Next Article in Journal
Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials
Next Article in Special Issue
Epidemic Spreading on Weighted Co-Evolving Multiplex Networks
Previous Article in Journal
Parameter Identification of Bivariate Fractal Interpolation Surfaces by Using Convex Hulls
Previous Article in Special Issue
A More Efficient and Practical Modified Nyström Method
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities

1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3
Research and Development Center for Physical Education, Health, and Information Technology, Department of Library and Information Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
4
Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan
5
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
6
Bachelor’s Program of Artificial Intelligence and Information Security, Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24206, Taiwan
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(13), 2851; https://doi.org/10.3390/math11132851
Submission received: 4 May 2023 / Revised: 2 June 2023 / Accepted: 23 June 2023 / Published: 25 June 2023
(This article belongs to the Special Issue Fuzzy Modeling and Fuzzy Control Systems)

Abstract

:
The symmetric function class interacts heavily with other types of functions. One of these is the convex function class, which is strongly related to symmetry theory. In this study, we define a novel class of convex mappings on planes using a fuzzy inclusion relation, known as coordinated up and down convex fuzzy-number-valued mapping. Several new definitions are introduced by placing some moderate restrictions on the notion of coordinated up and down convex fuzzy-number-valued mapping. Other uncommon examples are also described using these definitions, which can be viewed as applications of the new outcomes. Moreover, Hermite–Hadamard–Fejér inequalities are acquired via fuzzy double Aumann integrals, and the validation of these outcomes is discussed with the help of nontrivial examples and suitable choices of coordinated up and down convex fuzzy-number-valued mappings.

1. Introduction

Convex functions are distinguished from other function classes by their widespread application in mathematics, statistics, optimization theory, and applied sciences. This is due to the analytic inequalities, particularly those of the Hermite–Hadamard, Fejér, Hardy, Simpson, and Ostrowski types, that have been established using this concept [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. The concept of a convex function is one of the core theorems of inequality theory, detailed as follows:
Definition 1.
The real-valued mapping Υ : K R  is called a convex mapping on convex set   K  if
Υ τ o + 1 τ s τ Υ o + ( 1 τ ) Υ s ,
for all   o , s K ,   τ 0 ,   1 .  If Equation (1) is reversed, then   Υ  is called a concave mapping on   K . Υ  is affine if and only if it is both a convex and concave mapping.
The Hermite–Hadamard inequality, which is a key component of the widespread use and geometrical interpretation of convex functions, has piqued the interest of researchers in fundamental mathematics. This inequality has piqued the interest of multiple scholars from around the world due to its numerous applications, particularly in the domains of numerical analysis, engineering, physical science, and chemistry. The idea of inequality has advanced rapidly in recent years. For convex functions, several inequalities can be found; however, Hermite–Hadamard’s inequality is one of the most extensively and intensively studied conclusions. It is worthwhile to consider how closely related the theories of inequality and convexity are. As a result of this reality, the concept of inequality becomes more appealing. Many new expansions, generalizations, and definitions of novel convexity have been given in recent years, as have corresponding advancements in the theory of convexity inequality, particularly integral inequality theory. Formally, the Hermite–Hadamard inequality is as follows:
For a convex mapping Υ : K R on convex set K , the HH inequality is written as
Υ ρ + μ 2 1 μ ρ ρ μ Υ o d o Υ ρ + Υ μ 2 ,
for all ρ ,   μ K , with ρ μ . If Υ is concave, then Equation (2) is reversed.
If it is a concave function, the inequality in Equation (2) holds in both directions. Based on geometry, the Hermite–Hadamard inequality provides an upper and lower estimate for the integral mean of any convex function defined in a closed and limited domain that encompasses the function’s ends and midpoint. Because of the importance of this inequality, multiple modifications of it have been studied in the literature for various classes of convexity, including harmonically convex, exponentially convex, s-convex, h-convex, and co-ordinate convex functions [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33].
Moore [34] was the first to consider interval analysis. Moore [35] researched interval methods for obtaining the upper and lower bounds of accurate values of the integrals of interval-valued functions and studied the integration of interval-valued functions in 1979. Bhurjee and Panda [36] devised a framework for determining effective solutions to a broad multi-objective fractional programming problem whose parameters in the objective functions and constraints are intervals. Zhang et al. [37] expanded the ideas of invexity and pre-invexity to interval-valued functions, resulting in KKT optimality requirements for LU-pre-invex and invex optimization problems with an interval-valued objective function. Zhao et al. [38] defined the interval double integral and provided Chebyshev-type inequalities for interval-valued functions. Interval analysis has practical applications in economics, chemical engineering, beam physics, control circuit design, global optimization, robotics, error analysis, signal processing, and computer graphics (see [39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58]).
Budak et al. [59] defined the interval-valued right-sided Riemann–Liouville fractional integral and derived H-H-type inequalities for such integrals. Sharma et al. [60] proposed interval-valued pre-invex functions and proved fractional H-H-type inequalities for them. Zhao et al. [61,62] recently developed the concept of interval-valued coordinated convex functions on coordinates and proved H-H-type inequalities for these interval-valued coordinated convex functions. Furthermore, Budak et al. [63] introduced a new concept of interval-valued fractional integrals on coordinates and used these fractional integrals to analyze H-H-type inequalities for interval-valued coordinated convex functions. Kara et al. [64] demonstrated that the product of two interval-valued convex functions on coordinates has H-H–Fejér-type inclusions. We refer to [65,66,67,68,69,70,71,72,73,74,75,76] and the references therein for more information on the links between the various types of coordinated fuzzy-number-valued mappings, interval-valued functions, and integral inequalities. Similarly, most of the authors work in the field of fuzzy calculus as well as fuzzy fractional calculus. Therefore, we refer the readers to [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97] and the references therein, which will help in understanding fuzzy theory.
Motivated and inspired by the above ongoing research, this manuscript is divided into four sections. In the second section, we recall some classical and preliminary notions and results which will be helpful in discussing the main outcomes. In the third section, some new estimates of integral inequalities via fuzzy double Aumann integrals and a newly defined coordinated class of convex fuzzy-number mappings on up and down fuzzy relations are presented. Some interesting examples are also given to illustrate the main outcomes. In the final section, some conclusions and future plans are discussed.

2. Preliminaries

First, we will review the fundamental notions of fuzzy mathematics. Additional information can be found in the following references: Anastassiou [77]; Anastassiou and Gal [78]; Gal [79]; Goetschel and Voxman [82]; Gal [83]; and Wu and Zengtai [84].
Let Λ E 0 be a fuzzy number. Then, this fuzzy number is also represented as q -level sets Λ q defined as
ς R | Λ ς q ,   q 0,1 ς R | Λ ς > q ¯ ,   q = 0 ,
which is a bounded and closed interval of R and denoted as
Λ q = Λ * q ,   Λ * q .
For Λ , λ E 0 and ϱ R , the sum Λ λ , product Λ λ , scalar product ϱ Λ , and sum with the scalar are uniquely defined as, for all q 0 ,   1 , we obtain
Λ λ q = Λ q + λ q ,
Λ λ q = Λ q × λ q ,
ϱ Λ q = ϱ · Λ q .
ϱ Λ q = ϱ + Λ q .
For ψ E 0 , such that Λ = λ ψ , via this result, we then determine the existence of Hukuhara difference between Λ and λ , and we can say that ψ is the H-difference between Λ and λ and is denoted as Λ λ . If H-difference exists, then
ψ * q = Λ λ * q = Λ * q λ * ( q ) ,   ψ * q = Λ λ * q = Λ * q λ * q .
For Z * ,   Z * ,   Q * ,   Q * R I , where R I is the space of all closed and bounded intervals of real numbers R , the Hausdorff–Pompeiu distance between the intervals Z * ,   Z * and Q * ,   Q * is defined as
d H Z * ,   Z * ,   Q * ,   Q * = m a x Z * Q * ,   Z * Q * .
It is a known fact that R I , d H is a complete metric space [82].
Theorem 1
([82]). The space E 0  dealing with a supremum metric, i.e., for ψ ~ ,   𝜛 ~ E 0
d ψ ~ ,   𝜛 ~ = sup 0 λ 1 d H ψ ~ q ,   ϖ ~ q ,
 is a complete metric space, where   H  denotes the well-known Hausdorff metric in the space of intervals.
Remark 1
([86,87]). Let R I  be the space of all closed and bounded intervals of real numbers R . The relation I is defined in R I as
Λ * ,   Λ * I λ * ,   λ *   if   and   only   if   Λ * λ * ,   Λ * λ * ,
for all   Λ * ,   Λ * ,   λ * ,   λ * R I ,  and it is known as the left and right relation.
The inclusion means that
Λ I λ   if   and   only   if   Λ * ,   Λ * I λ * ,   λ * ,   if   and   only   if   λ * Λ * ,   Λ * λ * .
It is known as the up and down relation.
Proposition 1
([86]). If Λ , λ E 0 , then relation F  is defined in E 0  as
Λ F λ   if   and   only   if   Λ q I   λ q   for   all   q [ 0 ,   1 ] ,
and this relation is known as the left and right fuzzy relation.
Proposition 2
([80]). If Λ , λ E 0 , then relation F  is defined in E 0  as
Λ F λ   if   and   only   if   Λ q I λ q   for   all   q [ 0 ,   1 ] ,
and this relation is known as the up and down fuzzy relation.
Definition 2
([90]). The IVM Υ : = μ ,   σ × ς ,   ν R +  is said to be a coordinated convex function on  if
Υ τ μ + 1 τ σ ,   s ς + 1 s ν τ s Υ μ , ς + τ 1 s Υ μ , ν + 1 τ s Υ σ , ς + 1 τ 1 s Υ σ , ν ,
for all   μ ,   σ ,   ς , ν ,   τ  and   τ , s 0 ,   1 .  If inequality Equation (11) is reversed, then   Υ  is called a coordinated concave IVM on   .
Definition 3
([87]). The FN-V-M Υ ~ : [ ς , ν ] E 0  is said to be an up and down convex FN-V-M on [ ς , ν ]  if
Υ ~ τ o + 1 τ ω F τ Υ ~ o 1 τ Υ ~ ω ,  
for all   o , ω [ ς , ν ] ,   τ 0 ,   1 ,  where   Υ ~ o F 0 ~ . If     Υ ~  is an up and down concave FN-V-M on   [ ς , ν ] , then inequality Equation (12) is reversed.
Theorem 2
([85]). Let Υ ~ , S ~   : ς ,   ν E 0  be two up and down convex FN-V-Ms. Then, from the q -levels, we obtain the collection of IVMs Υ q ,   S q : ς ,   ν R R I +  given as Υ q o = Υ * o , q ,   Υ * o , q  and S q o = S * o , q ,   S * o , q  for all o ς ,   ν  and for all q 0 ,   1 . If Υ ~ S ~  is a fuzzy Riemann integrable, then
1 ν ς F R ς ν Υ ~ o S ~ o d o F 1 3 M ~ ς , ν 1 6 N ~ ς , ν ,
and
2 Υ ~ ς + ν 2 S ~ ς + ν 2 F 1 ν ς F R ς ν Υ ~ o S ~ o d o 1 6 M ~ ς , ν 1 3 N ~ ς , ν .
where   M ~ ς , ν = Υ ~ ς S ~ ς Υ ~ ν S ~ ν , N ~ ς , ν = Υ ~ ς S ~ ν Υ ~ ν S ~ ς ,  and  M q ς , ν = M * ς , ν ,   q ,   M * ς , ν ,   q  and  N q ς , ν = N * ς , ν ,   q ,   N * ς , ν ,   q .
Theorem 3
([85]). Let Υ ~ : ς ,   ν E 0  be an up and down convex FN-V-M with ς < ν . Then, from the q -levels, we obtain the collection of IVMs Υ q : ς ,   ν R R I +  given as Υ q o = Υ * o , q ,   Υ * o , q  for all o ς ,   ν  and for all q 0 ,   1 . If Υ ~ Υ R ς ,   ν , q  and Ω : ς ,   ν R , Ω ( o ) 0 ,  symmetric with respect to ς + ν 2 ,  and ς ν Ω ( o ) d o > 0 , then
Υ ~ ς + ν 2 F 1 ς ν Ω ( o ) d o F R ς ν Υ ~ o Ω ( o ) d o F Υ ~ ς Υ ~ ν 2 .
If     Υ ~  is an up and down concave FN-V-M, then inequality Equation (15) is reversed.
If     Ω o = 1  , then via Equation (15) we obtain following inequality:
Υ ~ ς + ν 2 F 1 ν ς F R ς ν Υ ~ o Ω o d o F Υ ~ ς Υ ~ ν 2 .
Theorem 4
([36]). If Υ : [ ς , ν ] R R I  is an IVM given as ( o ) Υ * ( o ) , Υ * ( o ) , then Υ  is Riemann-integrable on [ ς , ν ]  if and only if Υ *  and Υ *  are both Riemann-integrable on ς , ν , such that
I R ς ν Υ o d o = [ R ς ν Υ * o d o ,   R ς   ν Υ * o d o ] .
The collection of all Riemann-integrable real-valued functions and Riemann-integrable IVMs is denoted as R [ ς , ν ] and T R [ ς , ν ] , respectively.
Note that Theorem 5 is also true for interval double integrals. The collection of all double-integrable IVMs is denoted as T O , respectively.
Theorem 5
([38]). Let = μ ,   σ × ς ,   ν . If Υ : R I  is I D -integrable on , then we obtain
I D μ σ ς ν Υ o , ω d ω d o = I R μ σ I R ς ν Υ o , ω d ω d o .
Definition 4
([91]). A fuzzy-interval-valued map Υ ~ : = μ ,   σ × ς ,   ν E 0  is called an FN-V-M on coordinates. Then, from the q -levels, we obtain the collection of IVMs Υ q : R 2 R I  on coordinates given as Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q  for all o , ω .  Herein, for each q 0 ,   1 ,  the end-point real-valued functions Υ * . , q ,   Υ * . , q : μ ,   σ × ς ,   ν R  are called the lower and upper functions of Υ q .
Definition 5
([91]). Let Υ ~ : = μ ,   σ × ς ,   ν R 2 E 0  be a coordinated FN-V-M. Then, Υ ~ o , ω  is said to be continuous at o , ω = μ ,   σ × ς ,   ν  if for each q 0 ,   1 ,  both the end-point functions Υ * o , ω , q  and Υ * o , ω , q  are continuous at o , ω .
Definition 6
([91]). Let Υ ~ : = μ ,   σ × ς ,   ν R 2 E 0  be an FN-V-M on coordinates. Then, the fuzzy double integral of Υ ~  on = μ ,   σ × ς ,   ν ,  denoted as F D μ σ ς ν Υ ~ o , ω d ω d o , is defined level-wise as
F D μ σ ς ν Υ ~ o , ω d ω d o q = I D μ σ ς ν Υ q o , ω d ω d o = I R μ σ ( I R ) ς ν Υ q o , ω d ω d o ,
for all  q 0 ,   1 ,  and     Υ ~  is   F D -integrable on      if   F D μ σ ς ν Υ ~ o , ω d ω d o E 0 .  Note that if the end-point functions are Lebesgue-integrable, then  Υ ~  is a fuzzy double-Aumann-integrable function on  .
Theorem 6
([91]). Let Υ ~ : R 2 E 0  be an FN-V- M on coordinates. Then, from the q -levels, we obtain the collection of IVMs Υ q : R 2 R I  given as Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q  for all o , ω = μ ,   σ × ς ,   ν  and for all q 0 ,   1 .  Then, Υ ~ is F D -integrable on  if and only if Υ * o , ω , q  and Υ * o , ω , q  are both D -integrable on .  Moreover, if Υ ~  is F D -integrable on ,  then
F D μ σ ς ν Υ ~ o , ω d ω d o   q = F R μ σ F R ς ν Υ ~ o , ω d ω d o q = I R μ σ I R ς ν Υ q o , ω d ω d o = I D μ σ ς ν Υ q o , ω d ω d o
for all     q 0 ,   1 .

3. Main Results

In this section, we will first propose the new class of coordinated convex functions with the up and down fuzzy relation, which are known as coordinated UD-convex FN-V-Ms. Secondly, we will present 𝐻𝐻–Fejér inequalities with the help of this new class and double fuzzy integrals as well as verify them with the support of some useful examples.
Definition 7.
The FN-V-M     Υ ~ : E 0    is said to be a coordinated UD-convex FN-V-M on  if
Υ ~ τ μ + 1 τ σ ,   s ς + 1 s ν F τ s Υ ~ μ , ς F τ 1 s Υ ~ μ , ν 1 τ s Υ ~ σ , ς 1 τ 1 s Υ ~ σ , ν ,
for all   μ ,   σ ,   ς , ν ,  and  τ , s 0 ,   1 ,  where  Υ ~ o F 0 ~ .  If inequality Equation (21) is reversed, then   Υ ~  is called a coordinated concave FN-V-M on  .
The straightforward proof of Lemma 1 will be omitted herein.
Lemma 1.
Let  Υ ~ : E 0  be a coordinated FN-V-M on  . Then, Υ ~  is a coordinated UD-convex FN-V-M on   if and only if two coordinated UD-convex FN-V-Ms exist, Υ ~ o : ς , ν E 0 , Υ ~ o ω = Υ ~ o , ω  and  Υ ~ ω : μ , σ E 0 , Υ ~ ω ς = Υ ~ ς , ω
Proof. 
From the definition of the coordinated FN-V-M, it can be easily proved. □
From Lemma 1, we can easily note that each UD-convex FN-V-M is a coordinated UD-convex FN-V-M. However, the converse is not true (see Example 1).
Theorem 7.
Let  Υ ~ : E 0   be an FN-V-M on  . Then, from the  q -levels, we obtain the collection of IVMs  Υ q : R I + R I  given as
Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q ,  
 for all o , ω  and for all  q 0 ,   1 . Then,   Υ ~  is a coordinated UD-convex FN-V-M on   if and only if for all    q 0 ,   1 ,   Υ * o , ω ,   q  and  Υ * o , ω ,   q  are coordinated UD-convex and concave functions, respectively.
Proof. 
Assume that for each q 0 ,   1 , Υ * o , q and Υ * o , q are coordinated UD-convex on . Then, from Equation (21), for all μ ,   σ ,   ς , ν ,   τ and s 0 ,   1 , we obtain
Υ * τ μ + 1 τ σ ,   s ς + 1 s ν ,   q τ s Υ * μ , ς ,   q + t 1 s Υ * μ , ν ,   q + s 1 t Υ * μ , ς ,   q + 1 τ 1 s Υ * μ , ν ,   q ,
and
Υ * τ μ + 1 τ σ ,   s ς + 1 s ν ,   q τ s Υ * μ , ς ,   q + t 1 s Υ * μ , ν ,   q + s 1 t Υ * μ , ς ,   q + 1 τ 1 s Υ * μ , ν ,   q ,
Then, via Equations (4), (6) and (22), we obtain
Υ q τ μ + 1 τ σ ,   s ς + 1 s ν = Υ * τ μ + 1 τ σ ,   s ς + 1 s ν ,   q ,   Υ * τ μ + 1 τ σ ,   s ς + 1 s ν ,   q , I τ s Υ * μ , ς ,   q ,   Υ * μ , ς ,   q + t 1 s [ Υ * μ , ν ,   q ,   Υ * μ , ν ,   q ] + s 1 τ Υ * μ , ς ,   q ,   Υ * μ , ς ,   q + 1 τ 1 s Υ * μ , ν ,   q ,   Υ * μ , ν ,   q .
That is,
Υ ~ τ μ + 1 τ σ ,   s ς + 1 s ν F τ s Υ ~ μ , ς τ 1 s Υ ~ μ , ν 1 τ s Υ ~ σ , ς 1 τ 1 s Υ ~ σ , ν ,
Hence, Υ ~ is a coordinated UD-convex FN-V-M on .
Conversely, let Υ ~ be a coordinated UD-convex FN-V-M on . Then, for all μ ,   σ ,   ς , ν ,   τ and s 0 ,   1 , we obtain
Υ ~ τ μ + 1 τ σ ,   s ς + 1 s ν F τ s Υ ~ μ , ς τ 1 s Υ ~ μ , ν 1 τ s Υ ~ σ , ς 1 τ 1 s Υ ~ σ , ν
Therefore, from Equation (22), for each q 0 ,   1 , we obtain
Υ q τ μ + 1 τ σ ,   s ς + 1 s ν = Υ * τ μ + 1 τ σ ,   s ς + 1 s ν ,   q ,   Υ * τ μ + 1 τ σ ,   s ς + 1 s ν ,   q .
Again, via Equation (22), we obtain
τ s Υ q μ , ς + τ 1 s Υ q μ , ν + 1 τ s Υ q σ , ς + 1 τ 1 s Υ q σ , ν = τ s Υ * μ , ς ,   q ,   Υ * μ , ς ,   q + t 1 s Υ * μ , ν ,   q ,   Υ * μ , ν ,   q + s 1 τ Υ * μ , ς ,   q ,   Υ * μ , ς ,   q + 1 τ 1 s Υ * μ , ν ,   q ,   Υ * μ , ν ,   q ,
for all o , ω and τ 0 ,   1 . Then, via the coordinated UD-convexity of Υ ~ , for all o , ω and τ 0 ,   1 ,   we obtain
Υ * τ μ + 1 τ σ ,   s ς + 1 s ν ,   q τ s Υ * μ , ς + τ 1 s Υ * μ , ν + 1 τ s Υ * σ , ς + 1 τ 1 s Υ * σ , ν ,
and
Υ * τ μ + 1 τ σ ,   s ς + 1 s ν ,   q τ s Υ * μ , ς + τ 1 s Υ * μ , ν + 1 τ s Υ * σ , ς + 1 τ 1 s Υ * σ , ν ,
for each q 0 ,   1 . Hence, the result follows. □
Example 1.
We consider the FN-V-Ms   Υ ~ : 0 ,   1 × 0 ,   1 E 0  defined as
Υ ~ o m =   m o ω 5 o ω   m o ω ,   5 6 + e o 6 + e ω m 6 + e o 6 + e ω 5   m 5 ,   6 + e o 6 + e ω 0   o t h e r w i s e ,
and then, for each  q 0 ,   1 ,  we obtain  Υ q o , ω = 1 q o ω + 5 q , 1 q 6 + e o 6 + e ω + 5 q . The end-point functions  Υ * o , ω , q  and  Υ * o , ω , q  are coordinated convex and concave functions for each  q 0 ,   1 ,   r e s p e c t i v e l y . Hence,  Υ ~ o , ω  is an up and down coordinated convex FN-V-M.
From Example 1, it can be easily seen that each coordinated UD-convex FN-V-M is not a UD-convex FN-V-M.
Corollary 1.
Let  Υ ~ : E 0  be an FN-V-M on  . Then, from the  q -levels, we obtain the collection of IVMs  Υ q : R I + R I  given as
Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q ,  
for all  o , ω  and for all  q 0 ,   1 . Then,   Υ ~  is a coordinated left-UD-convex (concave) FN-V-M on   if and only if for all   q 0 ,   1 , Υ * o , ω ,   q  and  Υ * o , ω ,   q  are coordinated convex (concave) and affine functions on  , respectively.
Corollary 2.
Let  Υ ~ : E 0  be an FN-V-M on  . Then, from the  q -levels, we obtain the collection of IVMs  Υ q : R I + R I  given as
Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q ,  
for all  o , ω  and for all  q 0 ,   1 . Then Υ ~  is a coordinated right-UD-convex (concave) FN-V-M on   if and only if for all  q 0 ,   1 , Υ * o , ω ,   q  and  Υ * o , ω ,   q  are coordinated affine and convex (concave) functions on  , respectively.
Theorem 8.
Let   be a coordinated convex set, and let  Υ ~ : E 0  be an FN-V- M. Then, from the q -levels, we obtain the collection of IVMs  Υ q : R I + R I  given as
Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q ,  
for all  o , ω  and for all  q 0 ,   1 Then,  Υ ~  is a coordinated UD-concave FN-V-M on   if and only if for all  q 0 ,   1 , Υ * o , ω ,   q  and  Υ * o , ω ,   q  are coordinated concave and convex functions, respectively.
Proof. 
The demonstration of the proof of Theorem 8 is similar to the demonstration of the proof of Theorem 7. □
Example 2.
We consider the FN-V-Ms    Υ ~ : 0 ,   1 × 0 ,   1 E 0  defined as
Υ ~ o m = m 6 e o 6 e ω 6 e o 6 e ω 25 ,   m 6 e o 6 e ω ,   25 35 o ω m 35 o ω 25 ,   m 25 ,   35 o ω 0 ,   o t h e r w i s e .
Then, for each q 0 , 1 , we obtain Υ q o , ω = 1 q 6 e o 6 e ω + 25 q , 35 1 q o ω + 25 q . The end-point functions Υ * o , ω , q   a n d   Υ * o , ω , q are coordinated concave and convex functions for each q 0 , 1 . Hence, Υ ~ o , ω is a coordinated up and down concave FN-V-M.
In the next results, to avoid confusion, we will not include the symbols ( R ) , ( I R ) , ( F R ) , ( I D ) , and ( F D ) before the integral sign.
Theorem 9.
Let  Υ ~ : E 0  be a coordinated UD-convex FN-V-M on  . Then, from the  q -levels, we obtain the collection of IVMs  Υ q : R I +  given as Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q  for all o , ω  and for all  q 0 ,   1 . Then, the following inequality holds:
Υ ~ μ + σ 2 ,   ς + ν 2 F 1 2 1 σ μ μ σ Υ ~ o , ς + ν 2 d o 1 ν ς ς ν Υ ~ μ + σ 2 , ω d ω F 1 σ μ ν ς μ σ ς ν Υ ~ o , ω d ω d o F 1 4 σ μ μ σ Υ ~ o , ς d o μ σ Υ ~ o , ν d o 1 4 ν ς ς ν Υ ~ μ , ω d ω ς ν Υ ~ σ , ω d ω F Υ ~ μ , ς Υ ~ σ , ς Υ ~ μ , ν Υ ~ σ , ν 4 .
If  Υ o   is a concave FN-V-M, then
Υ ~ μ + σ 2 ,   ς + ν 2 F 1 2 1 σ μ μ σ Υ ~ o , ς + ν 2 d o 1 ν ς ς ν Υ ~ μ + σ 2 , ω d ω F 1 σ μ ν ς μ σ ς ν Υ ~ o , ω d ω d o F 1 4 σ μ μ σ Υ ~ o , ς d o μ σ Υ ~ o , ν d o 1 4 ν ς ς ν Υ ~ μ , ω d ω ς ν Υ ~ σ , ω d ω F Υ ~ μ , ς Υ ~ σ , ς Υ ~ μ , ν Υ ~ σ , ν 4
Proof. 
Let Υ ~ : μ ,   σ E 0 be a coordinated UD-convex FN-V-M. Then, via hypothesis, we obtain
4 Υ ~ μ + σ 2 , ς + ν 2 F Υ ~ τ μ + 1 τ σ ,   τ ς + 1 τ ν Υ ~ 1 τ μ + τ σ ,   1 τ ς + τ ν .
By using Theorem 7, for every q 0 ,   1 , we obtain
4 Υ * μ + σ 2 , ς + ν 2 ,   q     Υ * τ μ + 1 τ σ ,   τ ς + 1 τ ν ,   q + Υ * 1 τ μ + τ σ ,   1 τ ς + τ ν ,   q ,   4 Υ * μ + σ 2 , ς + ν 2 ,   q     Υ * τ μ + 1 τ σ ,   τ ς + 1 τ ν ,   q + Υ * 1 τ μ + τ σ ,   1 τ ς + τ ν , q .
By using Lemma 1, we obtain
2 Υ * o , ς + ν 2 ,   q Υ * o , τ ς + 1 τ ν ,   q + Υ * o , 1 τ ς + τ ν ,   q ,   2 Υ * o , ς + ν 2 ,   q Υ * o , τ ς + 1 τ ν ,   q + Υ * o , 1 τ ς + τ ν , q ,
and
2 Υ * μ + σ 2 , ω ,   q Υ * τ μ + 1 τ σ ,   ω ,   q + Υ * 1 τ μ + t σ ,   ω ,   q ,   2 Υ * μ + σ 2 , ω ,   q Υ * τ μ + 1 τ σ ,   ω ,   q + Υ * 1 τ μ + t σ ,   ω , q .
From Equations (30) and (31), we obtain
2 Υ * o , ς + ν 2 ,   q , Υ * o , ς + ν 2 ,   q I Υ * o , τ ς + 1 τ ν ,   q , Υ * o , τ ς + 1 τ ν ,   q + Υ * o , 1 τ ς + τ ν ,   q , Υ * o , 1 τ ς + τ ν , q ,
and
2 Υ * μ + σ 2 , ω ,   q , Υ * μ + σ 2 , ω ,   q I Υ * τ μ + 1 τ σ ,   ω ,   q , Υ * τ μ + 1 τ σ ,   ω ,   q + Υ * τ μ + 1 τ σ ,   ω ,   q , Υ * τ μ + 1 τ σ ,   ω , q ,
It follows that
Υ q o , ς + ν 2 I Υ q o , τ ς + 1 τ ν + Υ q o , 1 τ ς + τ ν
and
Υ q μ + σ 2 , ω I Υ q τ μ + 1 τ σ ,   ω + Υ q τ μ + 1 τ σ ,   ω
Since Υ q o , . and Υ q . , ω are both coordinated UD-convex-IVMs, from Theorem 7 and inequality Equation (6), for every q 0 ,   1 , and inequality Equations (32) and (33), we then obtain
Υ q o , ς + ν 2 I 1 ν ς ς ν Υ q o , ω d ω I   Υ q o , ς + Υ q o , ν 2 .
and
Υ q μ + σ 2 , ω I 1 σ μ μ σ Υ q o , ω d o I Υ q μ , ω + Υ q σ , ω 2 .
Dividing double inequality Equation (34) by σ μ and integrating with respect to o on μ ,   σ , we obtain
1 σ μ μ σ Υ q o , ς + ν 2 d o I 1 σ μ ν ς μ σ ς ν Υ q o , ω d ω d o I   1 2 σ μ μ σ Υ q o , ς d o + μ σ Υ q o , ν d o
Similarly, dividing double inequality Equation (35) by ν ς and integrating with respect to o on ς ,   ν , we obtain
1 ν ς ς ν Υ q μ + σ 2 , ω d ω I 1 σ μ ν ς μ σ ς ν Υ q o , ω d ω d o I   1 2 ν ς ς ν Υ q μ , ω d ω + ς ν Υ q σ , ω d ω
By adding Equations (36) and (37), we obtain
1 2 1 σ μ μ σ Υ q o , ς + ν 2 d o + 1 ν ς ς ν Υ q μ + σ 2 , ω d ω I 1 σ μ ν ς μ σ ς ν Υ q o , ω d ω d o I 1 4 σ μ μ σ Υ q o , ς d o + μ σ Υ q o , ν d o + 1 4 ν ς ς ν Υ q μ , ω d ω + ς d Υ q σ , ω d ω
Since Υ ~ is an FN-V-M, via inequality Equation (38), we then obtain
1 2 1 σ μ μ σ Υ ~ o , ς + ν 2 d o 1 ν ς ς ν Υ ~ μ + σ 2 , ω d ω F 1 σ μ ν ς μ σ ς ν Υ ~ o , ω d ω d o F 1 4 σ μ μ σ Υ ~ o , ς d o μ σ Υ ~ o , ν d o 1 4 ν ς ς ν Υ ~ μ , ω d ω ς ν Υ ~ σ , ω d ω
From Theorem 7 and the left side of inequality Equation (16), for each q 0 ,   1 , we obtain
Υ q μ + σ 2 ,   ς + ν 2 I 1 σ μ μ σ Υ q o , ς + ν 2 d o ,
Υ q μ + σ 2 ,   ς + ν 2 I 1 ν ς ς ν Υ q μ + σ 2 , ω d ω .
Adding inequality Equation (40) and inequality Equation (41), we obtain
Υ q μ + σ 2 ,   ς + ν 2 I   1 2 1 σ μ μ σ Υ q o , ς + ν 2 d o + 1 ν ς ς ν Υ q μ + σ 2 , ω d ω .
Since Υ ~ is an FN-V-M, it follows that
Υ ~ μ + σ 2 ,   ς + ν 2 F   1 2 1 σ μ μ σ Υ ~ o , ς + ν 2 d o 1 ν ς ς ν Υ ~ μ + σ 2 , ω d ω
Now, from Theorem 7 and the right side of inequality Equation (16), for every q 0 ,   1 , we obtain
1 σ μ μ σ Υ q o , ς d o I Υ q μ , ς + Υ q σ , ς 2
1 σ μ μ σ Υ q o , ν d o I Υ q μ , ν + Υ q σ , ν 2
1 ν ς ς ν Υ q μ , ω d ω I Υ q μ , ν + Υ q μ , ς 2
1 ν ς ς ν Υ q σ , ω d ω I Υ q σ , ν + Υ q σ , ς 2
By adding inequalities Equations (43)–(46), we obtain
1 4 σ μ μ σ Υ q o , ς d o + μ σ Υ q o , ν d o + 1 4 ν ς ς ν Υ q μ , ω d ω + ς ν Υ q σ , ω d ω I Υ q μ , ς + Υ q σ , ς + Υ q μ , ν + Υ q σ , ν 4
Since Υ is an FN-V-M, it follows that
1 4 σ μ μ σ Υ ~ o , ς d o μ σ Υ ~ o , ν d o 1 4 ν ς ς ν Υ ~ μ , ω d ω ς ν Υ ~ σ , ω d ω F Υ ~ μ , ς Υ ~ σ , ς Υ ~ μ , ν Υ ~ σ , ν 4
By combining inequalities Equations (41), (42), and (47), we obtain the desired result. □
Remark 2.
From inequality Equation (28), the following exceptional results can be acquired:
Let  Υ * o , ω , q Υ * o , ω , q  with  q = 1 . Then, we can derive the following inclusion (see [61]):
Υ μ + σ 2 ,   ς + ν 2 1 2 1 σ μ μ σ Υ o , ς + ν 2 d o + 1 ν ς ς ν Υ μ + σ 2 , ω d ω 1 σ μ ν ς μ σ ς ν Υ o , ω d ω d o 1 4 σ μ μ σ Υ o , ς d o + μ σ Υ o , ν d o + 1 4 ν ς ς ν Υ μ , ω d ω + ς ν Υ σ , ω d ω Υ μ , ς + Υ σ , ς + Υ μ , ν + Υ σ , ν 4 .
Let  Υ * o , ω , q = Υ * o , ω , q  with  q = 1 . Then, we can derive the following inclusion (see [90]):
Υ μ + σ 2 ,   ς + ν 2 1 2 1 σ μ μ σ Υ o , ς + ν 2 d o + 1 ν ς ς ν Υ μ + σ 2 , ω d ω 1 σ μ ν ς μ σ ς ν Υ o , ω d ω d o 1 4 σ μ μ σ Υ o , ς d o + μ σ Υ o , ν d o + 1 4 ν ς ς ν Υ μ , ω d ω + ς ν Υ σ , ω d ω Υ μ , ς + Υ σ , ς + Υ μ , ν + Υ σ , ν 4 .
Example 3.
We consider the FN-V-Ms  Υ ~ : 0 ,   2 × 0 ,   2 E 0  defined as
Υ o , ω m = m o ω 5 o ω ,   m o ω ,   5 2 + o 2 + ω m 2 + o 2 + ω 5 ,   m 5 ,   2 + o 2 + ω 0 ,   o t h e r w i s e ,
and then, for each  q 0 ,   1 ,  we obtain  Υ q o , ω = 1 q o ω + 5 q , 1 q 2 + o 2 + ω + 5 q . The end-point functions  Υ * o , ω , q , Υ * o , ω , q  are coordinated concave functions for each  q 0 ,   1 . Hence Υ ~ o , ω  is a coordinated concave FN-V-M.
Υ q μ + σ 2 ,   ς + ν 2 = 1 + 4 q , 9 4 q
1 2 1 σ μ μ σ Υ q o , ς + ν 2 d o + 1 ν ς ς ν Υ q μ + σ 2 , ω d ω = 1 + 4 q , 1 3 9 + 2 2 q 2 2 + 6 ,
1 σ μ ν ς   μ σ ς ν Υ q o , ω d ω d o = 1 + 4 q , 1 9 1 + 24 2 q 24 2 + 44 1 4 σ μ μ σ Υ q o , ς d o + μ σ Υ q o , ν d o + 1 4 ν ς ς ν Υ q μ , ω d ω + ς ν Υ q σ , ω d ω , = 1 + 4 q , 8 5 2 3 1 q + 9 + 2 2 3 q + 6 2 2 3
Υ q μ , ς + Υ q σ , ς + Υ q μ , ν + Υ q σ , ν 4 = 1 + 4 q , 1 q 2 2 2 + 4 1 q 2 2 + 4 1 q + 20 q 4
That is
1 + 4 q , 9 4 q I 1 + 4 q , 1 3 9 + 2 2 q 2 2 + 6
I 1 + 4 q , 1 9 1 + 24 2 q 24 2 + 44 I 1 + 4 q , 8 5 2 3 1 q + 9 + 2 2 3 q + 6 2 2 3
I 1 + 4 q , 1 q 2 2 2 + 4 1 q 2 2 + 4 1 q + 20 q 4
Hence, Theorem 9 has been verified.
We will now obtain some 𝐻𝐻 inequalities to produce coordinated UD-convex FN-V-Ms. These inequalities are refinements of some Pachpatte-type inequalities on coordinates.
Theorem 10.
Let  Υ ~ , S ~   : = μ ,   σ × ς ,   ν R 2 E 0  be two coordinated UD-convex FN-V-Ms on  ,  whose  q -levels Υ q ,   S q : μ ,   σ × ς ,   ν R I +  are defined as  Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q  and  S q o , ω = S * o , ω , q ,   S * o , ω , q  for all  o , ω  and for all  q 0 ,   1 . Then, the following inequality holds:
1 σ μ ν ς μ σ ς ν Υ ~ o , ω S ~ o , ω d ω d o F 1 9 P ~ μ , σ , ς , ν 1 18 M ~ μ , σ , ς , ν 1 36 N ~ μ , σ , ς , ν .
where
P ~ μ , σ , ς , ν = Υ ~ μ , ς S ~ μ , ς Υ ~ μ , ν S ~ μ , ν Υ ~ σ , ς S ~ σ , ς Υ ~ σ , ν S ~ σ , ν ,
M ~ μ , σ , ς , ν = Υ ~ μ , ς S ~ μ , ν Υ ~ μ , ν S ~ μ , ς Υ ~ σ , ς S ~ σ , ν Υ ~ σ , ν S ~ σ , ς ,
μ , ς S ~ σ , ς Υ ~ σ , ν S ~ μ , ν Υ ~ σ , ς S ~ μ , ς Υ ~ μ , ν S ~ σ , ν
N ~ μ , σ , ς , ν = Υ ~ μ , ς S ~ σ , ν Υ ~ σ , ς S ~ μ , ν Υ ~ σ , ν S ~ μ , ς Υ ~ σ , ς S ~ μ , ν
and for each  q 0 ,   1 , P ~ μ , σ , ς , ν , M ~ μ , σ , ς , ν ,  and  N ~ μ , σ , ς , ν  are defined as follows:
P q μ , σ , ς , ν = P * μ , σ , ς , ν ,   q ,   P * μ , σ , ς , ν ,   q
M q μ , σ , ς , ν = M * μ , σ , ς , ν ,   q ,   M * μ , σ , ς , ν ,   q
N q μ , σ , ς , ν = N * μ , σ , ς , ν ,   q ,   N * μ , σ , ς , ν ,   q .
Proof. 
Let Υ ~ and S ~ be two coordinated UD-convex FN-V- Ms on μ ,   σ × ς ,   ν . Then,
Υ ~ τ μ + 1 τ σ ,   s ς + 1 s ν F τ s Υ ~ μ , ς τ 1 s Υ ~ μ , ν 1 τ s Υ ~ σ , ς 1 τ 1 s Υ ~ σ , ν ,
and
S ~ τ μ + 1 τ σ ,   s ς + 1 s ν F τ s S ~ μ , ς τ 1 s S ~ μ , ν 1 τ s S ~ σ , ς 1 τ 1 s S ~ σ , ν .
Since Υ ~ and S ~ are both coordinated UD-convex FN-V-Ms, then via Lemma 1, the following exist:
Υ ~ o : ς , ν E 0 ,   Υ ~ o ω = Υ ~ o , ω ,   S ~ o : ς , ν E 0 ,   S ~ o ω = S ~ o , ω ,
and
Υ ~ ω : μ , σ E 0 ,   Υ ~ ω o = Υ ~ o , ω ,   S ~ ω : μ , σ E 0 ,   S ~ ω o = S ~ o , ω .
Since Υ ~ o , S ~ o ,   Υ ~ ω and S ~ ω are FN-V-Ms, then via inequality Equation (13), we obtain
1 σ μ μ σ Υ ~ ω o S ~ ω o d o F 1 3 Υ ~ ω μ S ~ ω μ Υ ~ ω σ S ~ ω σ 1 6 Υ ~ ω μ S ~ ω σ Υ ~ ω σ S ~ ω μ ,
and
1 ν ς ς ν Υ ~ o ω S ~ o ω d ω F 1 3 Υ ~ o ς S ~ o ς Υ ~ o ν S ~ o ν 1 6 Υ ~ o ς S ~ o ν Υ ~ o ς S ~ o ν .
For each q 0 ,   1 , we obtain
1 σ μ μ σ Υ q ω o × S q ω o d o I 1 3 Υ q ω μ × S q ω μ + Υ q ω σ × S q ω σ + 1 6 Υ q ω μ × S q ω σ + Υ q ω σ × S q ω μ ,
and
1 ν ς ς ν Υ q o ω × S q o ω d ω I 1 3 Υ q o ς × S q o ς + Υ q o ν × S q o ν + 1 6 Υ q o ς × S q o ν + Υ q o ς × S q o ν .
The above inequalities can be written as
1 σ μ μ σ Υ q o , ω × S q o , ω d o I 1 3 Υ q μ , ω × S q μ , ω + Υ q σ , ω × S q σ , ω + 1 6 Υ q μ , ω × S q σ , ω + Υ q σ , ω × S q μ , ω ,
and
1 ν ς ς ν Υ q o , ω × S q o , ω d ω I 1 3 Υ q o , ς × S q o , ς + Υ q o , ν × S q o , ν + 1 6 Υ q o , ς × S q o , ς + Υ q o , ν × S q o , ν .
Firstly, we will solve inequality Equation (52). Integrating both sides of the inequality with respect to ω on the interval ς ,   ν and dividing both sides by ν ς , we obtain
1 σ μ ν ς μ σ ς ν Υ q o , ω × S q o , ω d ω d o I 1 3 ν ς ς ν Υ q μ , ω × S q μ , ω + Υ q σ , ω × S q σ , ω d ω + 1 6 ν ς ς ν Υ q μ , ω × S q σ , ω + Υ q σ , ω × S q μ , ω d ω .
Now, via inequality Equation (13), for each q 0 ,   1 , we obtain
1 ν ς ς ν Υ q μ , ω × S q μ , ω d ω I 1 3 ς ν Υ q μ , ς × S q μ , ς + Υ q μ , ν × S q μ , ν d ω + 1 6 ς ν Υ q μ , ς × S q μ , ν + Υ q μ , ς × S q μ , ν d ω .
1 ν ς ς ν Υ q σ , ω × S q σ , ω d ω I 1 3 ς ν Υ q σ , ς × S q σ , ς + Υ q σ , ν × S q σ , ν d ω + 1 6 ς ν Υ q σ , ς × S q σ , ν + Υ q σ , ς × S q μ , ν d ω
1 ν ς ς ν Υ q μ , ω × S q σ , ω d ω I 1 3 ς ν Υ q μ , ς × S q σ , ς + Υ q μ , ν × S q σ , ν d ω + 1 6 ς ν Υ q μ , ς × S q σ , ν + Υ q μ , ν × S q σ , ς d ω .
1 ν ς ς ν Υ q σ , ω × S q μ , ω d ω I 1 3 ς ν Υ q σ , ς × S q μ , ς + Υ q σ , ν × S q μ , ν d ω + 1 6 ς ν Υ q σ , ς × S q μ , ν + Υ q σ , ν × S q μ , ς d ω .
From Equations (55)–(58) and inequality Equation (54), we obtain
1 σ μ ν ς μ σ ς ν Υ q o , ω × S q o , ω d ω d o I 1 9 P q μ , σ , ς , ν + 1 18 M q μ , σ , ς , ν + 1 36 N q μ , σ , ς , ν .
That is,
1 σ μ ν ς μ σ ς ν Υ ~ o , ω S ~ o , ω d ω d o F 1 9 P ~ μ , σ , ς , ν 1 18 M ~ μ , σ , ς , ν 1 36 N ~ μ , σ , ς , ν .
Hence, this concludes the proof of the theorem. □
Theorem 11.
Let  Υ ~ , S ~   : = μ ,   σ × ς ,   ν R 2 E 0  be two UD-convex FN-V-Ms. Then, from the  q -levels, we obtain the collection of IVMs  Υ q ,   S q : R 2 R I +  given as  Υ q o = Υ * o , ω , q ,   Υ * o , ω , q  and  S q o = S * o , ω , q ,   S * o , ω , q  for all  o , ω  and for all  q 0 ,   1 . Then, the following inequality holds:
4 Υ ~ μ + σ 2 , ς + ν 2 S ~ μ + σ 2 , ς + ν 2 F 1 σ μ ν ς μ σ ς ν Υ ~ o , ω S ~ o , ω d ω d o 5 36 P ~ μ , σ , ς , ν 7 36 M ~ μ , σ , ς , ν 2 9 N ~ μ , σ , ς , ν .
where  P ~ μ , σ , ς , ν M ~ μ , σ , ς , ν ,   and  N ~ μ , σ , ς , ν  are given in Theorem 10.
Proof. 
Since Υ ~ , S ~   : E 0 are two UD-convex FN-V-Ms, then from inequality Equation (14) and for each q 0 ,   1 , we obtain
2 Υ q μ + σ 2 , ς + ν 2 × S q μ + σ 2 , ς + ν 2 I 1 σ μ μ σ Υ q o , ς + ν 2 × S q o , ς + ν 2 d o + 1 6 Υ q μ , ς + ν 2 × S q μ , ς + ν 2 + Υ q σ , ς + ν 2 × S q σ , ς + ν 2   + 1 3 Υ q μ , ς + ν 2 × S q σ , ς + ν 2 + Υ q σ , ς + ν 2 × S q μ , ς + ν 2 ,
and
2 Υ q μ + σ 2 , ς + ν 2 × S q μ + σ 2 , ς + ν 2 I 1 ν ς ς ν Υ q μ + σ 2 , ω × S q μ + σ 2 , ω d ω   + 1 6 Υ q μ + σ 2 , ς × S q μ + σ 2 , ς + Υ q μ + σ 2 , ν × S q μ + σ 2 , ν + 1 3 Υ q μ + σ 2 , ς × S q μ + σ 2 , ν + Υ q μ + σ 2 , ν × S q μ + σ 2 , ς .
Summing inequalities Equations (60) and (61) and then multiplying the result by 2, we obtain
8 Υ q μ + σ 2 , ς + ν 2 × S q μ + σ 2 , ς + ν 2 I 2 σ μ   μ σ Υ q o , ς + ν 2 × S q o , ς + ν 2 d o + 2 ν ς   ς ν Υ q μ + σ 2 , ω × S q μ + σ 2 , ω d o + 1 6 2 Υ q μ , ς + ν 2 × S q μ , ς + ν 2 + 2 Υ q σ , ς + ν 2 × S q σ , ς + ν 2 + 1 6 2 Υ q μ + σ 2 , ς × S q μ + σ 2 , ς + 2 Υ q μ + σ 2 , ν × S q μ + σ 2 , ν + 1 3 2 Υ q μ , ς + ν 2 × S q σ , ς + ν 2 + 2 Υ q σ , ς + ν 2 × S q μ , ς + ν 2 + 1 3 2 Υ q μ + σ 2 , ς × S q μ + σ 2 , ν + 2 Υ q μ + σ 2 , ν × S q μ + σ 2 , ς .
Now, with the help of integral inequality Equation (14), for each integral on the right-hand side of Equation (62), we obtain
2 Υ q μ , ς + ν 2 × S q μ , ς + ν 2 I 1 ν ς   ς ν Υ q μ , ω × S q μ , ω d ω + 1 6 Υ q μ , ς × S q μ , ς + Υ q μ , ν × S q μ , ν + 1 3 Υ q μ , ς × S q μ , ν + Υ q μ , ν × S q μ , ς
2 Υ q σ , ς + ν 2 × S q σ , ς + ν 2 I 1 ν ς ς ν Υ q σ , ω × S q σ , ω d ω + 1 6 Υ q σ , ς × S q σ , ς + Υ q σ , ν × S q σ , ν + 1 3 Υ q σ , ς × S q σ , ν + Υ q σ , ν × S q σ , ς
2 Υ q μ , ς + ν 2 × S q σ , ς + ν 2 I 1 ν ς ς ν Υ q μ , ω × S q σ , ω d ω + 1 6 Υ q μ , ς × S q σ , ς + Υ q μ , ν × S q σ , ν + 1 3 Υ q μ , ς × S q σ , ν + Υ q μ , ν × S q σ , ς .
2 Υ q σ , ς + ν 2 × S q μ , ς + ν 2 I 1 ν ς ς ν Υ q σ , ω × S q μ , ω d ω + 1 6 Υ q σ , ς × S q μ , ς + Υ q σ , ν × S q μ , ν + 1 3 Υ q σ , ς × S q μ , ν + Υ q σ , ν × S q μ , ς .
2 Υ q μ + σ 2 , ς × S q μ + σ 2 , ς I 1 σ μ μ σ Υ q o , ς × S q o , ς d o + 1 6 Υ q μ , ς × S q μ , ς + Υ q σ , ς × S q σ , ς + 1 3 Υ q μ + σ 2 , ς × S q μ + σ 2 , ς + Υ q μ + σ 2 , ς × S q μ + σ 2 , ς
2 Υ q μ + σ 2 , ν × S q μ + σ 2 , ν I 1 σ μ μ σ Υ q o , ν × S q o , ν d o + 1 6 Υ q μ , ν × S q μ , ν + Υ q σ , ν × S q σ , ν + 1 3 Υ q μ + σ 2 , ν × S q μ + σ 2 , ν + Υ q μ + σ 2 , ν × S q μ + σ 2 , ν
2 Υ q μ + σ 2 , ς × S q μ + σ 2 , ν I 1 σ μ μ σ Υ q o , ς × S q o , ν d o + 1 6 Υ q μ , ς × S q μ , ν + Υ q σ , ς × S q σ , ν + 1 3 Υ q μ + σ 2 , ς × S q μ + σ 2 , ν + Υ q μ + σ 2 , ς × S q μ + σ 2 , ν .
2 Υ q μ + σ 2 , ν × S q μ + σ 2 , ς I 1 σ μ μ σ Υ q o , ν × S q o , ς d o + 1 6 Υ q μ , ν × S q μ , ς + Υ q σ , ν × S q σ , ς + 1 3 Υ q μ + σ 2 , ν × S q μ + σ 2 , ς + Υ q μ + σ 2 , ν × S q μ + σ 2 , ς .
From Equations (63)–(70), we obtain
8 Υ q μ + σ 2 , ς + ν 2 × S q μ + σ 2 , ς + ν 2 I 2 σ μ μ σ Υ q o , ς + ν 2 × S q o , ς + ν 2 d o + 2 ν ς ς ν Υ q μ + σ 2 , ω × S q μ + σ 2 , ω d o + 1 6 ν ς ς ν Υ q μ , ω × S q μ , ω d ω + 1 6 ν ς ς ν Υ q σ , ω × S q σ , ω d ω + 1 6 σ μ μ σ Υ q o , ς × S q o , ς d o + 1 6 σ μ μ σ Υ q o , ν × S q o , ν d o + 1 3 ν ς ς ν Υ q μ , ω × S q σ , ω d ω + 1 3 ν ς ς ν Υ q σ , ω × S q μ , ω d ω + 1 3 σ μ μ σ Υ q o , ς × S q o , ν d o + 1 3 σ μ μ σ Υ q o , ν × S q o , ς d o + 1 18 P q μ , σ , ς , ν + 1 9 M q μ , σ , ς , ν + 2 9 N q μ , σ , ς , ν .
Now, with the help of integral inequality Equation (14) for the first two integrals on the right-hand side of Equation (71), we obtain the following relation:
2 σ μ μ σ Υ q o , ς + ν 2 × S q o , ς + ν 2 d o I 1 σ μ ν ς   μ σ ς ν Υ q o , ω × S q o , ω d ω d o + 1 3 σ μ μ σ Υ q o , ς × S q o , ς + Υ q o , ν × S q o , ν d o + 1 6 σ μ μ σ Υ q ς , o × S q o , ν + Υ q o , ν × S q o , ς d o ,
2 ν ς ς ν Υ q μ + σ 2 , ω × S q μ + σ 2 , ω d o I 1 σ μ ν ς μ σ ς ν Υ q o , ω × S q o , ω d ω d o + 1 3 ν ς ς ν Υ q μ , ω × S q μ , ω + Υ q σ , ω × S q σ , ω d ω + 1 6 ν ς ς ν Υ q μ , ω × S q σ , ω + Υ q σ , ω × S q μ , ω d ω .
From Equations (72) and (73), we obtain
8 Υ q μ + σ 2 , ς + ν 2 × S q μ + σ 2 , ς + ν 2 I 1 σ μ ν ς   μ σ ς ν Υ q o , ω × S q o , ω d ω d o + 1 3 σ μ μ σ Υ q o , ς × S q o , ς + Υ q o , ν × S q o , ν d o + 1 6 σ μ μ σ Υ q o , ς × S q o , ν + Υ q o , ν × S q o , ς d o + 1 σ μ ν ς   μ σ ς ν Υ q o , ω × S q o , ω d ω d o + 1 3 ν ς ς ν Υ q μ , ω × S q μ , ω + Υ q σ , ω × S q σ , ω d ω + 1 6 ν ς ς ν Υ q μ , ω × S q σ , ω + Υ q σ , ω × S q μ , ω d ω + 1 6 ν ς ς ν Υ q μ , ω × S q μ , ω d ω + 1 6 ν ς ς ν Υ q σ , ω × S q σ , ω d ω   + 1 6 σ μ   μ σ Υ q o , ς × S q o , ς d o + 1 6 σ μ   μ σ Υ q o , ν × S q o , ν d o   + 1 3 ν ς ς ν Υ q μ , ω × S q σ , ω d ω + 1 3 ν ς ς ν Υ q σ , ω × S q μ , ω d ω   + 1 3 σ μ   μ σ Υ q o , ς × S q o , ν d o + 1 3 σ μ   μ σ Υ q o , ν × S q o , ς d o   + 1 18 P q μ , σ , ς , ν + 1 9 M q μ , σ , ς , ν + 2 9 N q μ , σ , ς , ν .
It follows that
8 Υ q μ + σ 2 , ς + ν 2 × S q μ + σ 2 , ς + ν 2 I 2 σ μ ν ς μ σ ς ν Υ q o , ω × S q o , ω d ω d o + 2 3 σ μ μ σ Υ q o , ς × S q o , ς + Υ q o , ν × S q o , ν d o + 1 3 σ μ μ σ Υ q o , ς × S q o , ν + Υ q o , ν × S q o , ς d o + 2 3 ν ς ς ν Υ q μ , ω × S q μ , ω + Υ q σ , ω × S q σ , ω d ω + 1 3 ν ς ς ν Υ q μ , ω × S q σ , ω + Υ q σ , ω × S q μ , ω d ω + 1 18 P q μ , σ , ς , ν + 1 9 M q μ , σ , ς , ν + 2 9 N q μ , σ , ς , ν .
Now, using integral inequality Equation (13) for the integrals on the right-hand side of Equation (74), we obtain the following relation
1 σ μ μ σ Υ q o , ς × S q o , ς d o I 1 3 Υ q μ , ς × S q μ , ς + Υ q σ , ς × S q σ , ς + 1 6 Υ q μ , ς × S q σ , ς + Υ q σ , ς × S q μ , ς ,
1 σ μ   μ σ Υ q o , ν × S q o , ν d o I 1 3 Υ q μ , ν × S q μ , ν + Υ q σ , ν × S q σ , ν + 1 6 Υ q μ , ν × S q σ , ν + Υ q σ , ν × S q μ , ν
1 σ μ   μ σ Υ q o , ς × S q o , ν d o I 1 3 Υ q μ , ς × S q μ , ν + Υ q σ , ς × S q σ , ν + 1 6 Υ q μ , ς × S q σ , ν + Υ q σ , ς × S q μ , ν ,
1 σ μ   μ σ Υ q o , ν × S q o , ς d o I 1 3 Υ q μ , ν × S q μ , ς + Υ q σ , ν × S q σ , ς + 1 6 Υ q μ , ν × S q σ , ς + Υ q σ , ν × S q μ , ς ,
1 ν ς ς ν Υ q μ , ω × S q μ , ω d ω I 1 3 Υ q μ , ς × S q μ , ς + Υ q μ , ν × S q μ , ν + 1 6 Υ q μ , ς × S q μ , ν + Υ q μ , ν × S q μ , ς ,
1 ν ς   ς ν Υ q σ , ω × S q σ , ω d ω I 1 3 Υ q σ , ς × S q σ , ς + Υ q σ , ν × S q σ , ν + 1 6 Υ q σ , ς × S q σ , ν + Υ q σ , ν × S q σ , ς ,
1 ν ς   ς ν Υ q μ , ω × S q σ , ω d ω I 1 3 Υ q μ , ς × S q σ , ς + Υ q μ , ν × S q σ , ν + 1 6 Υ q μ , ς × S q σ , ν + Υ q μ , ν × S q σ , ς ,
1 ν ς ς ν Υ q σ , ω × S q μ , ω d ω I 1 3 Υ q σ , ς × S q μ , ς + Υ q σ , ν × S q μ , ν + 1 6 Υ q σ , ς × S q μ , ν + Υ q σ , ν × S q μ , ς .
From Equations (75)–(82) and inequality Equation (74), we obtain
4 Υ q μ + σ 2 , ς + ν 2 × S q μ + σ 2 , ς + ν 2 I 1 σ μ ν ς   μ σ ς ν Υ q o , ω × S q o , ω d ω d o + 5 36 P q μ , σ , ς , ν + 7 36 M q μ , σ , ς , ν + 2 9 N q μ , σ , ς , ν
That is,
4 Υ ~ μ + σ 2 , ς + ν 2 S ~ μ + σ 2 , ς + ν 2 F 1 σ μ ν ς μ σ ς ν Υ ~ o , ω S ~ o , ω d ω d o 5 36 P ~ μ , σ , ς , ν 7 36 M ~ μ , σ , ς , ν 2 9 N ~ μ , σ , ς , ν .
We will now obtain the 𝐻𝐻–Fejér inequality for coordinated UD-convex FN-V-Ms by means of FOR in the following result. □
Theorem 12.
Let  Υ ~ : = μ ,   σ × ς ,   ν E 0  be a coordinated UD-convex FN-V-M with  μ < σ  and  ς < ν .  Then, from the  q -levels, we obtain the collection of IVMs  Υ q : R I +  given as  Υ q o , ω = Υ * o , ω , q ,   Υ * o , ω , q  for all  o , ω  and for all  q 0 ,   1 Let  Ω : μ ,   σ R  with  Ω o 0 ,   μ σ Ω o d o > 0 ,  and  W : ς ,   ν R  with  W ω 0 ,   ς ν W ω d ω > 0 ,  be two symmetric functions with respect to  μ + σ 2  and  ς + ν 2 , respectively. Then, the following inequality holds:
Υ ~ μ + σ 2 , ς + ν 2 F 1 2 1 μ σ Ω o d o μ σ Υ ~ o , ς + ν 2 Ω o d o 1 μ σ W ω d ω μ σ Υ ~ μ + σ 2 , ω W ω d ω F 1 μ σ Ω o d o μ σ W ω d ω μ σ ς ν Υ ~ o , ω Ω o W ω d ω d o F 1 4 μ σ Ω o d o μ σ Υ ~ o , ς d o μ σ Υ ~ o , ν d o 1 4 μ σ W ω d ω ς ν Υ ~ μ , ω d ω ς ν Υ ~ σ , ω d ω F Υ ~ μ , ς Υ ~ σ , ς Υ ~ μ , ν Υ ~ σ , ν 4
Proof. 
Since Υ ~ is a coordinated UD-convex FN-V-M on , and it follows those functions, then via Lemma 1, the following exist:
Υ ~ o : ς , ν E 0 ,   Υ ~ o ω = Υ ~ o , ω ,   Υ ~ ω : μ , σ E 0 ,   Υ ~ ω o = Υ ~ o , ω .
Thus, from inequality Equation (15), for each q 0 ,   1 , we obtain
Υ q o ς + ν 2 I 1 ς ν W ω d ω ς ν Υ q o ω W ω d ω I Υ q o ς + Υ q o ν 2 ,
and
Υ q ω μ + σ 2 I 1 μ σ Ω o d o μ σ Υ q ω o Ω o d o I Υ q ω μ + Υ q ω σ 2
The above inequalities can be written as
Υ q o , ς + ν 2 I 1 ς ν W ω d ω ς ν Υ q o , ω W ω d ω I Υ q o , ς + Υ q o , ν 2 ,
and
Υ q μ + σ 2 , ω I 1 μ σ Ω o d o μ σ Υ q o , ω Ω o d o I Υ q μ , ω + Υ q σ , ω 2 .
Multiplying Equation (84) by Ω o and then integrating the result with respect to o on μ ,   σ , we obtain
μ σ Υ q o , ς + ν 2 Ω o d o I 1 ς ν W ω d ω μ σ ς ν Υ q o , ω Ω o W ω d ω d o I μ σ Υ q o , ς + Υ q o , ν 2 Ω o d o .
Now, multiplying Equation (85) by W ω and then integrating the result with respect to ω on ς ,   ν , we obtain
ς ν Υ q μ + σ 2 , ω W ω d ω I 1 μ σ Ω o d o μ σ ς ν Υ q o , ω Ω o W ω d o d ω I μ σ Υ q μ , ω + Υ q σ , ω 2 W ω d ω
Since μ σ Ω o d o > 0 and μ σ W ω d ω > 0 , then by dividing Equations (86) and (87) by μ σ Ω o d o > 0 and μ σ W ω d ω > 0 , respectively, we obtain
1 2 1 μ σ Ω o d o   μ σ Υ q o , ς + ν 2 Ω o d o + 1 μ σ W ω d ω   μ σ Υ q μ + σ 2 , ω W ω d ω I 1 μ σ Ω o d o μ σ W ω d ω μ σ ς ν Υ q o , ω Ω o W ω d ω d o I [ 1 μ σ Ω o d o μ σ Υ q o , ς + Υ q o , ν 4 Ω o d o + 1 ς ν W ω d ω μ σ Υ q μ , ω + Υ q σ , ω 4 W ω d ω ] .
Now, from the left part of double inequalities Equations (84) and (85), we obtain
Υ q μ + σ 2 , ς + ν 2 I 1 ς ν W ω d ω ς ν Υ q μ + σ 2 , ω W ω d ω ,
and
Υ q μ + σ 2 , ς + ν 2 I 1 μ σ Ω o d o μ σ Υ q o , ς + ν 2 Ω o d o
Summing inequalities Equations (89) and (90), we obtain
Υ q μ + σ 2 , ς + ν 2 I 1 2 1 μ σ Ω o d o μ σ Υ q o , ς + ν 2 Ω o d o + 1 ς ν W ω d ω ς ν Υ q μ + σ 2 , ω W ω d ω .
Similarly, from the right part of Equations (84) and (85), we obtain
1 ς ν W ω d ω ς ν Υ q μ , ω W ω d ω I Υ q μ , ς + Υ q μ ,   ν 2 ,
1 ς ν W ω d ω ς ν Υ q σ , ω W ω d ω I Υ q σ , ς + Υ q σ ,   ν 2 ,
and
1 μ σ Ω o d o μ σ Υ q o , ς Ω o d o I Υ q μ , ς + Υ q σ , ς 2 .
1 μ σ Ω o d o μ σ Υ q o , ν Ω o d o I Υ q μ , ν + Υ q σ , ν 2 .
Adding Equations (92)–(95) and dividing by 4, we obtain
1 4 ς ν W ω d ω ς ν Υ q μ , ω W ω d ω + ς ν Υ q σ , ω W ω d ω + 1 4 μ σ Ω o d o μ σ Υ q o , ς Ω o d o + μ σ Υ q o , ν Ω o d o I Υ q μ , ς + Υ q μ ,   ν + Υ q σ , ς + Υ q σ ,   ν 4
Combining inequalities Equations (88), (91), and (96), we obtain
Υ q μ + σ 2 , ς + ν 2 I 1 2 1 μ σ Ω o d o μ σ Υ q o , ς + ν 2 Ω o d o + 1 ς ν W ω d ω ς ν Υ q μ + σ 2 , ω W ω d ω . I 1 μ σ Ω o d o μ σ W ω d ω μ σ ς ν Υ o , ω Ω o W ω d ω d o I 1 4 ς ν W ω d ω ς ν Υ q μ , ω W ω d ω + ς ν Υ q σ , ω W ω d ω + 1 4 μ σ Ω o d o μ σ Υ q o , ς Ω o d o + μ σ Υ q o , ν Ω o d o I Υ q μ , ς + Υ q μ ,   ν 2 + Υ q σ , ς + Υ q σ ,   ν 2 + Υ q μ , ς + Υ q σ , ς 2 + Υ q μ , ν + Υ q σ , ν 2 .
That is,
Υ ~ μ + σ 2 , ς + ν 2 F 1 2 1 μ σ Ω o d o μ σ Υ ~ o , ς + ν 2 Ω o d o 1 μ σ W ω d ω μ σ Υ ~ μ + σ 2 , ω W ω d ω F 1 μ σ Ω o d o μ σ W ω d ω μ σ ς ν Υ ~ o , ω Ω o W ω d ω d o F 1 4 μ σ Ω o d o μ σ Υ ~ o , ς d o μ σ Υ ~ o , ν d o 1 4 μ σ W ω d ω ς ν Υ ~ μ , ω d ω ς ν Υ ~ σ , ω d ω F Υ ~ μ , ς Υ ~ σ , ς Υ ~ μ , ν Υ ~ σ , ν 4 ,
Hence, this concludes the proof. □
Remark 3.
From inequality Equation (56), the following exceptional results can be acquired:
If  W ω = 1 = Ω o , one can then obtain inequality Equation (36).
Let  Υ * o , ω , q Υ * o , ω , q  with  q = 1 . Then, one can derive following inclusion [61]:
Υ μ + σ 2 , ς + ν 2 1 2 1 μ σ Ω o d o μ σ Υ o , ς + ν 2 Ω o d o + 1 μ σ W ω d ω μ σ Υ μ + σ 2 , ω W ω d ω 1 μ σ Ω o d o μ σ W ω d ω μ σ ς ν Υ o , ω Ω o W ω d ω d o 1 4 μ σ Ω o d o μ σ Υ o , ς d o + μ σ Υ o , ν d o + 1 4 μ σ W ω d ω ς ν Υ μ , ω d ω + ς ν Υ σ , ω d ω Υ μ , ς + Υ σ , ς + Υ μ , ν + Υ σ , ν 4 .
Let  Υ ~   be a left coordinated UD-convex FN-V-M. Then, we can achieve the following outcome (see [91]):
Υ ~ μ + σ 2 , ς + ν 2 F 1 2 1 μ σ Ω o d o μ σ Υ ~ o , ς + ν 2 Ω o d o 1 μ σ W ω d ω μ σ Υ ~ μ + σ 2 , ω W ω d ω F 1 μ σ Ω o d o μ σ W ω d ω μ σ ς ν Υ ~ o , ω Ω o W ω d ω d o F 1 4 μ σ Ω o d o μ σ Υ ~ o , ς d o μ σ Υ ~ o , ν d o 1 4 μ σ W ω d ω ς ν Υ ~ μ , ω d ω ς ν Υ ~ σ , ω d ω F Υ ~ μ , ς Υ ~ σ , ς Υ ~ μ , ν Υ ~ σ , ν 4 .
Let  Υ ~   be a left coordinated UD-convex FN-V-M and  W ω = 1 = Ω o . Then, we can achieve the following outcome (see [91]):
Υ ~ μ + σ 2 ,   ς + ν 2 F 1 2 1 σ μ μ σ Υ ~ o , ς + ν 2 d o 1 ν ς ς ν Υ ~ μ + σ 2 , ω d ω F 1 σ μ ν ς μ σ ς ν Υ ~ o , ω d ω d o F 1 4 σ μ μ σ Υ ~ o , ς d o μ σ Υ ~ o , ν d o 1 4 ν ς ς ν Υ ~ μ , ω d ω ς ν Υ ~ σ , ω d ω F Υ ~ μ , ς Υ ~ σ , ς Υ ~ μ , ν Υ ~ σ , ν 4 .
Let  Υ * o , ω , q Υ * o , ω , q  with  q = 1  and  W ω = 1 = Ω o .  Then, we acquire following inequality (see [90]):
Υ μ + σ 2 ,   ς + ν 2 1 2 1 σ μ μ σ Υ o , ς + ν 2 d o + 1 ν ς ς ν Υ μ + σ 2 , ω d ω 1 σ μ ν ς μ σ ς ν Υ o , ω d ω d o 1 4 σ μ μ σ Υ o , ς d o + μ σ Υ o , ν d o + 1 4 ν ς ς ν Υ μ , ω d ω + ς ν Υ σ , ω d ω Υ μ , ς + Υ σ , ς + Υ μ , ν + Υ σ , ν 4 .
Let  Υ * o , ω , q = Υ * o , ω , q  with  q = 1 . Then, we can derive the following inclusion:
Υ μ + σ 2 , ς + ν 2 1 2 1 μ σ Ω o d o μ σ Υ o , ς + ν 2 Ω o d o + 1 μ σ W ω d ω μ σ Υ μ + σ 2 , ω W ω d ω 1 μ σ Ω o d o μ σ W ω d ω μ σ ς ν Υ o , ω Ω o W ω d ω d o 1 4 μ σ Ω o d o μ σ Υ o , ς d o + μ σ Υ o , ν d o + 1 4 μ σ W ω d ω ς ν Υ μ , ω d ω + ς ν Υ σ , ω d ω Υ μ , ς + Υ σ , ς + Υ μ , ν + Υ σ , ν 4 .

4. Conclusions

In this paper, we introduced and studied a new class of generalized convex fuzzy mappings on coordinates involving the up and down fuzzy relation, which are known as coordinated up and down convex fuzzy mappings. Several new versions of integral inequalities for this class of functions were obtained. It is interesting to note that most of the classes and other results are also exceptional cases of our defined class and main results, and these exceptional cases of our results are discussed as applications. For the validation of our main outcomes in this paper, some examples were also proved. In future, this concept will be explored in the field of quantum calculus.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.B.K. and M.S.S.; formal analysis, C.-T.L. and C.-C.L.; investigation, M.B.K.; resources, M.B.K. and C.-C.L.; data curation, M.B.K. and A.A.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K.; visualization, M.S.S., C.-T.L., C.-C.L. and A.A.; supervision, M.B.K.; project administration, M.S.S.; funding acquisition, M.B.K. and C.-T.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported in part by the National Science and Technology Council in Taiwan under contract no. NSTC 110-2410-H-165-001-MY2. Also, the researchers also would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector of COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hille, E.; Phillips, R.S. Functional Analysis and Semigroups; American Mathematical Society: Providence, RI, USA, 1996; Volume 31. [Google Scholar]
  2. Rosenbaum, R.A. Subadditive functions. Duke Math. J. 1950, 17, 227–247. [Google Scholar] [CrossRef]
  3. Dannan, F.M. Submultiplicative and subadditive functions and integral inequalities of Bellman–Bihari type. J. Math. Anal. Appl. 1986, 120, 631–646. [Google Scholar] [CrossRef]
  4. Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  5. Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  6. Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. R Acad. A 2022, 116, 53. [Google Scholar] [CrossRef]
  7. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 521–529. [Google Scholar] [CrossRef]
  8. Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  9. Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
  10. Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
  11. Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Meth Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  12. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Meth Funct. Thoery 2021, 21, 413–426. [Google Scholar] [CrossRef]
  13. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  14. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. R Acad. A 2021, 115, 46. [Google Scholar] [CrossRef]
  15. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  16. Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  17. Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  18. Laatsch, R.G. Subadditive Functions of One Real Variable. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1962. [Google Scholar]
  19. Matkowski, J. On subadditive functions and Φ-additive mappings. Open. Math. 2003, 1, 435–440. [Google Scholar]
  20. Matkowski, J. Subadditive periodic functions. Opusc. Math. 2011, 31, 75–96. [Google Scholar] [CrossRef]
  21. Matkowski, J.; Swiatkowski, T. On subadditive functions. Proc. Am. Math. Soc. 1993, 119, 187–197. [Google Scholar] [CrossRef]
  22. Ali, M.A.; Sarikaya, M.Z.; Budak, H. Fractional Hermite–Hadamard type inequalities for subadditive functions. Filomat 2022, 36, 3715–3729. [Google Scholar] [CrossRef]
  23. Botmart, T.; Sahoo, S.K.; Kodamasingh, B.; Latif, M.A.; Jarad, F.; Kashuri, A. Certain midpoint-type Fejér and Hermite–Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Math. 2023, 8, 5616–5638. [Google Scholar] [CrossRef]
  24. Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 1, 82. [Google Scholar] [CrossRef]
  25. Alomari, M.; Darus, M.; Kirmaci, U.S. Refinements of Hadamard–type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comput. Math. Appl. 2010, 59, 225–232. [Google Scholar] [CrossRef]
  26. Zhang, X.M.; Chu, Y.M.; Zhang, X.H. The Hermite-Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, 2010, 507560. [Google Scholar] [CrossRef]
  27. Dragomir, S.S.; Pećarič, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 2001, 21, 335–341. [Google Scholar]
  28. Guessab, A.; Schmeisser, G. Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 2002, 115, 260–288. [Google Scholar] [CrossRef]
  29. İşcan, İ.; Kunt, M. Hermite–Hadamard–Fejér type inequalities for quasi-geometrically convex functions via fractional integrals. J. Math. 2016, 2016, 6523041. [Google Scholar] [CrossRef]
  30. Kashuri, A.; Liko, R. Some new Hermite–Hadamard type inequalities and their applications. Stud. Sci. Math. Hung. 2019, 56, 103–142. [Google Scholar] [CrossRef]
  31. Xi, B.Y.; Qi, F. Some Hermite–Hadamard type inequalities for differentiable convex functions and applications. Hacet. J. Math. Stat. 2013, 42, 243–257. [Google Scholar]
  32. Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2008, 2, 335–341. [Google Scholar] [CrossRef]
  33. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  34. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  35. Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
  36. Bhurjee, A.K.; Panda, G. Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 2015, 52, 156–167. [Google Scholar] [CrossRef]
  37. Zhang, J.; Liu, S.; Li, L.; Feng, Q. The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 2014, 8, 607–631. [Google Scholar] [CrossRef]
  38. Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
  39. Guo, Y.; Ye, G.; Zhao, D.; Liu, W. gH-symmetrically derivative of interval-valued functions and applications in interval-valued optimization. Symmetry 2019, 11, 1203. [Google Scholar] [CrossRef]
  40. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
  41. Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Educ. 2011, 55, 9–15. [Google Scholar] [CrossRef]
  42. Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
  43. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  44. Zhao, D.; Chu, Y.M.; Siddiqui, M.K.; Ali, K.; Nasir, M.; Younas, M.T.; Cancan, M. On reverse degree based topological indices of polycyclic metal organic network, Polycyclic Aromatic Compounds. Polycycl. Aromat. Compd. 2022, 42, 4386–4403. [Google Scholar] [CrossRef]
  45. Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  46. Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM Rev. R Acad. A 2020, 114, 96. [Google Scholar] [CrossRef]
  47. Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef]
  48. Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef]
  49. Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order –1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  50. Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
  51. Ibrahim, M.; Saeed, T.; Hekmatifar, M.; Sabetvand, R.; Chu, Y.M.; Toghraie, D. Investigation of dynamical behavior of 3LPT protein-water molecules interactions in atomic structures using molecular dynamics simulation. J. Mol. Liq. 2021, 329, 115615. [Google Scholar] [CrossRef]
  52. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Abusorrah, A.M.; Issakhov, A.; Abu-Hamhed, N.H.; Shafee, A.; Chu, Y.M. Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. 2021, 330, 115591. [Google Scholar] [CrossRef]
  53. Wang, T.; Almarashi, A.; Al-Turki, Y.A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R.; Chu, Y.M. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. 2021, 329, 115052. [Google Scholar] [CrossRef]
  54. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Issakhov, A.; Chu, Y.M. Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. 2021, 334, 116096. [Google Scholar] [CrossRef]
  55. Chu, Y.M.; Abu-Hamdeh, N.H.; Ben-Beya, B.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liq. 2020, 320, 114457. [Google Scholar] [CrossRef]
  56. Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef]
  57. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open. Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  58. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  59. Budak, H.; Tunç, T.; Sarikaya, M. Fractional Hermite-Hadamard type inequalities for interval-valued functions. Proc. Amer. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef]
  60. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
  61. Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
  62. Zhao, D.; Zhao, G.; Ye, G.; Liu, W.; Dragomir, S.S. On Hermite-Hadamard type inequalities for coordinated h-convex interval-valued functions. Mathematics 2021, 9, 2352. [Google Scholar] [CrossRef]
  63. Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y.M. Fractional Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions. Open. Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
  64. Kara, H.; Budak, H.; Ali, M.A.; Sarikaya, M.Z.; Chu, Y.M. Weighted Hermite–Hadamard type inclusions for products of coordinated convex interval-valued functions. Adv. Differ. Equ. 2021, 2021, 104. [Google Scholar] [CrossRef]
  65. Kara, H.; Ali, M.A.; Budak, H. Hermite-Hadamard type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals. Math. Methods Appl. Sci. 2021, 44, 104–123. [Google Scholar] [CrossRef]
  66. Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard type fractional inclusions for interval-valued preinvex functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
  67. Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite-Hadamard type inequalities for interval-valued coordinated functions. Adv. Differ. Equ. 2021, 2021, 32. [Google Scholar] [CrossRef]
  68. Tariboon, J.; Ali, M.A.; Budak, H.; Ntouyas, S.K. Hermite-Hadamard inclusions for coordinated interval-valued functions via post-quantum calculus. Symmetry 2021, 13, 1216. [Google Scholar] [CrossRef]
  69. Du, T.; Zhou, T. On the fractional double integral inclusion relations having exponential kernels via interval-valued coordinated convex mappings. Chaos Solitons Fractals 2022, 156, 111846. [Google Scholar] [CrossRef]
  70. Khan, M.B.; Santos-García, G.; Zaini, H.G.; Treanță, S.; Soliman, M.S. Some new concepts related to integral operators and inequalities on coordinates in fuzzy fractional calculus. Mathematics 2022, 10, 534. [Google Scholar] [CrossRef]
  71. Ibrahim, M.; Saeed, T.; Alshehri, A.M.; Chu, Y.M. Using artificial neural networks to predict the rheological behavior of non-Newtonian grapheme-ethylene glycol nanofluid. J. Therm. Anal. Calorim. 2021, 145, 1925–1934. [Google Scholar] [CrossRef]
  72. Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals. 2022, 30, 2240051. [Google Scholar] [CrossRef]
  73. Chu, Y.M.; Siddiqui, M.K.; Nasir, M. On topological co-indices of polycyclic tetrathiafulvalene and polycyclic oragano silicon dendrimers. Polycycl. Aromat. Compd. 2022, 42, 2179–2197. [Google Scholar] [CrossRef]
  74. Chu, Y.M.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K.; Muhammad, M.H. Topological properties of polycyclic aromatic nanostars dendrimers. Polycycl. Aromat. Compd. 2022, 42, 1891–1908. [Google Scholar] [CrossRef]
  75. Chu, Y.M.; Numan, M.; Butt, S.I.; Siddiqui, M.K.; Ullah, R.; Cancan, M.; Ali, U. Degree-based topological aspects of polyphenylene nanostructures. Polycycl. Aromat. Compd. 2022, 42, 2591–2606. [Google Scholar] [CrossRef]
  76. Chu, Y.M.; Muhammad, M.H.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K. Topological study of polycyclic graphite carbon nitride. Polycycl. Aromat. Compd. 2022, 42, 3203–3215. [Google Scholar] [CrossRef]
  77. Anastassiou, G. Fuzzy Mathematics: Approximation theory; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-11219-5. [Google Scholar]
  78. Anastassiou, G.; Gal, S. On a fuzzy trigonometric Approximation theorem of Weierstrass-type. J. Fuzzy Math. 2001, 9, 701–708. [Google Scholar]
  79. Gal, S. Approximation theory in fuzzy setting. In Handbook of Analytic-Computational Methods in Applied Mathematics, Engineering and Technology; Anastassiou, G., Ed.; Chapman&Hall/CRC: New York, NY, USA, 2000. [Google Scholar]
  80. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  81. Khan, M.B.; A. Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
  82. Goetschel, R.; Voxman, W. Elementery fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
  83. Gal, S. Linear continuous functionals on FN-type spaces. J. Fuzzy Math. 2009, 17, 535–553. [Google Scholar]
  84. Wu, C.; Zengtai, G. On Henstock integral of fuzzy-number-valued functions part (I). Fuzzy Sets Syst. 2001, 120, 523–532. [Google Scholar] [CrossRef]
  85. Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. [Google Scholar] [CrossRef]
  86. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  87. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 178–204. [Google Scholar] [CrossRef]
  88. Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
  89. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  90. Dragomir, S.S. On the Hadamard’s inequlality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 2001, 775–788. [Google Scholar] [CrossRef]
  91. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abuahalnaja, K. Fuzzy Integral Inequalities on Coordinates of Convex Fuzzy Interval-Valued Functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef]
  92. Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down -Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
  93. Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
  94. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  95. Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
  96. Khan, M.B.; Santos-García, G.; Budak, H.; Treanțǎ, S. Soliman. M.S. Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (𝒑, 𝕵)-convex fuzzy-interval-valued functions. AIMS Math. 2023, 8, 7437–7470. [Google Scholar] [CrossRef]
  97. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Althobaiti, A.; Lee, C.-C.; Soliman, M.S.; Li, C.-T. Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities. Mathematics 2023, 11, 2851. https://doi.org/10.3390/math11132851

AMA Style

Khan MB, Althobaiti A, Lee C-C, Soliman MS, Li C-T. Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities. Mathematics. 2023; 11(13):2851. https://doi.org/10.3390/math11132851

Chicago/Turabian Style

Khan, Muhammad Bilal, Ali Althobaiti, Cheng-Chi Lee, Mohamed S. Soliman, and Chun-Ta Li. 2023. "Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities" Mathematics 11, no. 13: 2851. https://doi.org/10.3390/math11132851

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop