# Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Inversion of Medium-Deep Hole Blasting Parameters Based on Blasting Crater Test

_{e}and the charge quantity Q can be expressed by the following formula [28]:

_{e}is the critical burial depth, E is the strain energy coefficient, and E is constant for specific rocks and explosives. Q is the weight of the globular package.

_{0}, and each parameter of the other blasting crater when the amount of explosive is changed to Q

_{1}and meets the cubic formula [28]:

_{j}is the best burying depth of explosives for blasting crater tests. Q

_{j}is the best charge quantity for the blasting crater test. R

_{j}is the best radius of the blasting crater. V

_{j}is the optimum volume of the blasting crater.

#### 2.1. Engineering Background

#### 2.2. Blasting Crater Test Scheme

#### 2.3. Analysis of Experimental Results

- (1)
- Unit loading q = 1.58 kg/m.
- (2)
- Hole distance a = 1.6 m.
- (3)
- Resistance line b = 1.4 m.

## 3. Blasting Parameter Optimization Based on Numerical Simulation

#### 3.1. Model Building

#### 3.2. Material Parameter

#### 3.2.1. Rock Material Model

#### 3.2.2. Explosive Material Model

#### 3.3. Modeling Scheme

#### 3.4. Analysis of Numerical Simulation Results

#### 3.4.1. Blasting Rock-Breaking Analysis

#### 3.4.2. Influence of Resistance Line on Blasting Effect

#### 3.4.3. Analysis of Hole Distance Simulation Results

## 4. Field Blasting Test

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Jiang, Y.H.; Lei, H.Y.; Yang, J.; Song, Y.S.; Ye, G.X. Numerical Simulation of Zhenyuan Gold Mine Blasting Parameters. Blasting
**2019**, 36, 77–83. [Google Scholar] - Gen, G.G.; Chi, E.A.; Liu, F.Q. Analysis on Causes of Producing Boulder in Medium-length Hole Blasting and the Technical Measures for Reducing Boulder Yield. Min. Res. Dev.
**2011**, 4, 104–106. [Google Scholar] - Zhao, G.Y.; Zhang, L.; Chen, Z.Q.; Wu, J.J.; Dong, L.J. Nonlinear Prediction of Mefium-depth Hole Blasting Effects. Min. Metall. Eng.
**2010**, 30, 1–4. [Google Scholar] - Ren, G.F.; Wang, W.; Feng, H.Y.; Yuan, Y.Q. Optimization Study on Mid-length Hole BlastParameters in Rongguan No. 1 Mine. Blasting
**2011**, 28, 34–35. [Google Scholar] - Stanković, S.; Dobrilović, M.; Škrlec, V. Optimal positioning of vibration monitoring instruments and their impact on blast-induced seismic influence results. Arch. Min. Sci.
**2019**, 64, 591–607. [Google Scholar] - Sołtys, A. Assessment of the impact of blasting works on buildings locatedin the vicinity of open-pit mines using matching pursuit algorithm. Arch. Min. Sci.
**2020**, 65, 199–212. [Google Scholar] - Himanshu, V.K.; Roy, M.P.; Shankar, R.; Mishra, A.K.; Singh, P.K. Empirical approach based estimation of charge factor and dimensional parameters in underground blasting. Min. Metall. Explor.
**2021**, 38, 1059–1069. [Google Scholar] [CrossRef] - Guo, J.P.; Wang, J.; Li, J.Q. Study on Optimum Design of Blasting Hole Arrangement in Medium-length Hole Blasting. Blasting
**2017**, 34, 79–84. [Google Scholar] - Xie, X.Q.; Lu, W.B. 3P (PRECISE, PUNCTILIOUS, AND PERFECT) BLASTING. Eng. Blasting
**2008**, 14, 1–7. [Google Scholar] - Pal Roy, P.; Sawmliana, C.; Bhagat, N.K.; Madhu, M. Induced caving by blasting: Innovative experiments in blasting gallery panels of underground coal mines of India. Min. Technol.
**2003**, 112, 57–63. [Google Scholar] [CrossRef] - Widodo, S.; Anwar, H.; Syafitri, N.A. Comparative Analysis of ANFO and Emulsion Application on Overbreak and Underbreak at Blasting Development Activity in Underground Deep Mill Level Zone (DMLZ) PT Freeport Indonesia; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 279, p. 012001. [Google Scholar]
- Jeon, S.; Kim, T.H.; You, K.H. Characteristics of crater formation due to explosives blasting in rock mass. Geomech. Eng
**2015**, 9, 329–344. [Google Scholar] [CrossRef] - Zheng, X.S.; Wang, J.; Zhou, N.S. Serial Blasting Crate Tests Confirm Medium-length Hole Blasting Parameter of Non-pillar Sublevel Caving Method. Blasting
**2009**, 26, 50–53. [Google Scholar] - Monjezi, M.; Khoshalan, H.A.; Varjani, A.Y. Optimization of open pit blast parameters using genetic algorithm. Int. J. Rock Mech. Min. Sci.
**2011**, 48, 864–869. [Google Scholar] [CrossRef] - Dehghani, H.; Pourzafar, M. Prediction and minimization of blast-induced flyrock using gene expression programming and cuckoo optimization algorithm. Environ. Earth Sci.
**2021**, 80, 12. [Google Scholar] [CrossRef] - Saghatforoush, A.; Monjezi, M.; Shirani Faradonbeh, R.; Jahed Armaghani, D. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting. Eng. Comput.
**2016**, 32, 255–266. [Google Scholar] [CrossRef] - Bastami, R.; Bazzazi, A.A.; Shoormasti, H.H.; Ahangari, K. Predicting and minimizing the blasting cost in limestone mines using a combination of gene expression programming and particle swarm optimization. Arch. Min. Sci.
**2020**, 65, 835–850. [Google Scholar] - Sirjani, A.K.; Sereshki, F.; Ataei, M.; Hosseini, M.A. Prediction of Backbreak in the Blasting Operations using Artificial Neural Network (ANN) Model and Statistical Models (Case study: Gol-e-Gohar Iron Ore Mine No. 1). Arch. Min. Sci.
**2022**, 67, 107–121. [Google Scholar] - An, H.M.; Liu, H.Y.; Han, H.; Zheng, X.; Wang, X.G. Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast. Comput. Geotech.
**2017**, 81, 322–345. [Google Scholar] [CrossRef] - Huang, C.; Li, J.T.; Zhao, Y.; Liu, S.F. Optimization of Blasting Parameters for Dongguashan Copper Mine Based on PFC
^{2D}. Min. Metall. Eng.**2022**, 42, 1–4. [Google Scholar] - Jiang, N.; Zhou, C.; Luo, X.; Lu, S. Damage characteristics of surrounding rock subjected to VCR mining blasting shock. Shock. Vib.
**2015**, 2015, 373021. [Google Scholar] [CrossRef][Green Version] - Mejía, N.; Mejía, R.; Toulkeridis, T. Characterization of Blast Wave Parameters in the Detonation Locus and Near Field for Shaped Charges. Mathematics
**2022**, 10, 3261. [Google Scholar] [CrossRef] - He, L.; Wang, J.; Xiao, J.; Tang, L.; Lin, Y. Pre-splitting blasting vibration reduction effect research on weak rock mass. Disaster Adv.
**2013**, 6, 338–343. [Google Scholar] - Ma, G.W.; An, X.M. Numerical simulation of blasting-induced rock fractures. Int. J. Rock Mech. Min. Sci.
**2008**, 45, 966–975. [Google Scholar] [CrossRef] - Zhao, D.; Shen, Z.; Li, M.; Liu, B.; Chen, Y.; Xie, L. Study on parameter optimization of deep hole cumulative blasting in low permeability coal seams. Sci. Rep.
**2022**, 12, 5126. [Google Scholar] [CrossRef] - Huo, X.; Shi, X.; Qiu, X.; Zhou, J.; Gou, Y.; Yu, Z.; Ke, W. Rock damage control for large-diameter-hole lateral blasting excavation based on charge structure optimization. Tunn. Undergr. Space Technol.
**2020**, 106, 103569. [Google Scholar] [CrossRef] - Sun, Q.; Shan, C.; Wu, Z.; Wang, Y. Case Study: Mechanism and Effect Analysis of Presplitting Blasting in Shallow Extra-Thick Coal Seam. Arch. Min. Sci.
**2022**, 67, 381–399. [Google Scholar] - Zhang, X.L.; Yi, H.B.; Ma, H.H.; Shen, Z.W. Blast parameter optimization study based on a blast crater experiment. Shock. Vib.
**2018**, 2018, 8031735. [Google Scholar] [CrossRef][Green Version] - Jiang, F.L.; Zhou, K.P.; Deng, H.W.; Pan, D.; Li, K. Blasting Crater Test for Underground Mine’s Long-hole Caving. Min. Metall. Eng.
**2010**, 30, 10–13. [Google Scholar] - Zhi, W.; Luo, J.; Wang, L.H. Experimental Study on Medium and Deep Hole Blasting Parameters in Panlong Lead Zinc Mine. Min. Technol.
**2016**, 16, 83–86. [Google Scholar] - You, Y.Y.; Cui, Z.R.; Zhang, X.L.; You, S.; Kang, Y.Q.; Xiao, C.L.; Lu, F.X. Optimum seam forming angle of double-linear shaped charge in engineering blasting. Explos. Shock. Waves
**2023**, 43, 025201-1–025201-15. [Google Scholar] - Gao, F.; Tang, L.; Yang, C.; Yang, P.; Xiong, X.; Wang, W. Blasting-induced rock damage control in a soft broken roadway excavation using an air deck at the blasthole bottom. Bull. Eng. Geol. Environ.
**2023**, 82, 97. [Google Scholar] [CrossRef] - Abdel-Kader, M. Modified settings of concrete parameters in RHT model for predicting the response of concrete panels to impact. Int. J. Impact Eng.
**2019**, 132, 103312. [Google Scholar] [CrossRef] - Ding, Y.Q.; Tang, W.H.; Zhang, R.Q.; Ran, X.W. Determination and validation of parameters for Riedel-Hiermaier-Thoma concrete model. Def. Sci. J.
**2013**, 63, 524–530. [Google Scholar] [CrossRef] - Xie, L.X.; Lu, W.B.; Zhang, Q.B.; Jiang, Q.H.; Chen, M.; Zhao, J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn. Undergr. Space Technol.
**2017**, 66, 19–33. [Google Scholar] [CrossRef] - Wang, H.C.; Wang, Z.L.; Wang, J.G.; Wang, S.M.; Wang, H.R.; Yin, Y.G.; Li, F. Effect of confining pressure on damage accumulation of rock under repeated blast loading. Int. J. Impact Eng.
**2021**, 156, 103961. [Google Scholar] [CrossRef] - Li, H.C.; Liu, D.S.; Zhao, L. Study on parameters determination of marble RHT model. Trans. Beijing Inst. Technol
**2017**, 37, 801–806. [Google Scholar] - Sanchidrian, J.A.; Castedo, R.; Lopez, L.M.; Segarra, P.; Santos, A.P. Determination of the JWL constants for ANFO and emulsion explosives from cylinder test data. Cent. Eur. J. Energetic Mater.
**2015**, 12, 177–194. [Google Scholar] - Esmaeili, M.; Tavakoli, B. Finite element method simulation of explosive compaction in saturated loose sandy soils. Soil Dyn. Earthq. Eng.
**2019**, 116, 446–459. [Google Scholar] [CrossRef] - Yang, Y.; Shao, Z.; Mi, J.; Xiong, X. Effect of adjacent hole on the blast-induced stress concentration in rock blasting. Adv. Civ. Eng.
**2018**, 2018, 5172878. [Google Scholar] [CrossRef][Green Version] - Guo, Z.W. The Application of Deep Hole Blasting Parameter Optimization in BaRun Mining Fracture Rock. Ph.D. Thesis, Inner Mongolia University of Science and Technology, Baotou, China, 2016. [Google Scholar]
- Liu, C.Y.; Yang, J.X.; Yu, B. Rock-breaking mechanism and experimental analysis of confined blasting of borehole surrounding rock. Int. J. Min. Sci. Technol.
**2017**, 27, 795–801. [Google Scholar] - Wang, P. Parameter–Optimization in Medium-Length Hole of Sublevel Caving without Sill Pillar. Master’s Thesis, China University of Geosciences, Wuhan, China, 2009. [Google Scholar]

**Figure 1.**Fine design and optimization flow chart of medium-deep hole blasting parameters (done by the authors).

Parameter | Unit | Value | Parameter | Unit | Value |
---|---|---|---|---|---|

Optimum depth of explosive | ${L}_{j}/\mathrm{m}$ | 0.5 | Optimum crater radius | ${R}_{j}/\mathrm{m}$ | 0.58 |

Critical burial depth of explosives | ${L}_{e}/\mathrm{m}$ | 0.67 | Optimal crater volume | ${V}_{j}/\mathrm{m}$ | 0.32 |

Optimum depth ratio | ${\u2206}_{j}$ | 0.74 | Strain energy coefficient | E | 1.01 |

Optimum hole base spacing | ${a}_{j}/\mathrm{m}$ | 1.0 | Optimum resistance line | ${W}_{j}/\mathrm{m}$ | 0.9 |

Parameter | Value | Parameter | Value |
---|---|---|---|

Mass density (kg/m^{3}) | 4530 | Tensile strain rate dependence exponent BETAT | 0.0189 |

Elastic shear modulus (GPa) | 17.39 | Pressure influence on plastic flow in tension PTF | 0.001 |

Eroding plastic strain EPSF | 2.0 | Compressive yield surface parameter GC^{*} | 0.53 |

Parameter for polynomial EOS B_{0} | 1.2 | Tensile yield surface parameter GT^{*} | 0.7 |

Parameter for polynomial EOS B_{1} | 1.2 | Shear modulus reduction factor XI | 0.5 |

Parameter for polynomial EOS T_{1} (GPa) | 39.15 | Damage parameter D_{1} | 0.04 |

Failure surface parameter A | 2.1 | Damage parameter D_{2} | 1 |

Failure surface parameter N | 0.125 | Minimum damaged residual strain EPM | 0.015 |

Compressive strength FC (GPa) | 85.62 | Residual surface parameter AF | 1.6 |

Relative shear strength FS^{*} | 0.2311 | Residual surface parameter NF | 0.61 |

Relative tensile strength FT^{*} | 0.048 | Gruneisen gamma GAMMA | 0 |

Lode angle dependence factor Q_{0} | 0.68 | Hugoniot polynomial coefficient A_{1} (GPa) | 39.15 |

Lode angle dependence factor B | 0.05 | Hugoniot polynomial coefficient A_{2} (GPa) | 46.98 |

Parameter for polynomial EOS T_{2} | 0 | Hugoniot polynomial coefficient A_{3} (GPa) | 9.004 |

Reference compressive strain rate EOC | 3 × 10^{−5} | Crush pressure PEL (MPa) | 57.08 |

Reference tensile strain rate EOT | 3 × 10^{−6} | Compaction pressure PCO (GPa) | 6.0 |

Break compressive strain rate EC | 3 × 10^{25} | Porosity exponent NP | 3.0 |

Break tensile strain rate ET | 3 × 10^{25} | Initial porosity ALPHA | 1.1 |

Compressive strain rate dependence exponent BETAC | 0.0144 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gao, F.; Li, X.; Xiong, X.; Lu, H.; Luo, Z. Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine. *Mathematics* **2023**, *11*, 1612.
https://doi.org/10.3390/math11071612

**AMA Style**

Gao F, Li X, Xiong X, Lu H, Luo Z. Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine. *Mathematics*. 2023; 11(7):1612.
https://doi.org/10.3390/math11071612

**Chicago/Turabian Style**

Gao, Feng, Xin Li, Xin Xiong, Haichuan Lu, and Zengwu Luo. 2023. "Refined Design and Optimization of Underground Medium and Long Hole Blasting Parameters—A Case Study of the Gaofeng Mine" *Mathematics* 11, no. 7: 1612.
https://doi.org/10.3390/math11071612