Next Article in Journal
Satellites of Functors for Nonassociative Algebras with Metagroup Relations
Next Article in Special Issue
On the Commutators of Marcinkiewicz Integral with a Function in Generalized Campanato Spaces on Generalized Morrey Spaces
Previous Article in Journal
Generalized Hopf–Ore Extensions of Hopf Group-Coalgebras
Previous Article in Special Issue
Variation Inequalities for the Hardy-Littlewood Maximal Function on Finite Directed Graphs
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces

by
Omer Abdalrhman Omer
* and
Muhammad Zainul Abidin
*
College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
*
Authors to whom correspondence should be addressed.
Mathematics 2022, 10(7), 1168; https://doi.org/10.3390/math10071168
Submission received: 2 March 2022 / Revised: 27 March 2022 / Accepted: 28 March 2022 / Published: 3 April 2022
(This article belongs to the Special Issue Recent Advances in Harmonic Analysis and Applications)

Abstract

:
In this article, the authors study the boundedness of the vector-valued inequality for the intrinsic square function and the boundedness of the scalar-valued intrinsic square function on variable exponents Herz spaces K ˙ ρ ( · ) α , q ( · ) ( R n ) . In addition, the boundedness of commutators generated by the scalar-valued intrinsic square function and BMO class is also studied on K ˙ ρ ( · ) α , q ( · ) ( R n ) .

1. Introduction

Before adequately introducing the subject of this article, it should be noted that our primary goal is to study the boundedness of the vector-valued operators on variable exponent Herz spaces K ˙ p ( · ) α , q ( · ) ( R n ) . Our main results apply to the intrinsic square function and sublinear operators. In addition, the boundedness of the scalar-valued intrinsic square function and its commutators are also discussed in the aforementioned Herz spaces.
Wilson was the first to propose the intrinsic square functions in [1,2]. In [2], the author obtained the boundedness of the intrinsic square functions on L p ( ω ) spaces. Since then, numerous researchers have paid a great deal of attention to the study of the boundedness of the vector-valued and scalar-valued intrinsic square functions in various functions spaces. For instance, in [3], the author proved sharp weighted norm inequalities for the intrinsic square function in terms of the A p (Muckenhoupt weight class) characteristic of ω for all p ( 1 , ) . In a series of papers by Wang [4,5,6,7], he has proposed the boundedness of the scalar-valued intrinsic square functions on weighted Hardy spaces and weighted Morrey spaces, respectively. Liang et al. [8] discovered the boundedness of intrinsic Littlewood–Paley functions on Musielak–Orlicz Morrey and Campanato spaces. Moreover, we refer to Wang [9], who studied the boundedness of the vector-valued intrinsic square functions on weighted Morrey-type spaces. More applications of such intrinsic square functions can be found in [10,11,12,13,14,15].
The classical notion of Herz spaces K ˙ p α , q ( R n ) was originally introduced by Herz in [16]. These spaces were extended and studied by many authors [17,18,19,20,21]. The topic of variable exponents function spaces is currently a very active research area (see, for example [22,23,24,25,26,27], and so on), in part due to the breadth of their applications (e.g., in fluid dynamics [28] and in differential equations [29,30,31]). Herz spaces with variable exponents have been studied by many authors using different approaches. The Herz spaces K ˙ p ( · ) α , q ( R n ) with one variable exponent p ( · ) were defined by Izuki [25], who also established some boundedness results for certain sublinear operators on such spaces. Wang et al. [32] investigated the Herz spaces K ˙ p ( · ) α , q ( · ) ( R n ) with two variable exponents p ( · ) and p ( · ) , as well as obtaining the boundedness results for parameterized Littlewood–Paley operators on K ˙ p ( · ) α , q ( · ) ( R n ) . Yang et al. [33] proved the boundedness of the θ -type Calderón–Zygmund operators and commutators on the homogeneous Herz space with variable exponents K ˙ p ( · ) α , q ( · ) ( R n ) . Cai et al. [34] established the boundedness for the rough singular integral operators and commutators on K ˙ p ( · ) α , q ( · ) ( R n ) . Another approach including variable exponents was used in [35] to study Herz spaces.
We also mention that Zhuo et al. [36] established the intrinsic square function characterizations of the variable Hardy spaces. Ho [37] proved the boundedness of the vector-valued intrinsic square function on variable Morrey and Bloke spaces. On variable exponent function spaces, Wang [38] investigated the boundedness of commutator of intrinsic square function. For some recent developments, we refer to [39,40].
Motivated by [32,37,38], we study the boundedness of the vector-valued intrinsic square function and the boundedness of the scalar-valued intrinsic square function on the variable exponent Herz spaces. The boundedness of the commutator generated by the scalar-valued intrinsic square function and BMO function is also discussed on K ˙ p ( · ) α , q ( · ) ( R n ) .
In this article, by Q, we denote a cube in R n . If E R n , | E | denotes its Lebesgue measure set in R n and χ E its characteristic function. We always denote a positive constant by C, which is not necessarily the same at each occurrence. By g , we mean that C g . The expression g means that g .

2. Definitions and Preliminaries

We review some fundamental lemmas and definitions about variable exponent functions spaces.
Definition 1
([22]). Let p ( · ) : Σ [ 1 , ) be a measurable function. The variable exponent Lebesgue space is defined as
L p ( · ) ( Σ ) = is measurable : Σ | ( x ) | ϑ p ( x ) d x < for some constant ϑ > 0 .
The space L loc p ( · ) ( Σ ) is defined as
L loc p ( · ) ( Σ ) : = : L p ( · ) ( E ) for every compact subsets E Σ .
L p ( · ) ( Σ ) is a Banach space with norm given below [27]:
L p ( · ) ( Σ ) = inf ϑ > 0 : Σ | ( x ) | ϑ p ( x ) d x 1 .
For brevity, let us set p : = p Σ : = e s s inf p ( x ) : x Σ , p + = p Σ + : = e s s sup p ( x ) : x Σ .
The notations P * ( Σ ) , P 0 * ( Σ ) and B * ( Σ ) are defined, respectively, as follows:
P * ( Σ ) : = p ( · ) is measurable : p > 1 and p + < + , P 0 * ( Σ ) : = p ( · ) is measurable : p > 0 and p + < +
and
B * ( Σ ) : = p ( · ) P * ( Σ ) : M H L is bounded on L p ( · ) ( Σ ) ,
where M H L is the standard Hardy–Littlewood maximal operator, which can be defined as
( M H L ) ( x ) = sup r > 0 1 r n B ( x , r ) | ( y ) | d y , L loc 1 ( R n ) .
We say p ( · ) B * ( R n ) if p ( · ) P * ( R n ) and satisfies the following two inequalities:
| p ( x ) p ( y ) | 1 log ( | x y | ) , if | x y | 1 / 2 ;
| p ( x ) p ( y ) | 1 log ( e + | x | ) , if | y | | x | .
See [23,24]. In the sequel, the conjugate of p ( x ) is given by the symbol p ( x ) , which means p ( x ) = p ( x ) / ( p ( x ) 1 ) .
Before recalling the definition of Herz spaces with two variable exponents, let us present the following notations: for all l Z , we denote B l : = { x R n : | x | 2 l } , l : = B l \ B l 1 and χ l : = χ R l . Denote Z + as the sets of positive integers, χ ˜ l : = χ R l if l Z + and χ ˜ 0 : = χ B 0 . The notation of the mixed Lebesgue-sequence space q ( · ) L p ( · ) , which is first introduced by Almeida et al. in [41]. Let p ( · ) and q ( · ) P 0 * R n . Given a sequence of functions j j Z , define the modular
q ( · ) ( L p ( · ) ) j j Z : = j Z inf ϑ j > 0 : R n | j ( x ) | ϑ j 1 / q ( x ) p ( x ) d x 1 .
The quasi-norm is defined as follows:
j j Z q ( · ) ( L p ( · ) ) : = inf ϑ > 0 : q ( · ) ( L p ( · ) ) j j Z ϑ 1 .
When p ( · ) P 0 * R n , then the space L p ( · ) R n can be defined as follows:
L p ( · ) R n : = : | | p 0 L q ( · ) R n for some p 0 with p 0 ( 0 , p ) and q ( x ) = p ( x ) p 0 1 .
and its quasi-norm is defined as follows:
L p ( · ) : = p 0 L q ( · ) 1 / p 0 .
Thus, we may substitute (3) for the simple formula
q ( · ) ( L p ( · ) ) j j Z : = j Z j q ( · ) L p ( · ) q ( · ) ( R n ) .
Definition 2
([32]). Let p ( · ) , q ( · ) P 0 * ( R n ) and let α R . The homogeneous Herz space K ˙ p ( · ) α , q ( · ) ( R n ) is defined as
K ˙ p ( · ) α , q ( · ) ( R n ) = L loc p ( · ) R n \ { 0 } : K ˙ p ( · ) α , q ( · ) ( R n ) < ,
where
K ˙ p ( · ) α , q ( · ) ( R n ) : = 2 l α χ l l = q ( · ) L p ( · ) = inf ϑ > 0 : l = 2 l α χ l ϑ q ( · ) L p ( · ) q ( · ) 1 .
The non-homogeneous Herz space K p ( · ) α , q ( · ) ( R n ) is defined as
K p ( · ) α , q ( · ) ( R n ) : = L loc p ( · ) R n \ { 0 } : K ˙ p ( · ) α , q ( · ) ( R n ) < ,
where
K p ( · ) α , q ( · ) ( R n ) : = 2 l α χ l l = 0 q ( · ) L p ( · ) = inf ϑ > 0 : l = 0 2 l α χ l ϑ q ( · ) L p ( · ) q ( · ) 1 .
Remark 1.
(1) If q ( · ) is a constant, then K ˙ p ( · ) α , q ( · ) R n = K ˙ p ( · ) α , q R n . If both p ( · ) , q ( · ) are constant functions, then K ˙ p ( · ) α , q ( · ) R n = K ˙ p α , q R n . Furthermore, if α = 0 and p ( · ) = q ( · ) , then K ˙ p ( · ) α , q ( · ) R n = K p ( · ) α , q ( · ) R n = L p ( · ) R n .
(2) If q 1 ( · ) and q 2 ( · ) P 0 * R n satisfying q 1 + q 2 , then (see [32])
K ˙ p ( · ) α , q 1 ( · ) R n K ˙ p ( · ) α , q 2 ( · ) R n .
Proposition 1
([34]). Let θ l [ 0 , ) , 1 p l sup l Z p l < ( l Z ) . Then
l Z θ l p l 2 · l Z θ l p * ,
where
p * = inf l Z p l i f l Z θ l 1 , sup l Z p l i f l Z θ l > 1 .
When p ( · ) P * ( R n ) , Hölder’s inequality holds true in the following form:
R n | ( x ) f ( x ) | d x 1 + 1 p 1 p + L p ( · ) f L p ( · ) .
See [22].
Lemma 1
([25]). Let p ( · ) B * ( R n ) . Then, we have for any ball B in R n ,
| B | 1 χ B L p ( · ) χ B L p ( · ) C .
Lemma 2
([25]). Let p ( · ) B * ( R n ) , = 1 , 2 . Then, there is a positive constant C such that for every ball B in R n and any measurable subset S B ,
χ S L p ( · ) χ B L p ( · ) C | S | | B | , χ S L p ( · ) χ B L p ( · ) C | S | | B | δ 2 , a n d χ R L p ( · ) χ B L p ( · ) C | S | | B | δ 1 ,
where δ 1 , δ 2 are constants with 0 < δ 1 , δ 2 < 1 .
The following result was studied by Wang et al. in [32].
Lemma 3.
Let p ( · ) and q ( · ) P * ( R n ) , L p ( · ) q ( · ) . Then we have
min ( L p ( · ) q ( · ) q + , L p ( · ) q ( · ) q ) | | q ( · ) L p ( · ) max ( L p ( · ) q ( · ) q + , L p ( · ) q ( · ) q ) .
The following Lemmas are due to [37].
Lemma 4.
Let 0 < β 1 . If p ( · ) B * ( R n ) , then we have for all L p ( · ) ,
S β ( ) L p ( · ) L p ( · ) .
Lemma 5.
Let r ( 1 , ) , 0 < β 1 . If p ( · ) B * ( R n ) , then for any ı ı N satisfying ı ı N r L p ( · ) , we have
S β ( ı ) ı r L p ( · ) ı ı r L p ( · ) .

3. Boundedness of Operators on Herz Spaces

3.1. Vector-Valued Intrinsic Square Function

For 0 < β 1 , the family C β consists of those functions ψ : R n ( 0 , ) such that supp ψ x R n : | x | 1 , R n ψ ( x ) d x = 0 and for x 1 , x 2 ,
ψ ( x 1 ) ψ x 2 x 1 x 2 β .
For any L l o c 1 ( R n ) and ( y , t ) R + n + 1 = R n × ( 0 , ) , let us set
A β ( y , t ) : = sup ψ C β ψ t ( y ) : = sup ψ C β R n ψ t ( y z ) ( z ) d z ,
where ψ t ( y ) = t n ψ y t and A β is Lebesgue measurable.
The intrinsic square function of of order β is defined as follows:
S β ( ) ( x ) = Γ ( x ) A β ( y , t ) 2 d t d y t 1 + n 1 / 2 x R n ,
where Γ ( x ) = ( y , t ) R + n + 1 : | x y | < t .
Theorem 1.
Suppose that 1 < r < , q 1 ( · ) and q 2 ( · ) P 0 * ( R n ) with ( q 1 ) + ( q 2 ) and let β ( 0 , 1 ] , p ( · ) B * ( R n ) . If α ( n δ 11 , n δ 12 ) , where δ 11 , δ 12 ( 0 , 1 ) are constants stated in Lemma 2, then for any ı ı N with ı ı r K ˙ p ( · ) α , q 1 ( · ) ( R n ) < , the following vector-valued inequality holds:
ı S β ı r 1 r K ˙ p ( · ) α , q 2 ( · ) C ı ı r 1 r K ˙ p ( · ) α , q 1 ( · ) .
Proof. 
For any ı ı N satisfies ı ı r K ˙ p ( · ) α , q 1 ( · ) < , we can write ı = j = ı χ j = j = ı j . By the definition of K ˙ p ( · ) α , q ( · ) R n , we have
S β ( ı ) ı r χ l K ˙ p ( · ) α , q 2 ( · ) R n = inf ϑ > 0 : l = 2 l α S β ( ı ) ı r χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) 1
Since
2 l α S β ( ı ) ı r χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) 2 l α j = S β ( ı j ) ı r χ l ϑ 11 + ϑ 12 + ϑ 13 q 2 ( · ) L p ( · ) q 2 ( · )
C 2 l α j = l 3 S β ( ı j ) ı r χ l ϑ 11 q 2 ( · ) L p ( · ) q 2 ( · ) + C 2 l α j = l 2 l + 2 S β ( ı j ) ı r χ l ϑ 12 q 2 ( · ) L p ( · ) q 2 ( · ) + C 2 l α j = l + 3 S β ( ı j ) ı r χ l ϑ 13 q 2 ( · ) L p ( · ) q 2 ( · ) ,
where
ϑ 11 = 2 l α j = l 3 S β ( ı j ) ı r χ l l = q 2 ( · ) L p ( · ) , ϑ 12 = 2 l α j = l 2 l + 2 S β ( ı j ) ı r χ l l = q 2 ( · ) L p ( · ) , ϑ 13 = 2 l α j = l + 3 S β ( ı j ) ı r χ l l = q 2 ( · ) L p ( · ) .
If ϑ : = ( ϑ 11 + ϑ 12 + ϑ 13 ) : = ϱ = 1 3 ϑ 1 ϱ , thus,
l = 2 l α S β ( ı ) ı r χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) C .
Then,
S β ( ı ) ı r K ˙ p ( · ) α , q 2 ( · ) R n C ϑ : = C ϱ = 1 3 ϑ 1 ϱ .
Hence, if we prove that
ϑ 11 C ı ı r K ˙ p ( · ) α , q 1 ( · ) R n , ϑ 12 C ı ı r K ˙ p ( · ) α , q 1 ( · ) R n , ϑ 13 C ı ı r K ˙ p ( · ) α , q 1 ( · ) R n ,
we are done. Let ϑ 0 = ı ı r K ˙ p ( · ) α , q 1 ( · ) R n .
First, we consider ϑ 12 . For each l Z , we define
( q 2 1 ) l = ( q 2 ) if 2 l α j = l 2 l + 2 S β ( ı j ) ı r χ l ϑ 0 L p ( · ) 1 , ( q 2 ) + otherwise .
Using Lemmas 3 and 5, it follows that
l = 2 l α j = l 2 l + 2 S β ( ı j ) ı r χ l ϑ 0 q 2 ( · ) L p ( · ) q 2 ( · )
C l = 2 l α j = l 2 l + 2 S β ( ı j ) ı r χ l ϑ 0 L p ( · ) ( q 2 1 ) l C l = j = l 2 l + 2 2 l α S β ( ı j ) ı r χ l ϑ 0 L p ( · ) ( q 2 1 ) l C l = j = l 2 l + 2 D 1 2 l α ı j ϑ 0 ı r L p ( · ) ( q 2 1 ) l C l = j = l 2 l + 2 2 l α ı j ϑ 0 ı r L p ( · ) ( q 2 1 ) l ,
where C : = max D 1 ( q 2 ) , D 1 ( q 2 ) + . Since ı ı r K ˙ p ( · ) α , q 1 ( · ) ( R n ) , it is not difficult for us to get l = 2 l α ı ı r χ l ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) 1 and 2 l α ı ı r χ l ϑ 0 L p ( · ) 1 . Hence, from Lemma 3 and Proposition 1, we deduce
l = 2 l α j = l 2 l + 2 S β ( ı j ) ı r χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) C l = 2 l α ı ϑ 0 ı r χ l q 1 ( · ) L p ( · ) q 1 ( · ) q 2 1 l ( q 1 ) + C l = 2 l α ı ϑ 0 ı r χ l q 1 ( · ) L p ( · ) q 1 ( · ) q * 1 C ,
where q 2 1 l q 2 q 1 + and q * 1 = inf l N q 2 1 l / q 1 + . Consequently, we get
ϑ 12 C ϑ 0 : = C ı ı r K ˙ p ( · ) α , q 1 ( · ) ( R n ) .
Now, let us turn to ϑ 11 . For any β ( 0 , 1 ] , ( y , t ) Γ ( x ) and ψ C β , we have
sup ψ C β ( ı j ) ψ t = sup ψ C β R n ψ t ( y z ) ı j ( z ) d z 1 t n j { z : | y z | t } | ı j ( z ) | d z .
Taking · r of each side of the above inequality, we find that
{ sup ψ C β ( ı j ) ψ t } ı r 1 t n j { z : | y z | t } { ı j ( z ) } ı r d z .
For any x l , ( y , t ) Γ ( x ) , j l 2 and z j { z : | y z | t } , it is easy to get
t = ( t + t ) / 2 ( | x y | + | y z | ) / 2 | x z | / 2 | x | / 4 .
Thus, by combining (10) and (11), together with Minkowski’s inequality, it follows that
S β ı j ( x ) ı r Γ ( x ) 1 t n j { z : | y z | t } { ı j ( z ) } ı r d z 2 d y d t t 1 + n 1 2 | x | / 4 | x y | < t 1 t n j { z : | y z | t } { ı j ( z ) } ı r d z 2 d y d t t 1 + n 1 2
j { ı j ( z ) } ı r d z | x | / 4 d t t 1 + 2 n 1 2 j { ı j ( z ) } ı r d z | x | n 2 l n j { ı j ( z ) } ı r d z .
Then, by virtue of Lemma 3, it follows that
l = 2 l α j = l 3 S β ( ı j ) } ı r χ l ϑ 0 q 2 ( · ) C l = 2 l α j = l 3 S β ( ı j ) } ı r χ l ϑ 0 L p ( · ) q 2 ( · ) q 2 2 l C l = j = l 3 2 l α { S β ( ı j ) } ı r χ l ϑ 0 L p ( · ) q 2 2 l C l = j = l 3 2 l α 2 n l j ı j ı r d z χ l ϑ 0 L p ( · ) q 2 2 l C l = j = l 3 ı j ϑ 0 ı r L 1 R n 2 l α 2 n l χ l L p ( · ) q 2 2 l
where
( q 2 2 ) l = ( q 2 ) if 2 l α j = l 3 S β ( ı j ) ı r χ l ϑ 0 L p ( · ) 1 , ( q 2 ) + otherwise .
From Hölder’s inequality (4), and using Lemmas 1 and 2, we infer that
l = 2 l α j = l 3 S β ( ı j ) } ı r χ l ϑ 0 q 2 ( · ) C l = j = l 3 ı j ϑ 0 ı r L p ( · ) 2 l α χ j L p ( · ) χ l L p ( · ) | B l | 2 n l q 2 2 l C l = j = l 3 2 j α ı ı r χ j ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) 1 q 1 + 2 ( l j ) ( α δ 12 ) q 2 2 l .
Now, we can distinguish the following two cases: q 1 + > 1 and 0 < q 1 + 1 .
Case 1 : If 0 < q 1 + 1 , then from Proposition 1 and Lemma 3, we obtain
l = 2 l α j = l 3 S β ( ı j ) } ı r χ l ϑ 0 q 2 ( · ) C l = j = l 3 2 j α ı ı r χ j ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) 2 q 1 + ( l j ) ( α δ 12 ) q 2 2 l q 1 +
C j = 2 j α ı ı r χ j ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) l = j + 3 2 q 1 + ( l j ) ( α δ 12 ) q * 2 C ,
where q * 2 = inf l N q 2 2 l / q 1 + .
Case 2 : If q 1 + > 1 , then 1 q 1 + q 2 q 2 2 l . Hence, for α < n δ 12 , by using Hölder’s inequality (4) and Proposition 1, we obtain that
l = 2 l α j = l 3 S β ( ı j ) } ı r χ l ϑ 0 q 2 ( · ) C l = j = l 3 2 j α ı ı r χ j ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) 2 1 2 ( l j ) ( α δ 12 ) ( q 1 ) + q 2 2 l q 1 + · j = l 3 2 1 2 ( l j ) ( α δ 12 ) b q 2 2 l b C j = 2 j α ı ı r χ j ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) l = j + 3 2 1 2 ( l j ) ( α δ 12 ) ( q 1 ) + q * 2 C ,
where b = ( ( q 1 ) + ) and q * 2 = inf l N q 2 2 l / q 1 + .
Then, based on the computations presented above, it follows that
ϑ 11 C ϑ 0 : = C ı ı r K ˙ p ( · ) α , q 1 ( · ) ( R n ) .
Finally, we estimate ϑ 13 . For any β ( 0 , 1 ] , ( y , t ) Γ ( x ) and ψ C β , we have
sup ψ C β ( ı j ) ψ t = sup ψ C β R n ψ t ( y z ) ı j ( z ) d z 1 t n j { z : | y z | t } | ı j ( z ) | d z .
By applying the norm · r on each side of the above inequality, we find that
{ sup ψ C β ( ı j ) ψ t } ı r 1 t n j { z : | y z | t } { ı j ( z ) } ı r d z .
Let z j { z : | y z | t } , ( y , t ) Γ ( x ) and j l + 3 , it is easy to get
t = ( t + t ) / 2 ( | x y | + | y z | ) / 2 | x z | / 2 | | z | | x | | / 2 | z | / 4 .
Thus, by combining (12) and (13), we obtain
S β ı j ( x ) ı r Γ ( x ) 1 t n j { z : | y z | t } ı j ( z ) ı r d z 2 d y d t t 1 + n 1 2 | z | / 4 | x y | < t 1 t n j { z : | y z | t } ı j ( z ) ı r d z 2 d y d t t 1 + n 1 2 j ı j ( z ) ı r d z | z | / 4 d t t 1 + 2 n 1 2 j ı j ( z ) ı r d z | z | n 2 n j j ı j ( z ) ı r d z .
Then, from Lemmas 1–3, it follows that
l = 2 l α j = l + 3 S β ( ı j ) } ı r χ l ϑ 0 q 2 ( · ) C l = 2 l α j = l + 3 S β ( ı j ) } ı r χ l ϑ 0 L p ( · ) q 2 ( · ) q 2 3 l C l = j = l + 3 2 l α 2 n j j ı j ı r d z χ l ϑ 0 L p ( · ) q 2 3 l C l = j = l + 3 ı j ϑ 0 ı r L 1 R n 2 l α 2 n j χ l L p ( · ) q 2 3 l C l = j = l + 3 ı j ϑ 0 ı r L p ( · ) R n 2 l α χ l L p ( · ) χ j L p ( · ) | B j | 2 n j q 2 3 l C l = j = l + 3 2 j α ı ı r χ j ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) 1 q 1 + 2 ( l j ) ( α + δ 11 ) q 2 3 l .
where
( q 2 3 ) l = ( q 2 ) if 2 l α j = l + 3 S β ( ı j ) ı r χ l ϑ 0 L p ( · ) 1 , ( q 2 ) + otherwise .
Observing that ( q 1 ) + ( q 2 ) and the fact α > n δ 11 , by using a similar argument to that used for ϑ 11 , we deduce that
ϑ 13 C ϑ 0 : = C ı ı r K ˙ p ( · ) α , q 1 ( · ) ( R n ) .
This completes the proof of Theorem 1. □

3.2. Intrinsic Square Function

Theorem 2.
Suppose that q 1 ( · ) and q 2 ( · ) P 0 * ( R n ) with ( q 1 ) + ( q 2 ) and let β ( 0 , 1 ] , p ( · ) B * ( R n ) . If α ( n δ 11 , n δ 12 ) , where δ 11 , δ 12 ( 0 , 1 ) are constants stated in Lemma 2, then S β is bounded from K ˙ p ( · ) α , q 1 ( · ) ( R n ) to K ˙ p ( · ) α , q 2 ( · ) ( R n ) .
Proof. 
Let K ˙ p ( · ) α , q 1 ( · ) R n . We can write ( x ) = j = ( x ) χ j ( x ) = j = j ( x ) . By the definition of K ˙ p ( · ) α , q ( · ) R n , we have
S β ( ) K ˙ p ( · ) α , q 2 ( · ) R n = inf ϑ > 0 : l = 2 l α S β ( ) χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) 1 .
Since
2 l α S β ( ) χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) 2 l α j = S β j χ l ϑ 21 + ϑ 22 + ϑ 23 q 2 ( · ) L p ( · ) q 2 ( · ) C 2 l α j = l 3 S β j χ l ϑ 21 q 2 ( · ) L p ( · ) q 2 ( · ) + C 2 l α j = l 2 l + 2 S β j χ l ϑ 22 q 2 ( · ) L p ( · ) q 2 ( · ) + C 2 l α j = l + 2 S β j χ l ϑ 23 q 2 ( · ) L p ( · ) q 2 ( · ) ,
here
ϑ 21 = 2 l α j = l 3 S β j χ l l = q 2 ( · ) L p ( · ) , ϑ 22 = 2 l α j = l 2 l + 2 S β j χ l l = q 2 ( · ) L p ( · ) , ϑ 23 = 2 l α j = l + 3 S β j χ l l = q 2 ( · ) L p ( · ) ,
and ϑ : = ( ϑ 21 + ϑ 22 + ϑ 23 ) : = ϱ = 1 3 ϑ 2 ϱ . That is,
S β ( ) K ˙ p ( · ) α , q 2 ( · ) R n C ϑ : = C ϱ = 1 3 ϑ 1 ϱ .
Hence, once we establish that
ϑ 21 C K ˙ p ( · ) α , q 1 ( · ) R n , ϑ 22 C K ˙ p ( · ) α , q 1 ( · ) R n , ϑ 23 C K ˙ p ( · ) α , q 1 ( · ) R n ,
we are done. Let ϑ 20 = K ˙ p ( · ) α , q 1 ( · ) R n .
First, we consider ϑ 22 . By the boundedness of S β on L p ( · ) , and using the same technique as for ϑ 12 in the proof of Theorem 1, we find immediately that
l = 2 l α j = l 2 l + 2 S β ( j ) χ l ϑ 20 q 2 ( · ) L p ( · ) q 2 ( · ) C .
That is,
ϑ 22 C ϑ 20 : = C K ˙ p ( · ) α , q 1 ( · ) R n .
Now, let us turn to the estimates of ϑ 21 . For any β ( 0 , 1 ] , x l , ( y , t ) Γ ( x ) and j l 3 , we have
sup ψ C β ( j ) ψ t = sup ψ C β R n ψ t ( y z ) j ( z ) d z 1 t n j { z : | y z | t } | j ( z ) d z | .
Let z j { z : | y z | t } . Since ( y , t ) Γ ( x ) , we have
t = ( t + t ) / 2 ( | x y | + | y z | ) / 2 | x z | / 2 | x | / 4 .
Thus, by combining (14) and (15), we deduce that
S β j ( x ) Γ ( x ) 1 t n j { z : | y z | t } | j ( z ) | d z 2 d y d t t 1 + n 1 2 | x | / 4 | x y | < t 1 t n j { z : | y z | t } | j ( z ) | d z 2 d y d t t 1 + n 1 2 j j ( z ) d z | x | / 4 d t t 1 + 2 n 1 2 j j ( z ) d z | x | n 2 l n j L 1 R n .
Then, by applying Lemma 3 and Hölder’s inequality (4), we find that
l = 2 l α j = l 3 S β j χ l ϑ 20 q 2 ( · ) L p ( · ) q 2 ( · ) C l = 2 l α j = l 3 S β j χ l ϑ 20 L p ( · ) q 2 1 l C l = 2 l α j = l 3 j ϑ 20 L p ( · ) χ l L p ( · ) χ j L p 1 ( · ) 2 n l q 2 1 l
where
( q 2 1 ) l = ( q 2 ) if 2 l α j = l 3 S β ( j ) χ l ϑ 20 L p ( · ) 1 , ( q 2 ) + otherwise .
From Lemmas 1–3, we deduce that
l = 2 l α j = l 3 S β j χ l ϑ 20 q 2 ( · ) L p ( · ) q 2 ( · ) C l = 2 l α j = l 3 | j | ϑ 20 L p ( · ) χ j L p 1 ( · ) χ l L p 1 ( · ) | B l | 2 n l q 2 1 l C l = j = l 3 2 j α χ j ϑ 20 q 1 ( · ) L p ( · ) q 1 ( · ) 1 q 1 + 2 ( l j ) α n δ 12 q 2 1 l
Moreover, using the same approach as ϑ 11 in the proof of Theorem 1, we infer that
l = 2 l α j = l 3 S β j χ l ϑ 20 q 2 ( · ) L p ( · ) q 2 ( · ) C j = 2 j α χ j ϑ 20 q 1 ( · ) L p ( · ) q 2 ( · ) l = j + 3 2 1 2 ( l j ) α n δ 12 q 1 + q * 1 , q 1 + > 1 , j = 2 j α χ j ϑ 20 q 1 ( · ) L p ( · ) q 2 ( · ) l = j + 3 2 ( l j ) α n δ 12 ( q 1 ) + q * 1 , 0 < q 1 + 1 ,
where q * 1 = inf l N q 2 1 l / q 1 + . This implies that
ϑ 21 C ϑ 20 : = C K ˙ p α , q 1 ( · ) R n .
Finally, we estimate ϑ 23 . For any x j , ( y , t ) Γ ( x ) , z j { z : | y z | t } and j l + 3 , we find that
t = ( t + t ) / 2 ( | x y | + | y z | ) / 2 | x z | / 2 | | z | | x | | / 2 | z | / 4 ,
Thus, by combining (14) and (16), we get
S β j ( x ) Γ ( x ) 1 t n j { z : | y z | t } | j ( z ) | d z 2 d y d t t 1 + n 1 2 | z | / 4 | x y | < t 1 t n j { z : | y z | t } | j ( z ) | d z 2 d y d t t 1 + n 1 2 j j ( z ) d z | z | / 4 d t t 1 + 2 n 1 2 j j ( z ) d z | z | n 2 j n j L 1 R n .
Thus, when α > n δ 11 , as argued for ϑ 21 , we deduce that
l = 2 l α j = l + 3 S β j χ l ϑ 20 q 2 ( · ) L p ( · ) q 2 ( · ) C l = 2 l α j = l + 3 S β j χ l ϑ 20 L p ( · ) q 2 2 l C l = 2 l α j = l + 3 | j | ϑ 20 L p ( · ) χ l L p ( · ) χ j L p 1 ( · ) 2 n j q 2 2 l C l = 2 l α j = l + 3 2 j α 2 j α | j | ϑ 20 L p ( · ) χ l L p ( · ) χ j L p ( · ) | B j | 2 n j q 2 2 l C l = j = l + 3 2 j α χ j ϑ 20 q 1 ( · ) L p ( · ) q 2 ( · ) 1 ( q 1 ) + 2 ( l j ) ( α + n δ 11 ) q 2 2 l C ,
here
( q 2 2 ) l = ( q 2 ) if 2 l α j = l + 3 S β ( j ) χ l ϑ 20 L p ( · ) 1 , ( q 2 ) + otherwise .
Hence,
ϑ 23 C ϑ 20 : = C K ˙ p ( · ) α , q 1 ( · ) R n .
This finishes the proof of Theorem 2. □

3.3. Commutator of the Intrinsic Square Function

Let B be any ball with a radius of r > 0 and a centre at x R n . If a locally integrable function b satisfies the following conditions, it is said to be a BMO function.
b * : = sup x R n , r > 0 | B | 1 B b ( y ) b B d y < ,
where b * is the norm in BMO R n and b B : = | B | 1 B b ( t ) d t .
The commutator of the intrinsic square function S β ( ) and b BMO R n is defined as follows:
b , S β ( ) ( x ) = Γ ( x ) sup ψ C β R n ( b ( x ) b ( z ) ) ψ t ( y z ) ( z ) d z 2 d y d t t 1 + n 1 2 .
Theorem 3.
Suppose that q 1 ( · ) and q 2 ( · ) P 0 * ( R n ) with ( q 1 ) + ( q 2 ) and let β ( 0 , 1 ] , p ( · ) B * ( R n ) , b BMO ( R n ) . If α ( n δ 11 , n δ 12 ) , where δ 11 , δ 12 ( 0 , 1 ) are constants stated in Lemma 2, then [ b , S β ] is bounded from K ˙ p ( · ) α , q 1 ( · ) ( R n ) to K ˙ p ( · ) α , q 2 ( · ) ( R n ) .
To give the proof Theorem 3, we use the following lemmas.
Lemma 6
([25]). Let b BMO R n , υ be a positive integer and p ( · ) B * R n . Then there is a positive C such that for each κ , j Z with κ > j ,
sup B R n 1 χ B L p ( · ) b b B υ . χ B L p ( · ) C b * υ , b b B j υ χ B κ L p ( · ) ( κ j ) υ b * υ χ B κ L p ( · ) .
The following Lemma 7 is due to Wang [38].
Lemma 7.
Let p ( · ) B * ( R n ) . Then for any b BMO R n and L p ( · ) , the commutator b , S β is bounded on L p ( · ) .
Proof. 
Let b BMO R n and K ˙ p ( · ) α , q 1 ( · ) R n . We can write ( x ) = j = ( x ) χ j ( x ) = j = j ( x ) . By the definition of K ˙ p ( · ) α , q ( · ) R n , we have
[ b , S β ] ( ) K ˙ p ( · ) α , q 2 ( · ) R n = inf ϑ > 0 : l = 2 l α [ b , S β ] ( ) χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) 1 .
Since
2 l α [ b , S β ] ( ) χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) 2 l α j = [ b , S β ] j χ l ϑ 31 + ϑ 32 + ϑ 33 q 2 ( · ) L p ( · ) q 2 ( · ) C 2 l α j = l 3 [ b , S β ] j χ l ϑ 31 q 2 ( · ) L p ( · ) q 2 ( · ) + C 2 l α j = l 2 l + 2 [ b , S β ] j χ l ϑ 32 q 2 ( · ) L p ( · ) q 2 ( · ) + C 2 l α j = l + 2 [ b , S β ] j χ l ϑ 33 q 2 ( · ) L p ( · ) q 2 ( · ) ,
let
ϑ 31 = 2 l α j = l 3 [ b , S β ] j χ l l = q 2 ( · ) L p ( · ) , ϑ 32 = 2 l α j = l 2 l + 2 [ b , S β ] j χ l l = q 2 ( · ) L p ( · ) , ϑ 33 = 2 l α j = l + 3 [ b , S β ] j χ l l = q 2 ( · ) L p ( · ) ,
and ϑ : = ( ϑ 31 + ϑ 32 + ϑ 33 ) : = ϱ = 1 3 ϑ 3 ϱ . That is,
l = 2 l α [ b , S β ] ( ) χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) C .
Therefore, once we prove that
ϑ 31 C b * K ˙ p ( · ) α , q 1 ( · ) R n , ϑ 32 C b * K ˙ p ( · ) α , q 1 ( · ) R n , ϑ 33 C b * K ˙ p ( · ) α , q 1 ( · ) R n ,
we are done. Let ϑ 20 = K ˙ p ( · ) α , q 1 ( · ) R n .
First, we consider ϑ 32 . By the L p ( · ) -boundedness of [ b , S β ] (Lemma 7), as discussed about ϑ 12 in the proof of Theorem 1, we obtain
l = 2 l α j = l 2 l + 2 [ b , S β ] ( j ) χ l ϑ 20 q 2 ( · ) L p ( · ) q 2 ( · ) C .
That is,
ϑ 32 C b * ϑ 20 : = C b * K ˙ p ( · ) α , q 1 ( · ) R n .
Now, we estimate ϑ 31 . Noting that x j , j l 3 . Similar to the estimation of S β ( j ) ( x ) in the proof of Theorem 2, we can obtain
S β ( j ) ( x ) 2 n l j L 1 R n .
Thus,
[ b , S β ] ( j ) ( x ) : = | S β [ ( b ( x ) b ) j ] ( x ) | 2 n l ( b ( · ) b ) j L 1 R n .
Hence, by Lemma 3 and Hölder’s inequality (4), we get
l = 2 l α j = l 3 [ b , S β ] j χ l ϑ 20 b * q 2 ( · ) L p ( · ) q 2 ( · ) C l = 2 l α j = l 3 2 n l ( b ( · ) b ) j L 1 R n χ l ϑ 20 b * L p ( · ) q 2 1 l C l = j = l 3 2 l α j ϑ 20 L p ( · ) b b j χ B j L p ( · ) 2 n l b * χ l L p ( · ) q 2 1 l + C l = j = l 3 2 l α j ϑ 20 L p ( · ) b b j χ B l L p ( · ) 2 n l b * χ j L p ( · ) q 2 1 l ,
where
( q 2 1 ) l = ( q 2 ) if 2 l α j = l 3 [ b , S β ] ( j ) χ l ϑ 20 b * L p ( · ) 1 , ( q 2 ) + otherwise .
It follows from Lemmas 1–3 and 6 that
l = 2 l α j = l 3 [ b , S β ] j χ l ϑ 20 b * q 2 ( · ) L p ( · ) q 2 ( · ) C l = j = l 3 2 j α 2 j α j ϑ 20 L p ( · ) ( l j ) 2 l α χ B j L p ( · ) χ B l L p 1 ( · ) B l 2 n l q 2 1 l
C l = j = l 3 2 j α χ j ϑ 20 q 1 ( · ) L p ( · ) q 2 ( · ) 1 ( q 1 ) + ( l j ) 2 ( l j ) ( α n δ 11 ) q 2 1 l C l = j = l 3 2 j α χ j ϑ 20 q 1 ( · ) L p ( · ) q 2 ( · ) ( l j ) ( q 1 ) + 2 1 2 ( l j ) ( α n δ 11 ) ( q 1 ) + q * 1 , q 1 + > 1 , l = j = l 3 2 j α χ j ϑ 20 q 1 ( · ) L p ( · ) q 2 ( · ) ( l j ) ( q 1 ) + 2 ( l j ) ( α n δ 11 ) ( q 1 ) + q * 1 , 0 < q 1 + 1 , C ,
where q * 1 = inf l N q 2 1 l / q 1 + . This implies that
ϑ 31 C b * ϑ 20 : = C b * K ˙ p ( · ) α , q 1 ( · ) R n .
Finally, we estimate ϑ 32 . Let x j , j l + 3 . Similar to the estimation of S β j in the proof of Theorem 2, we can find that
S β j ( x ) 2 j n j L 1 R n .
By using the inequality stated above, we can conclude
[ b , S β ] ( j ) ( x ) : = | S β [ ( b ( x ) b ) j ] ( x ) | 2 n j ( b ( · ) b ) j L 1 R n .
Therefore, when α > n δ 12 , as argued for ϑ 31 , it follows that
l = 2 l α j = l + 3 [ b , S β ] j χ l ϑ 20 b * q 2 ( · ) L p ( · ) q 2 ( · ) C l = 2 l α j = l + 3 2 n j ( b ( · ) b ) j L 1 R n χ l ϑ 20 b * L p ( · ) q 2 2 l C l = j = l + 3 2 l α j ϑ 20 L p ( · ) b b j χ B j L p ( · ) 2 n l b * χ l L p ( · ) q 2 2 l + C l = j = l + 3 2 l α j ϑ 20 L p ( · ) b b j χ B l L p ( · ) 2 n l b * χ j L p ( · ) q 2 1 l C l = j = l + 3 2 j α 2 j α j ϑ 20 L p ( · ) ( l j ) 2 l α χ B j L p ( · ) χ B l L p ( · ) B l 2 n l q 2 2 l C l = j = l + 3 2 j α χ j ϑ 20 q 1 ( · ) L p ( · ) q 2 ( · ) 1 ( q 1 ) + ( l j ) 2 ( l j ) ( α n δ 12 ) q 2 2 l C ,
where
( q 2 1 ) l = ( q 2 ) if 2 l α j = l + 3 [ b , S β ] ( j ) χ l ϑ 20 b * L p ( · ) 1 , ( q 2 ) + otherwise .
ϑ 32 C ϑ 20 : = C K ˙ p ( · ) α , q 1 ( · ) R n
This completes the proof of Theorem 3. □

3.4. Vector-Valued Inequalities for Sublinear Operators

In this section, we shall establish the boundedness of vector-valued sublinear operators on K ˙ p ( · ) α , q ( · ) R n . The boundedness of this operator on the Herz spaces with one variable p ( · ) exponents is well known [42]. For further research about the sublinear operators on different spaces with variable exponents, we refer readers to [43,44,45,46] and so on.
Theorem 4.
Suppose that 1 < r < , q 1 ( · ) and q 2 ( · ) P 0 * ( R n ) with ( q 1 ) + ( q 2 ) and let p ( · ) B * ( R n ) , α ( n δ 11 , n δ 12 ) , where δ 11 , δ 12 ( 0 , 1 ) are constants stated in Lemma 2. If a sublinear operator Λ verifying the size condition
| Λ ( ) ( x ) | R n | x y | n | ( y ) | d y , x s u p p ,
for any L 1 ( R n ) with compact support and the vector-valued inequality on L p ( · )
ı Λ ı r 1 r L p ( · ) C ı ı r 1 r L p ( · ) ,
then, for any ı ı N satisfying ı ı r K p ( · ) α , q 1 ( · ) ( R n ) < , the following vector-valued inequality holds:
ı Λ ı r 1 r K ˙ p ( · ) α , q 2 ( · ) C ı ı r 1 r K ˙ p ( · ) α , q 1 ( · ) .
Proof. 
For any ı ı N satisfies ı ı r K ˙ p ( · ) α , q 1 ( · ) < , we can write ı = j = ı χ j = j = ı j . By the definition of K ˙ p ( · ) α , q ( · ) R n , we have
Λ ( ı ) ı r χ l K ˙ p ( · ) α , q 2 ( · ) R n = inf ϑ > 0 : l = 2 l α Λ ( ı ) ı r χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) 1
Since
2 l α Λ ( ı ) ı r χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) 2 l α j = Λ ( ı j ) ı r χ l ϑ 41 + ϑ 42 + ϑ 43 q 2 ( · ) L p ( · ) q 2 ( · ) C 2 l α j = l 3 Λ ( ı j ) ı r χ l ϑ 41 q 2 ( · ) L p ( · ) q 2 ( · ) + C 2 l α j = l 2 l + 2 Λ ( ı j ) ı r χ l ϑ 42 q 2 ( · ) L p ( · ) q 2 ( · )
+ C 2 l α j = l + 3 Λ ( ı j ) ı r χ l ϑ 43 q 2 ( · ) L p ( · ) q 2 ( · ) ,
here
ϑ 41 = 2 l α j = l 3 Λ ( ı j ) ı r χ l l = q 2 ( · ) L p ( · ) , ϑ 42 = 2 l α j = l 2 l + 2 Λ ( ı j ) ı r χ l l = q 2 ( · ) L p ( · ) , ϑ 43 = 2 l α j = l + 2 Λ ( ı j ) ı r χ l l = q 2 ( · ) L p ( · ) ,
and ϑ : = ( ϑ 41 + ϑ 42 + ϑ 43 ) : = ϱ = 1 3 ϑ 4 ϱ , thus,
l = 2 l α Λ ( ı ) ı r χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) C .
Then,
Λ ( ı ) ı r K ˙ p ( · ) α , q 2 ( · ) R n C ϑ : = C ϱ = 1 3 ϑ 4 ϱ .
Hence, if we establish that
ϑ 41 C ı ı r K ˙ p ( · ) α , q 1 ( · ) R n , ϑ 42 C ı ı r K ˙ p ( · ) α , q 1 ( · ) R n , ϑ 43 C ı ı r K ˙ p ( · ) α , q 1 ( · ) R n ,
we are done. Let ϑ 0 = ı ı r K ˙ p ( · ) α , q 1 ( · ) R n .
First, we consider ϑ 42 . Since Λ satisfies (18), then by using the same approach as ϑ 12 in the proof of Theorem 1, we can easily obtain
l = 2 l α j = l 2 l + 2 Λ ( ı j ) ı r χ l ϑ q 2 ( · ) L p ( · ) q 2 ( · ) C .
That is, ϑ 42 C ϑ 0 : = C ı ı r K ˙ p ( · ) α , q 1 ( · ) R n .
Now, we estimate ϑ 42 . For all l Z , j l 3 and x l , since Λ satisfies (17), by applying Minkowski’s inequality and the inequality (4), it follows that
Λ ı j ( x ) ı r · χ l j ı ( y ) | x y | n d y ı r · χ l 2 n l j ı ( y ) d y ı r · χ l 2 n l ı j ı r L p ( · ) χ j L p ( · ) · χ l .
From Lemmas 1–3, it follows that
l = 2 l α j = l 3 Λ ( ı j ) } ı r χ l ϑ 0 q 2 ( · ) C l = j = l 3 ı j ϑ 0 ı r L p ( · ) R n 2 l α χ j L p ( · ) χ l L p ( · ) | B l | 2 n l q 2 1 l C l = j = l 3 2 j α ı ı r χ j ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) 1 q 1 + 2 ( l j ) ( α δ 12 ) q 2 1 l ,
where
( q 2 1 ) l = ( q 2 ) if 2 l α j = l 3 Λ ( j ) χ l ϑ 20 L p ( · ) 1 , ( q 2 ) + otherwise .
Moreover, using the same approach as ϑ 11 in the proof of Theorem 1, we find
l = 2 l α j = l 3 Λ ( ı j ) } ı r χ l ϑ 0 q 2 ( · ) C .
Finally, we estimate ϑ 43 . For all l Z , j l 3 and x l , since Λ satisfies (17), by applying Minkowski’s inequality and the inequality (4), it follows that
Λ ı j ( x ) ı r · χ l j ı ( y ) | x y | n d y ı r · χ l 2 n j j ı ( y ) d y ı r · χ l 2 n j ı j ı r L p ( · ) χ j L p ( · ) · χ l .
Thus, when α > n δ 11 , similar to the approach taken to estimate ϑ 41 before, we can obtain
l = 2 l α j = l + 3 Λ ( ı j ) } ı r χ l ϑ 0 q 2 ( · ) C l = 2 l α j = l + 3 Λ ( ı j ) } ı r χ l ϑ 0 L p ( · ) q 2 ( · ) q 2 2 l C l = j = l + 3 ı j ϑ 0 ı r L p ( · ) 2 l α χ l L p ( · ) χ j L p ( · ) | B j | 2 n j q 2 2 l C l = j = l + 3 2 j α ı ı r χ j ϑ 0 q 1 ( · ) L p ( · ) q 1 ( · ) 1 q 1 + 2 ( l j ) ( α + δ 11 ) q 2 2 l C .
where
( q 2 2 ) l = ( q 2 ) if 2 l α j = l + 3 Λ ( ı j ) ı r χ l ϑ 0 L p ( · ) 1 , ( q 2 ) + otherwise .
This completes the proof of Theorem 4. □
Remark 2.
(1) It is worth pointing out that even in the particular case that q ( · ) is constant, our main results, namely Theorems 1, and 2, are also new.
(2) All of these results can also be proved for non-homogeneous Herz spaces with two variable exponents. Due to the similarity of the arguments, details are omitted.

4. Conclusions

We obtain the boundedness of the vector-valued intrinsic square function and the boundedness of the scalar-valued intrinsic square function on Herz spaces with two variable exponents. The boundedness of the corresponding commutators generated by a BMO function and scalar-valued intrinsic square function is also obtained. As a supplement, the vector-valued inequality for sublinear operators is obtained on K ˙ p ( · ) α , q ( · ) ( R n ) .

Author Contributions

Conceptualization, O.A.O. and M.Z.A.; Validation, O.A.O. and M.Z.A.; Writing—original draft, O.A.O.; Writing—review and editing, O.A.O. and M.Z.A. Funding acquisition M.Z.A. and O.A.O. All authors have read and agreed to submit this version of the manuscript.

Funding

The research was supported by Zhejiang Normal University.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wilson, M. Weighted Littlewood-Paley Theory and Exponential-Square Integrability; Lecture Notes in Math 1924; Springer: Berlin, Germany, 2007. [Google Scholar]
  2. Wilson, M. The intrinsic square function. Rev. Math. Iberoam 2007, 23, 771–791. [Google Scholar] [CrossRef] [Green Version]
  3. Lerner, A. Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals. Adv. Math. 2011, 226, 3912–3926. [Google Scholar] [CrossRef] [Green Version]
  4. Wang, H.; Liu, H.P. Weak type estimates of intrinsic square functions on the weighted Hardy spaces. Arch. Math. 2011, 97, 49–59. [Google Scholar] [CrossRef] [Green Version]
  5. Wang, H. Intrinsic square functions on the weighted Morrey spaces. J. Math. Anal. Appl. 2012, 396, 302–314. [Google Scholar] [CrossRef] [Green Version]
  6. Wang, H. Boundedness of intrinsic square functions on the weighted weak Hardy spaces Integr. Equ. Oper. Theory 2013, 75, 135–149. [Google Scholar] [CrossRef] [Green Version]
  7. Wang, H. The boundedness of intrinsic square functions on the weighted Herz spaces. J. Funct. Spaces 2014, 2014, 274521. [Google Scholar] [CrossRef] [Green Version]
  8. Liang, Y.; Nakai, E.; Yang, D.; Zhang, J. Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces. Banach. J. Math. Anal. 2014, 8, 221–268. [Google Scholar] [CrossRef] [Green Version]
  9. Wang, H. Weighted estimates for vector-valued intrinsic square functions and commutators in the Morrey-Type spaces. Acta Math. Vietnam. 2021, 1–35. [Google Scholar] [CrossRef]
  10. Liang, Y.; Yang, D. Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces. Trans. Am. Math. Soc. 2014, 5, 3225–3256. [Google Scholar] [CrossRef]
  11. Liang, Y.; Yang, D. Musielak-Orlicz Campanato spaces and applications. J. Math. Anal. Appl. 2013, 406, 307–322. [Google Scholar] [CrossRef]
  12. Wang, H.; Liu, H.P. The intrinsic square function characterizations of weighted Hardy spaces. Ill. J. Math. 2012, 56, 367–381. [Google Scholar] [CrossRef]
  13. Wang, H. Boundedness of vector-valued intrinsic square functions in Morrey type spaces. J. Funct. Spaces 2014, 2014, 923680. [Google Scholar] [CrossRef] [Green Version]
  14. Guliyev, V.S.; Omarova, M.N. Higher order commutators of vector-valued intrinsic square functions on vector-valued generalized weighted Morrey spaces. J. Math. 2014, 4, 64–85. [Google Scholar]
  15. Izuki, M.; Noi, T. An intrinsic square function on weighted Herz spaces with variable exponent. J. Math. Inequalities 2017, 11, 799–816. [Google Scholar] [CrossRef]
  16. Herz, C.S. Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 1967, 18, 283–323. [Google Scholar] [CrossRef]
  17. Ragusa, M.A. Homogeneous Herz spaces and regularity results. Nonlinear Anal. Theory Methods Appl. 2009, 71, e1909–e1914. [Google Scholar] [CrossRef]
  18. Ragusa, M.A. Parabolic Herz spaces and their applications. Appl. Math. Lett. 2012, 25, 1270–1273. [Google Scholar] [CrossRef] [Green Version]
  19. Abdalrhman, O.; Abdalmonem, A.; Tao, S. Boundedness of Calderón-Zygmund operator and their commutator on Herz spaces with variable exponents. Appl. Math. 2017, 8, 428–443. [Google Scholar] [CrossRef] [Green Version]
  20. Scapellato, A. Homogeneous Herz spaces with variable exponents and regularity results. Electron. J. Qual. Theory Differ Equ. 2018, 82, 1–11. [Google Scholar] [CrossRef]
  21. Scapellato, A. Regularity of solutions to elliptic equations on Herz spaces with variable exponents. Bound. Value Probl. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
  22. Cruz-Uribe, D.; Fiorenza, A. Variable Lebesgue Spaces. Foundations and Harmonic Analysis; Appl. Numer. Harmon. Anal.; Springer: New York, NY, USA, 2013. [Google Scholar]
  23. Cruz-Uribe, D.; Fiorenza, A.; Neugebauer, C. The maximal function on variable Lp spaces. Ann. Acad. Sci. Fenn. Math. 2003, 28, 223–238. [Google Scholar]
  24. Nekvinda, A. Hardy-littlewood maximal operator in Lp(x)(Rn). Math. Ineq. Appl. 2004, 7, 255–265. [Google Scholar]
  25. Izuki, M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 2010, 2, 461–472. [Google Scholar] [CrossRef]
  26. Izuki, M. Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 2010, 59, 199–213. [Google Scholar] [CrossRef]
  27. Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M. Lebesgue and Sobolev Spaces with Variable Exponents; 2017 of Lecture Notes in Mathematics; Springer: Heidelberg, Germany, 2011. [Google Scholar]
  28. Rùžička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; 1748; Springer: Berlin, Germany, 2000. [Google Scholar]
  29. Harjulehto, P.; Hästö, P.; Lê, Ú.V.; Nuortio, M. Overview of differential equations with non-standard growth. Nonlinear Anal. 2010, 72, 4551–4574. [Google Scholar] [CrossRef]
  30. Abidin, M.Z.; Chen, J. Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in Fourier-Besov-Morrey Spaces with Variable Exponent. Mathematics 2021, 9, 498. [Google Scholar] [CrossRef]
  31. Abidin, M.Z.; Chen, J. Global well-posedness for fractional Navier-Stokes equations in variable exponent Fourier-Besov-Morrey spaces. Acta Math. Sci. 2021, 41, 164–176. [Google Scholar] [CrossRef]
  32. Wang, L.; Tao, S. Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable exponents. Turk. J. Math. 2016, 40, 122–145. [Google Scholar] [CrossRef] [Green Version]
  33. Yang, Y.; Tao, S. θ-type Calderón-Zygmund Operators and Commutators in Variable Exponents Herz space. Open Math. 2018, 16, 1607–1620. [Google Scholar] [CrossRef]
  34. Cai, J.; Dong, B.; Tang, C. Boundedness of Rough Singular Integral Operators on Homogeneous Herz Spaces with Variable Exponents. J. Math. Study 2020, 53, 297–315. [Google Scholar] [CrossRef]
  35. Almeida, A.; Drihem, D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 2012, 394, 781–795. [Google Scholar] [CrossRef]
  36. Zhuo, C.; Yang, D.; Liang, Y. Intrinsic square function characterizations of Hardy spaces with vriable exponents. Bull. Malays. Math. Sci. Soc. 2016, 39, 1541–1577. [Google Scholar] [CrossRef] [Green Version]
  37. Ho, K.P. Intrinsic Square Functions on Morrey and Block Spaces with Variable Exponents. Bull. Malays. Math. Sci. Soc. 2017, 40, 995–1010. [Google Scholar] [CrossRef]
  38. Wang, L. Boundedness of the commutator of the intrinsic square function in variable exponent spaces. J. Korean Math. Soc. 2018, 55, 939–962. [Google Scholar]
  39. Saibi, K. Intrinsic square function characterizations of variable Hardy-Lorentz spaces. J. Funct. Spaces 2020, 10, 2681719. [Google Scholar] [CrossRef] [Green Version]
  40. Yan, X.; Yang, D.; Yuan, W. Intrinsic square function characterizations of several Hardy-type spaces—A survey. Anal. Theory Appl. 2021, 37, 426–464. [Google Scholar]
  41. Almeida, A.; Hasanov J., S. Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 2008, 15, 195–208. [Google Scholar] [CrossRef]
  42. Izuki, M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas. Mat. 2010, 45, 475–503. [Google Scholar] [CrossRef]
  43. Lu, Y.; Zhu, Y.P. Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents. Czechoslov. Math. J. 2014, 64, 969–987. [Google Scholar] [CrossRef] [Green Version]
  44. Izuki, M. Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 2009, 13, 243–253. [Google Scholar]
  45. Ho, K.P. Singular integral operators and sublinear operators on Hardy local Morrey spaces with variable exponents. Bull. Sci. Math. 2021, 171, 103033. [Google Scholar] [CrossRef]
  46. Izuki, M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 2010, 36, 33–50. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Omer, O.A.; Abidin, M.Z. Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces. Mathematics 2022, 10, 1168. https://doi.org/10.3390/math10071168

AMA Style

Omer OA, Abidin MZ. Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces. Mathematics. 2022; 10(7):1168. https://doi.org/10.3390/math10071168

Chicago/Turabian Style

Omer, Omer Abdalrhman, and Muhammad Zainul Abidin. 2022. "Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces" Mathematics 10, no. 7: 1168. https://doi.org/10.3390/math10071168

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop