 x 1 3 x 2 6 + 15120 x 1 3 x 2 4 + 10080 x 1 3 x 2 3 + x 2 9 + 15120 x 1 3 x 2 5 + x 1 10 + 9 x 1 10 x 2 + 36 x 1 10 x 2 2 + 84 x 1 10 x 2 3 + 126 x 1 10 x 2 4 + 126 x 1 10 x 2 5 + 84 x 1 10 x 2 6 + 36 x 1 10 x 2 7 + 9 x 1 10 x 2 8 + x 1 10 x 2 9 } .
By utilizing Equation (10), we get
1 2 S 0 , 0 [ 1 ] = 1 2 max 1 262144 1 + 5670 + 3780 + 126 + 126 + 26460 + 84 + 36 + 45 + 7560 + 1620 + 36 + 1620 + 7560 + 84 + 3780 + 17640 + 17640 + 26460 + 9 + 405 + 1890 + 405 + 1890 + 9 + 210 + 5670 + 45 + 210 + 1 ) | , 1 262144 10 + 10 + 120 + 252 + 120 + 90 + 1080 + 2268 + 1080 + 90 + 840 + 10080 + 21168 + 10080 + 840 + 1260 + 15120 + 31752 + 15120 + 1260 + 360 + 4320 + 9072 + 4320 + 360 , 1 262144 9 + 45 + 1 + 210 + 84 + 126 + 36 + 1 + 45 + 405 + 1890 + 1890 + 405 + 9 + 3780 + 17640 + 17640 + 3780 + 84 + 5670 + 26460 + 26460 + 5670 + 126 + 1620 + 7560 + 7560 + 1620 + 36 + 210 , 1 262144 10 + 1080 + 360 + 4320 + 9072 + 4320 + 360 + 1260 + 15120 + 31752 + 15120 + 1260 + 840 + 10080 + 21168 + 10080 + 840 + 90 + 1080 + 2268 + 120 + 252 + 120 + 10 + 90 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 0 , 0 [ 2 ] = 1 2 max 1 262144 1 + 45 + 210 + 210 + 126 + 1 + 45 + 36 + 84 + 9 + 3780 + 405 + 1620 + 5670 + 7560 + 26460 + 17640 + 1890 + 7560 + 26460 + 17640 + 1890 + 1620 + 5670 + 3780 + 405 + 84 + 9 + 36 + 126 , 1 262144 90 + 840 + 1080 + 10080 + 1260 + 360 + 10 + 15120 + 4320 + 120 + 2268 + 21168 + 31752 + 9072 + 252 + 90 + 10080 + 15120 + 4320 + 120 + 1080 + 1260 + 840 + 360 + 10 , 1 262144 120 + 252 + 120 + 10 + 1260 + 10 + 360 + 4320 + 15120 + 840 + 90 + 10080 + 1080 + 9072 + 31752 + 21168 + 2268 + 4320 + 15120 + 10080 + 1080 + 360 + 1260 + 840 + 90 , 1 262144 84 + 126 + 36 + 1 + 5670 + 1620 + 45 + 405 + 3780 + 1890 + 17640 + 26460 + 7560 + 210 + 1890 + 17640 + 26460 + 7560 + 210 + 3780 + 5670 + 1620 + 45 + 405 + 126 + 36 + 9 + 1 + 9 + 84 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 .
Let S 0 , 0 be the SS corresponding to the Laurent polynomial, η 0 , 0 ( x 1 , x 2 ) , then, by using Equation (10), from Equations (13) and (14), we have that S u , v [ k ] ; k = 1 , 2 , & u , v = 0 are contractive, thus by Theorem 7, the SSs S u , v , corresponding to masks η u , v ( x 1 , x 2 ) for u , v = 0 are convergent. Hence, by Theorem 8, the proposed SS S η is C 0 continuous.
By applying the above procedure repeatedly, we found that the proposed SS has C 9 continuity (the proof is given in Appendix A).

4. Numerical Examples

In this section, performance of our nine-tic B spline tensor product SS is discussed. The refinement algorithm of nine-tic B spline tensor product SS creates a new vertex position corresponding to both vertex and face of the original mesh. It is observed that the new vertices are weighted averages of the vertex points belonging to each pair (face, vertex) of the original mesh. For the nine-tic B spline tensor product case, these weights (going around a face) are:
{ 100 262144 , 1200 262144 , 2520 262144 , 1200 262144 , 100 262144 , 1200 262144 , 14400 262144 , 30240 262144 , 14400 262144 , 1200 262144 , 2520 262144 , 30240 262144 , 63504 262144 , 30240 262144 , 2520 262144 , 1200 262144 , 14400 262144 , 30240 262144 , 14400 262144 , 1200 262144 , 100 262144 , 1200 262144 , 2520 262144 , 1200 262144 , 100 262144 } .
The newly created vertices are then connected to form the faces of the refined control mesh.
The refined model is generated from the control polygon in the following way. Each vertex point is obtained in the proportion of [10: 120: 252: 120: 10:]/512 and each edge point is obtained in the proportion of [1: 45: 210: 210: 45: 1:]/512. A face point is achieved as the centroid of every mesh of the given control polygon, and vertex point is achieved as the normal of a vertex mesh in the control polygon. The new points are then associated with each other. There are two edges along each side of each vertex of the previous mesh. These pairs are related and form quadrilaterals over the old edges. Inside every control polygon, there are the same number of new vertices. These are related to each other inside the control polygon. Lastly, around every old vertex there is another vertex in the adjoining corner of each old polygon. These are associated to form another polygon with the same number of edges. The new mesh generates quadrilaterals for each edge in the old vertex, and makes a little n-sided polygon. Each n-sided polygon produces a n-sided polygon for each n-valence (valence being the number of edges that touch the vertex). After the first iteration of our SS, all vertices have a valence of four, thus resulting applications generate quadrilaterals for the vertices. To make a smooth model, the SS is applied repeatedly. In Figure 1, Figure 2 and Figure 3, show the visual performance of our proposed SS. We used MATLAB software for the implementation of our proposed SS as a plug in inanimation and modeling industry and achieved required refine model after applying the 5th level of the proposed SS.

Comparison of NURBS & Proposed SS

This section defines the comparison of the proposed scheme with NURBS. The NURBS is either a torus, disk or a tube and many NURBS patches are applied to form a surface models as shown in Figure 4. After the deformation of the NURBS surfaces, the cracks appears at the joints. In Figure 1, Figure 2 and Figure 3 shows that continues surfaces are generated as the limit of a sequence of successive refinements. All theother properties such as efficiency, compact support, local definition, affine invariance, simplicity and smoothness are the same properties as the NURBS have, but it will work for any topology. Subdivision is a data structure used to store mesh data in a convenient way so that the mesh information can be easily accessed. It is clearly seen that proposed SS shows smoothness in generating different curves.

5. Conclusions and Future Work

This paper contributes the nine-tic B-spline approximating bivariate SS to reduce the execution time needed to compute the subdivision process of quad meshes. We have discussed some interesting features such as polynomial generation, smoothness, joint spectral radius, holder continuity, limit stencils of the proposed SS. We used Laurent polynomial (symbol) method to find the smoothness of our proposed SS and it is observed that our proposed SS gives good results for modeling of curves and surfaces as shown in figures. There are many directions of future work. Firstly, spreading of tensor product SS to a mesh with arbitrary topology. We are also interested to work on reproducing exact surface models by SS. If we could generate exact surface models having singular points, we will be able to solve some additional issues regarding SS.

Author Contributions

Conceptualization, A.G., M.B. and M.I.; methodology, K.S.N. and D.B.; software, A.G., S.M.H. and R.M.; validation, A.G. and K.S.N.; formal analysis, S.M.H., D.B. and R.M.; writing—original draft preparation, A.G., M.I., M.B., S.M.H. and R.M.; writing—review and editing, K.S.N. and D.B.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

To check C 9 continuity, we now take u , v = 0 , 1 , 2 , . . . , 9 in Equation (8) and then from Equation (9), we get
η 0 , 9 ( x 1 , x 2 ) = 512 η ( x 1 , x 2 ) ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 512 1 + x 1 10 1 + x 2 ,
η 9 , 0 ( x 1 , x 2 ) = 512 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 = x 1 - 5 x 2 - 5 512 1 + x 1 1 + x 2 10 ,
η 9 , 1 ( x 1 , x 2 ) = 1024 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 ( 1 + x 2 ) = x 1 - 5 x 2 - 5 256 1 + x 1 1 + x 2 9 ,
η 1 , 9 ( x 1 , x 2 ) = 1024 η ( x 1 , x 2 ) ( 1 + x 1 ) ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 256 1 + x 1 9 1 + x 2 ,
η 2 , 9 ( x 1 , x 2 ) = 2048 η ( x 1 , x 2 ) ( 1 + x 1 ) 2 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 128 1 + x 1 8 1 + x 2 1 ,
η 9 , 2 ( x 1 , x 2 ) = 2048 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 ( 1 + x 2 ) 2 = x 1 - 5 x 2 - 5 128 1 + x 1 1 1 + x 2 8 ,
η 3 , 9 ( x 1 , x 2 ) = 4096 η ( x 1 , x 2 ) ( 1 + x 1 ) 3 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 64 1 + x 1 7 1 + x 2 ,
η 9 , 3 ( x 1 , x 2 ) = 4096 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 ( 1 + x 2 ) 3 = x 1 - 5 x 2 - 5 64 1 + x 1 1 + x 2 7 ,
η 4 , 9 ( x 1 , x 2 ) = 8192 η ( x 1 , x 2 ) ( 1 + x 1 ) 4 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 32 1 + x 1 6 1 + x 2 ,
η 9 , 4 ( x 1 , x 2 ) = 8192 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 ( 1 + x 2 ) 4 = x 1 - 5 x 2 - 5 32 1 + x 1 1 + x 2 6 ,
η 9 , 5 ( x 1 , x 2 ) = 16384 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 ( 1 + x 2 ) 5 = x 1 - 5 x 2 - 5 16 1 + x 1 1 + x 2 5 ,
η 5 , 9 ( x 1 , x 2 ) = 16384 η ( x 1 , x 2 ) ( 1 + x 1 ) 5 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 16 1 + x 1 5 1 + x 2 ,
η 9 , 6 ( x 1 , x 2 ) = 32768 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 ( 1 + x 2 ) 6 = x 1 - 5 x 2 - 5 8 1 + x 1 1 + x 2 4 ,
η 6 , 9 ( x 1 , x 2 ) = 32768 η ( x 1 , x 2 ) ( 1 + x 1 ) 6 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 8 1 + x 1 4 1 + x 2 ,
η 9 , 7 ( x 1 , x 2 ) = 65536 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 ( 1 + x 2 ) 7 = x 1 - 5 x 2 - 5 4 1 + x 1 1 + x 2 3 ,
η 7 , 9 ( x 1 , x 2 ) = 65536 η ( x 1 , x 2 ) ( 1 + x 1 ) 7 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 4 1 + x 1 3 1 + x 2 ,
η 8 , 9 ( x 1 , x 2 ) = 131072 η ( x 1 , x 2 ) ( 1 + x 1 ) 7 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 2 1 + x 1 2 1 + x 2 ,
η 9 , 8 ( x 1 , x 2 ) = 131072 η ( x 1 , x 2 ) ( 1 + x 1 ) 7 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 2 1 + x 1 1 + x 2 2 ,
η 9 , 9 ( x 1 , x 2 ) = 262144 η ( x 1 , x 2 ) ( 1 + x 1 ) 9 ( 1 + x 2 ) 9 = x 1 - 5 x 2 - 5 1 + x 1 1 + x 2 .
If S u , v [ 1 ] and S u , v [ 2 ] are a SSs corresponding to the mask η u , v [ 1 ] ( x 1 , x 2 ) and η u , v [ 2 ] ( x 1 , x 2 ) for u , v = 0 , 1 , 2 , . . . , 9 , then
η 9 , 0 [ 1 ] ( x 1 , x 2 ) = η 9 , 0 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 512 1 + x 2 10 ,
η 9 , 0 [ 2 ] ( x 1 , x 2 ) = η 9 , 0 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 512 1 + x 1 1 + x 2 9 ,
η 0 , 9 [ 1 ] ( x 1 , x 2 ) = η 0 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 512 1 + x 1 9 1 + x 2 ,
η 0 , 9 [ 2 ] ( x 1 , x 2 ) = η 0 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 512 1 + x 1 10 ,
η 9 , 1 [ 1 ] ( x 1 , x 2 ) = η 9 , 1 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 256 1 + x 2 9 ,
η 9 , 1 [ 2 ] ( x 1 , x 2 ) = η 9 , 1 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 256 1 + x 1 1 + x 2 8 ,
η 1 , 9 [ 1 ] ( x 1 , x 2 ) = η 1 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 256 1 + x 1 8 1 + x 2 ,
η 1 , 9 [ 2 ] ( x 1 , x 2 ) = η 1 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 256 1 + x 1 9 ,
η 2 , 9 [ 1 ] ( x 1 , x 2 ) = η 2 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 128 1 + x 1 7 1 + x 2 ,
η 2 , 9 [ 2 ] ( x 1 , x 2 ) = η 2 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 128 1 + x 1 8 ,
η 9 , 2 [ 1 ] ( x 1 , x 2 ) = η 9 , 2 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 128 1 + x 2 8 ,
η 9 , 2 [ 2 ] ( x 1 , x 2 ) = η 9 , 2 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 128 1 + x 1 1 + x 2 7 ,
η 3 , 9 [ 1 ] ( x 1 , x 2 ) = η 3 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 64 1 + x 1 6 1 + x 2 ,
η 3 , 9 [ 2 ] ( x 1 , x 2 ) = η 3 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 64 1 + x 1 7 ,
η 9 , 3 [ 1 ] ( x 1 , x 2 ) = η 9 , 3 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 64 1 + x 2 7 ,
η 9 , 3 [ 2 ] ( x 1 , x 2 ) = η 9 , 3 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 64 1 + x 1 1 + x 2 6 ,
η 4 , 9 [ 1 ] ( x 1 , x 2 ) = η 4 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 32 1 + x 1 5 1 + x 2 ,
η 4 , 9 [ 2 ] ( x 1 , x 2 ) = η 4 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 32 1 + x 1 6 ,
η 9 , 4 [ 1 ] ( x 1 , x 2 ) = η 9 , 4 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 32 1 + x 2 6 ,
η 9 , 4 [ 2 ] ( x 1 , x 2 ) = η 9 , 4 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 32 1 + x 1 1 + x 2 5 ,
η 5 , 9 [ 1 ] ( x 1 , x 2 ) = η 5 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 16 1 + x 1 4 1 + x 2 ,
η 5 , 9 [ 2 ] ( x 1 , x 2 ) = η 5 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 16 1 + x 1 5 ,
η 9 , 5 [ 1 ] ( x 1 , x 2 ) = η 9 , 5 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 16 1 + x 2 5 ,
η 9 , 5 [ 2 ] ( x 1 , x 2 ) = η 9 , 5 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 16 1 + x 1 1 + x 2 4 ,
η 6 , 9 [ 1 ] ( x 1 , x 2 ) = η 6 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 8 1 + x 1 3 1 + x 2 ,
η 6 , 9 [ 2 ] ( x 1 , x 2 ) = η 6 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 8 1 + x 1 4 ,
η 9 , 6 [ 1 ] ( x 1 , x 2 ) = η 9 , 6 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 8 1 + x 2 4 ,
η 9 , 6 [ 2 ] ( x 1 , x 2 ) = η 9 , 6 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 8 1 + x 1 1 + x 2 3 ,
η 7 , 9 [ 1 ] ( x 1 , x 2 ) = η 7 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 4 1 + x 1 2 1 + x 2 ,
η 7 , 9 [ 2 ] ( x 1 , x 2 ) = η 7 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 4 1 + x 1 3 ,
η 9 , 7 [ 1 ] ( x 1 , x 2 ) = η 9 , 7 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 4 1 + x 2 3 ,
η 9 , 7 [ 2 ] ( x 1 , x 2 ) = η 9 , 7 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 4 1 + x 1 1 + x 2 2 ,
η 8 , 9 [ 1 ] ( x 1 , x 2 ) = η 8 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 2 1 + x 1 1 + x 2 ,
η 8 , 9 [ 2 ] ( x 1 , x 2 ) = η 8 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 2 1 + x 1 2 ,
η 9 , 8 [ 1 ] ( x 1 , x 2 ) = η 9 , 8 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 2 1 + x 2 2 ,
η 9 , 8 [ 2 ] ( x 1 , x 2 ) = η 9 , 8 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 2 1 + x 1 1 + x 2 ,
η 9 , 9 [ 1 ] ( x 1 , x 2 ) = η 9 , 9 ( x 1 , x 2 ) 1 + x 1 = x 1 - 5 x 2 - 5 1 + x 2 ,
η 9 , 9 [ 2 ] ( x 1 , x 2 ) = η 9 , 9 ( x 1 , x 2 ) 1 + x 2 = x 1 - 5 x 2 - 5 1 + x 1 .
This implies
η 9 , 0 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 512 { x 2 10 + 10 x 2 9 + 45 x 2 8 + 120 x 2 7 + 210 x 2 6 + 252 x 2 5 + 210 x 2 4 + 120 x 2 3 + 45 x 2 2 + 10 x 2 + 1 } ,
η 9 , 0 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 512 { x 1 x 2 9 + 9 x 1 x 2 8 + x 2 9 + 36 x 1 x 2 7 + 9 x 2 8 + 84 x 1 x 2 6 + 36 x 2 7 + 126 x 1 x 2 5 + 84 x 2 6 + 126 x 1 x 2 4 + 126 x 2 5 + 84 x 1 x 2 3 + 126 x 2 4 + 36 x 1 x 2 2 + 84 x 2 3 + 9 x 1 x 2 + 36 x 2 2 + x 1 + 9 x 2 + 1 } ,
η 0 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 512 { x 1 9 x 2 + x 1 9 + 9 x 1 8 x 2 + 9 x 1 8 + 36 x 1 7 x 2 + 36 x 1 7 + 84 x 1 6 x 2 + 84 x 1 6 + 126 x 1 5 x 2 + 126 x 1 5 + 126 x 1 4 x 2 + 126 x 1 4 + 84 x 1 3 x 2 + 84 x 1 3 + 36 x 1 2 x 2 + 36 x 1 2 + 9 x 1 x 2 + 9 x 1 + x 2 + 1 } ,
η 0 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 512 { x 1 10 + 10 x 1 9 + 45 x 1 8 + 120 x 1 7 + 210 x 1 6 + 252 x 1 5 + 210 x 1 4 + 120 x 1 3 + 45 x 1 2 + 10 x 1 + 1 } ,
η 9 , 1 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 256 { x 2 9 + 9 x 2 8 + 36 x 2 7 + 84 x 2 6 + 126 x 2 5 + 126 x 2 4 + 84 x 2 3 + 36 x 2 2 + 9 x 2 + 1 } ,
η 9 , 1 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 256 { x 1 x 2 8 + 8 x 1 x 2 7 + x 2 8 + 28 x 1 x 2 6 + 8 x 2 7 + 56 x 1 x 2 5 + 28 x 2 6 + 70 x 1 x 2 4 + 56 x 2 5 + 56 x 1 x 2 3 + 70 x 2 4 + 28 x 1 x 2 2 + 56 x 2 3 + 8 x 1 x 2 + 28 x 2 2 + x 1 + 8 x 2 + 1 } ,
η 1 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 256 { x 1 8 x 2 + x 1 8 + 8 x 1 7 x 2 + 8 x 1 7 + 28 x 1 6 x 2 + 28 x 1 6 + 56 x 1 5 x 2 + 56 x 1 5 + 70 x 1 4 x 2 + 70 x 1 4 + 56 x 1 3 x 2 + 56 x 1 3 + 28 x 1 2 x 2 + 28 x 1 2 + 8 x 1 x 2 + 8 x 1 + x 2 + 1 } ,
η 1 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 256 { x 1 9 + 9 x 1 8 + 36 x 1 7 + 84 x 1 6 + 126 x 1 5 + 126 x 1 4 + 84 x 1 3 + 36 x 1 2 + 9 x 1 + 1 } ,
η 9 , 2 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 128 { x 2 8 + 8 x 2 7 + 28 x 2 6 + 56 x 2 5 + 70 x 2 4 + 56 x 2 3 + 28 x 2 2 + 8 x 2 + 1 } ,
η 9 , 2 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 128 { x 1 x 2 7 + 7 x 1 x 2 6 + x 2 7 + 21 x 1 x 2 5 + 7 x 2 6 + 35 x 1 x 2 4 + 21 x 2 5 + 35 x 1 x 2 3 + 35 x 2 4 + 21 x 1 x 2 2 + 35 x 2 3 + 7 x 1 x 2 + 21 x 2 2 + x 1 + 7 x 2 + 1 } ,
η 2 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 128 { x 1 7 x 2 + x 1 7 + 7 x 1 6 x 2 + 7 x 1 6 + 21 x 1 5 x 2 + 21 x 1 5 + 35 x 1 4 x 2 + 35 x 1 4 + 35 x 1 3 x 2 + 35 x 1 3 + 21 x 1 2 x 2 + 21 x 1 2 + 7 x 1 x 2 + 7 x 1 + x 2 + 1 } ,
η 2 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 128 { x 1 8 + 8 x 1 7 + 28 x 1 6 + 56 x 1 5 + 70 x 1 4 + 56 x 1 3 + 28 x 1 2 + 8 x 1 + 1 } ,
η 3 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 64 { x 1 6 x 2 + x 1 6 + 6 x 1 5 x 2 + 6 x 1 5 + 15 x 1 4 x 2 + 15 x 1 4 + 20 x 1 3 x 2 + 20 x 1 3 + 15 x 1 2 x 2 + 15 x 1 2 + 6 x 1 x 2 + 6 x 1 + x 2 + 1 } ,
η 3 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 64 { x 1 7 + 7 x 1 6 + 21 x 1 5 + 35 x 1 4 + 35 x 1 3 + 21 x 1 2 + 7 x 1 + 1 } ,
η 9 , 3 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 64 { x 2 7 + 7 x 2 6 + 21 x 2 5 + 35 x 2 4 + 35 x 2 3 + 21 x 2 2 + 7 x 2 + 1 } ,
η 9 , 3 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 64 { x 1 x 2 6 + 6 x 1 x 2 5 + x 2 6 + 15 x 1 x 2 4 + 6 x 2 5 + 20 x 1 x 2 3 + 15 x 2 4 + 15 x 1 x 2 2 + 20 x 2 3 + 6 x 1 x 2 + 15 x 2 2 + x 1 + 6 x 2 + 1 } ,
η 4 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 32 { x 1 5 x 2 + x 1 5 + 5 x 1 4 x 2 + 5 x 1 4 + 10 x 1 3 x 2 + 10 x 1 3 + 10 x 1 2 x 2 + 10 x 1 2 + 5 x 1 x 2 + 5 x 1 + x 2 + 1 } ,
η 4 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 32 { x 1 6 + 6 x 1 5 + 15 x 1 4 + 20 x 1 3 + 15 x 1 2 + 6 x 1 + 1 } ,
η 9 , 4 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 32 { x 2 6 + 6 x 2 5 + 15 x 2 4 + 20 x 2 3 + 15 x 2 2 + 6 x 2 + 1 } ,
η 9 , 4 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 32 { x 1 x 2 5 + 5 x 1 x 2 4 + x 2 5 + 10 x 1 x 2 3 + 5 x 2 4 + 10 x 1 x 2 2 + 10 x 2 3 + 5 x 1 x 2 + 10 x 2 2 + x 1 + 5 x 2 + 1 } ,
η 5 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 16 { x 1 4 x 2 + x 1 4 + 4 x 1 3 x 2 + 4 x 1 3 + 6 x 1 2 x 2 + 6 x 1 2 + 4 x 1 x 2 + 4 x 1 + x 2 + 1 } ,
η 5 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 16 { x 1 5 + 5 x 1 4 + 10 x 1 3 + 10 x 1 2 + 5 x 1 + 1 } ,
η 9 , 5 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 16 { x 2 5 + 5 x 2 4 + 10 x 2 3 + 10 x 2 2 + 5 x 2 + 1 } ,
η 9 , 5 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 16 { x 1 x 2 4 + 4 x 1 x 2 3 + x 2 4 + 6 x 1 x 2 2 + 4 x 2 3 + 4 x 1 x 2 + 6 x 2 2 + x 1 + 4 x 2 + 1 } ,
η 6 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 8 { x 1 3 x 2 + x 1 3 + 3 x 1 2 x 2 + 3 x 1 2 + 3 x 1 x 2 + 3 x 1 + x 2 + 1 } ,
η 6 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 8 { x 1 4 + 4 x 1 3 + 6 x 1 2 + 4 x 1 + 1 } ,
η 9 , 6 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 8 { x 2 4 + 4 x 2 3 + 6 x 2 2 + 4 x 2 + 1 } ,
η 9 , 6 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 8 { x 1 x 2 3 + 3 x 1 x 2 2 + x 2 3 + 3 x 1 x 2 + 3 x 2 2 + x 1 + 3 x 2 + 1 } ,
η 7 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 4 { x 1 2 x 2 + x 1 2 + 2 x 1 x 2 + 2 x 1 + x 2 + 1 } ,
η 7 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 4 { x 1 3 + 3 x 1 2 + 3 x 1 + 1 } ,
η 9 , 7 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 4 { x 2 3 + 3 x 2 2 + 3 x 2 + 1 } ,
η 9 , 7 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 4 { x 1 x 2 2 + 2 x 1 x 2 + x 2 2 + x 1 + 2 x 2 + 1 } ,
η 8 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 2 { x 1 x 2 + x 1 + x 2 + 1 } ,
η 8 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 2 { x 1 2 + 2 x 1 + 1 } ,
η 9 , 8 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 2 { x 2 2 + 2 x 2 + 1 } ,
η 9 , 8 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 2 { x 1 x 2 + x 1 + x 2 + 1 } ,
η 9 , 9 [ 1 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 1 + x 2 ,
η 9 , 9 [ 2 ] ( x 1 , x 2 ) = x 1 - 5 x 2 - 5 1 + x 1 } .
By utilizing Equation (10), we get,
1 2 S 9 , 0 [ 1 ] = 1 2 max 1 512 1 + 45 + 210 + 210 + 45 + 1 , 1 512 10 + 120 + 252 + 120 + 10 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 0 [ 2 ] = 1 2 max 1 512 1 + 36 + 126 + 84 + 9 , 1 512 9 + 84 + 126 + 36 + 1 , 1 512 1 + 36 + 126 + 84 + 9 , 1 512 9 + 84 + 126 + 36 + 1 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 0 , 9 [ 1 ] = 1 2 max 1 512 1 + 36 + 126 + 84 + 9 , 1 512 9 + 84 + 126 + 36 + 1 , 1 512 1 + 36 + 126 + 84 + 9 , 1 512 9 + 84 + 126 + 36 + 1 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 0 , 9 [ 2 ] = 1 2 max 1 512 1 + 45 + 210 + 210 + 45 + 1 , 1 512 10 + 120 + 252 + 120 + 10 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 1 [ 1 ] = 1 2 max 1 256 1 + 36 + 126 + 84 + 9 , 1 256 9 + 84 + 126 + 36 + 1 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 1 [ 2 ] = 1 2 max 1 256 1 + 28 + 70 + 28 + 1 , 1 256 8 + 56 + 56 + 8 , 1 256 1 + 28 + 70 + 28 + 1 , 1 256 56 + 8 + 8 + 56 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 1 , 9 [ 1 ] = 1 2 max 1 256 1 + 28 + 70 + 28 + 1 , 1 256 8 + 56 + 56 + 8 , 1 256 1 + 28 + 70 + 28 + 1 , 1 256 56 + 8 + 8 + 56 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 1 , 9 [ 2 ] = 1 2 max 1 256 1 + 36 + 126 + 84 + 9 , 1 256 9 + 84 + 126 + 36 + 1 } = 1 2 max 1 , 1 < 1 ,
1 2 S 2 , 9 [ 1 ] = 1 2 max 1 128 1 + 21 + 35 + 7 , 1 128 7 + 21 + 35 + 1 , 1 128 7 + 35 + 21 + 1 , 1 128 35 + 7 + 21 + 1 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 2 , 9 [ 2 ] = 1 2 max 1 128 1 + 28 + 70 + 28 + 1 , 1 128 8 + 56 + 56 + 8 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 2 [ 1 ] = 1 2 max 1 128 1 + 28 + 70 + 28 + 1 , 1 128 8 + 56 + 56 + 8 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 2 [ 2 ] = 1 2 max 1 128 1 + 21 + 35 + 7 , 1 128 7 + 21 + 35 + 1 , 1 128 7 + 35 + 21 + 1 , 1 128 35 + 7 + 21 + 1 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 3 , 9 [ 1 ] = 1 2 max 1 64 1 + 15 + 15 + 1 , 1 64 6 + 20 + 6 , 1 64 6 + 20 + 6 , 1 64 1 + 15 + 15 + 1 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 3 , 9 [ 2 ] = 1 2 max 1 64 7 + 21 + 35 + 1 , 1 64 1 + 21 + 35 + 7 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 3 [ 1 ] = 1 2 max 1 64 7 + 21 + 35 + 1 , 1 64 1 + 21 + 35 + 7 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 3 [ 2 ] = 1 2 max 1 64 1 + 15 + 15 + 1 , 1 64 6 + 20 + 6 , 1 64 6 + 20 + 6 , 1 64 1 + 15 + 15 + 1 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 4 , 9 [ 1 ] = 1 2 max 1 32 10 + 1 + 5 , 1 32 1 + 10 + 5 , 1 32 5 + 10 + 1 , 1 32 1 + 10 + 5 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 4 , 9 [ 2 ] = 1 2 max 1 32 6 + 20 + 6 , 1 32 1 + 15 + 15 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 4 [ 1 ] = 1 2 max 1 32 6 + 20 + 6 , 1 32 1 + 15 + 15 } = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 4 [ 2 ] = 1 2 max 1 32 10 + 1 + 5 , 1 32 1 + 10 + 5 , 1 32 5 + 10 + 1 , 1 32 1 + 10 + 5 } = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 5 , 9 [ 1 ] = 1 2 max 1 16 1 + 1 + 6 , 1 16 4 + 4 , 1 16 1 + 6 + 1 , 1 16 4 + 4 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 5 , 9 [ 2 ] = 1 2 max 1 16 1 + 5 + 10 , 1 16 5 + 1 + 10 = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 5 [ 1 ] = 1 2 max 1 16 1 + 5 + 10 , 1 16 5 + 1 + 10 = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 5 [ 2 ] = 1 2 max 1 16 1 + 1 + 6 , 1 16 4 + 4 , 1 16 1 + 6 + 1 , 1 16 4 + 4 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 6 , 9 [ 1 ] = 1 2 max 1 8 1 + 3 , 1 8 3 + 1 , 1 8 1 + 3 , 1 8 3 + 1 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 6 , 9 [ 2 ] = 1 2 max 1 8 1 + 6 + 1 , 1 8 4 + 4 = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 6 [ 1 ] = 1 2 max 1 8 1 + 6 + 1 , 1 8 4 + 4 = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 6 [ 2 ] = 1 2 max 1 8 1 + 3 , 1 8 3 + 1 , 1 8 1 + 3 , 1 8 3 + 1 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 7 , 9 [ 1 ] = 1 2 max 1 4 1 + 1 , 1 4 2 , 1 4 2 , 1 4 1 + 1 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 7 , 9 [ 2 ] = 1 2 max 1 4 1 + 3 , 1 4 3 + 1 , = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 7 [ 1 ] = 1 2 max 1 4 3 + 1 , 1 4 1 + 3 = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 7 [ 2 ] = 1 2 max 1 4 1 + 1 , 1 4 2 , 1 4 1 + 1 , 1 4 2 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 8 , 9 [ 1 ] = 1 2 max 1 2 1 , 1 2 1 , 1 2 1 , 1 2 1 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 8 , 9 [ 2 ] = 1 2 max 1 2 1 , 1 2 2 , 1 2 1 , = 1 2 max 1 2 , 1 , 1 2 , < 1 ,
1 2 S 9 , 8 [ 1 ] = 1 2 max 1 2 1 , 1 2 2 , 1 2 1 , = 1 2 max 1 2 , 1 , 1 2 , < 1 ,
1 2 S 9 , 8 [ 2 ] = 1 2 max 1 2 1 , 1 2 1 , 1 2 1 , 1 2 1 = 1 2 max 1 2 , 1 2 , 1 2 , 1 2 < 1 ,
1 2 S 9 , 9 [ 1 ] = 1 2 max ( 1 ) , ( 1 ) = 1 2 max 1 , 1 < 1 ,
1 2 S 9 , 9 [ 2 ] = 1 2 max ( 1 ) , ( 1 ) = 1 2 max 1 , 1 < 1 .
From Equations (A1)–(A38), we see that S u , v [ k ] ; k = 1 , 2 , & u , v = 0 , 1 , 2 , . . . , 9 are contractive, thus, by Theorem 7, the SSs S u , v , corresponding to masks η u , v ( x 1 , x 2 ) , for u , v = 0 , 1 , 2 , 3 , . . . , 9 are convergent. Hence, by Theorem 8, proposed SS S η is C 9 continuous.

References

  1. De Rham, G. Un peu de mathématiques à propos d’une courbe plane. Elem. Der Math. 1947, 2, 73–76. [Google Scholar]
  2. Chaikin, G.M. An algorithm for high-speed curve generation. Comput. Graph. Image Process. 1974, 3, 346–349. [Google Scholar] [CrossRef]
  3. Doo, D.; Sabin, M. Behaviour of recursive division surfaces near extraordinary points. Comput. Aided Des. 1978, 10, 356–360. [Google Scholar] [CrossRef]
  4. Catmull, E.; Clark, J. Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 1978, 10, 350–355. [Google Scholar] [CrossRef]
  5. Dyn, N.; Levine, D.; Gregory, J.A. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 1990, 9, 160–169. [Google Scholar] [CrossRef]
  6. Dyn, N.; Levin, D. Analysis of Hermite-type subdivision schemes. Ser. Approx. Decompos. 1995, 6, 117–124. [Google Scholar]
  7. Stam, J. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 19–24 July 1998; pp. 395–404. [Google Scholar]
  8. Hassan, M.; Dodgson, N.A. Ternary and Three-Point Univariate Subdivision Schemes; No. UCAM-CL-TR-520; University of Cambridge, Computer Laboratory: Cambridge, UK, 2001; pp. 1–15. [Google Scholar]
  9. Hassan, M.F.; Ivrissimitzis, I.P.; Dodgson, N.A.; Sabin, M.A. An interpolating 4-point C2 ternary stationary subdivision scheme. Comput. Aided Geom. Des. 2002, 19, 1–18. [Google Scholar] [CrossRef]
  10. Mustafa, G.; Liu, X. A subdivision scheme for volumetric models. Appl. Math. J. Chin. Univ. 2005, 20, 213–224. [Google Scholar] [CrossRef]
  11. Beccari, C.; Casciola, G.; Romani, L. An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control. Comput. Aided Geom. Des. 2007, 24, 210–219. [Google Scholar] [CrossRef]
  12. Mustafa, G.; Khan, F.; Ghaffar, A. The m-point approximating subdivision scheme. Lobachevskii J. Math. 2009, 30, 138–145. [Google Scholar] [CrossRef]
  13. Aslam, M.; Mustafa, G.; Ghaffar, A. The (2n-1)-Point Ternary Approximating and Interpolating subdivision schemes. J. Appl. Math. 2011, 2011. [Google Scholar] [CrossRef]
  14. Zheng, H.; Hu, M.; Peng, G. Ternary even symmetric 2n-point subdivision. In Proceedings of the Computational Intelligence and Software Engineering, CiSE, Wuhan, China, 11–13 December 2009; pp. 1–4. [Google Scholar]
  15. Mustafa, G.; Ghaffar, A.; Aslam, M. A subdivision-regularization framework for preventing over fitting of data by a model. Appl. Appl. Math. Int. J. 2013, 8, 178–190. [Google Scholar]
  16. Ghaffar, A.; Mustafa, G.; Qin, K. Construction and application of 3-point tensor product subdivision scheme. Appl. Math. 2013, 4, 477–485. [Google Scholar] [CrossRef]
  17. Mustafa, G.; Ghaffar, A.; Bari, M. The (2n-1)-point binary approximating subdivision scheme. In Proceedings of the Eighth International Conference on Digital Information Management (ICDIM 2013), Islamabad, Pakistan, 10–12 September 2013; pp. 363–368. [Google Scholar]
  18. Mustafa, G.; Ashraf, P.; Saba, N. A new class of binary approximating subdivision schemes. J. Teknol. 2016, 78, 65–72. [Google Scholar] [CrossRef]
  19. Hameed, R.; Mustafa, G. Construction and analysis of binary subdivision schemes for curves and surfaces originated from Chaikin points. Int. J. Anal. 2016, 2016. [Google Scholar] [CrossRef]
  20. Ghaffar, A.; Mustafa, G. An Alternative Method for Constructing Subdivision Algorithm. Sci. Int. 2016, 28, 5011–5015. [Google Scholar]
  21. Cheng, L.; Zhou, X. Necessary conditions for the convergence of subdivision schemes with finite masks. Appl. Math. Comput. 2017, 303, 34–41. [Google Scholar] [CrossRef]
  22. Akram, G.; Bibi, K.; Rehan, K.; Siddiqi, S.S. Shape preservation of 4-point interpolating non-stationary subdivision scheme. J. Comput. Appl. Math. 2017, 319, 480–492. [Google Scholar] [CrossRef]
  23. Manan, S.A.; Ghaffar, A.; Rizwan, M.; Rahman, G.; Kanwal, G. A subdivision approach to the approximate solution of 3rd order boundary value problem. Commun. Math. Appl. 2018, 9, 499–512. [Google Scholar]
  24. Kanwal, G.; Ghaffar, A.; Hafeezullah, M.M.; Manan, S.A.; Rizwan, M.; Rahman, G. Numerical solution of 2-point boundary value problem by subdivision scheme. Commun. Math. Appl. 2019, 10, 1–11. [Google Scholar]
  25. Ghaffar, A.; Ullah, Z.; Bari, M.; Nisar, K.S.; Baleanu, D. Family of odd point non-stationary subdivision schemes and their applications. Adv. Differ. Equ. 2019, 2019, 171. [Google Scholar] [CrossRef]
  26. Dyn, N. Analysis of convergence and smoothness by the formalism of Laurent polynomials. In Tutorials on Multiresolution in Geometric Modelling; Springer: Berlin/Heidelberg, Germany, 2002; pp. 51–68. [Google Scholar]
Figure 1. (a) The initial polygon; and (bf) the results up to fifth subdivision levels.
Figure 1. (a) The initial polygon; and (bf) the results up to fifth subdivision levels.
Mathematics 07 00675 g001
Figure 2. (a) The initial polygon; and (bf) the results up to fifth subdivision levels.
Figure 2. (a) The initial polygon; and (bf) the results up to fifth subdivision levels.
Mathematics 07 00675 g002
Figure 3. (a) The initial polygon; and (bf) the results up to fifth subdivision levels.
Figure 3. (a) The initial polygon; and (bf) the results up to fifth subdivision levels.
Mathematics 07 00675 g003
Figure 4. (a) The results of the NURBS; and (bf) the deformation of a surface made of NURBS patches.
Figure 4. (a) The results of the NURBS; and (bf) the deformation of a surface made of NURBS patches.
Mathematics 07 00675 g004aMathematics 07 00675 g004b

Share and Cite

MDPI and ACS Style

Ghaffar, A.; Iqbal, M.; Bari, M.; Muhammad Hussain, S.; Manzoor, R.; Sooppy Nisar, K.; Baleanu, D. Construction and Application of Nine-Tic B-Spline Tensor Product SS. Mathematics 2019, 7, 675. https://doi.org/10.3390/math7080675

AMA Style

Ghaffar A, Iqbal M, Bari M, Muhammad Hussain S, Manzoor R, Sooppy Nisar K, Baleanu D. Construction and Application of Nine-Tic B-Spline Tensor Product SS. Mathematics. 2019; 7(8):675. https://doi.org/10.3390/math7080675

Chicago/Turabian Style

Ghaffar, Abdul, Mudassar Iqbal, Mehwish Bari, Sardar Muhammad Hussain, Raheela Manzoor, Kottakkaran Sooppy Nisar, and Dumitru Baleanu. 2019. "Construction and Application of Nine-Tic B-Spline Tensor Product SS" Mathematics 7, no. 8: 675. https://doi.org/10.3390/math7080675

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop