Next Article in Journal
An Improved Intelligent Auction Mechanism for Emergency Material Delivery
Next Article in Special Issue
Improvement of Some Hayashi–Ostrowski Type Inequalities with Applications in a Probability Setting
Previous Article in Journal
Preface to the Special Issue on “Control, Optimization, and Mathematical Modeling of Complex Systems”
Previous Article in Special Issue
The Best Ulam Constant of the Fréchet Functional Equation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Hyers–Ulam Stability of a System of Hyperbolic Partial Differential Equations

by
Daniela Marian
1,*,
Sorina Anamaria Ciplea
2 and
Nicolaie Lungu
1
1
Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
2
Department of Management and Technology, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(13), 2183; https://doi.org/10.3390/math10132183
Submission received: 30 May 2022 / Revised: 17 June 2022 / Accepted: 20 June 2022 / Published: 23 June 2022
(This article belongs to the Special Issue Mathematical Inequalities, Models and Applications)

Abstract

:
In this paper, we study Hyers–Ulam and generalized Hyers–Ulam–Rassias stability of a system of hyperbolic partial differential equations using Gronwall’s lemma and Perov’s theorem.

1. Introduction

In many practical applications, there are problems modeled by differential equations, partial differential equations, differential inequalities, and systems of differential and partial differential equations. Ulam’s stability of differential and partial differential equations has been studied by many mathematicians since 1940, when Ulam posed this problem [1]. In 1941, Hyers [2] established the first result regarding this type of stability. This was followed by the work of Obloza and Ger [3,4] on the stability of differential equations. The field then continued to grow rapidly. We mention the works [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. A summary of certain works can be consulted in [20,21]. Ulam stability of systems of differential equations began with the paper by Prastaro and Rassias [22]. Systems have also been studied, for example, in [23,24].
We specify that Hyers–Ulam stability for coupled fixed points of contractive-type operators have been studied, for example, in [25,26] and Hyers–Ulam stability for coupled systems of fractional differential equations in [27,28,29].
In this paper, we study the Ulam stability of a system of second-order hyperbolic partial differential equations for functions of two variables. The system we consider is nonlinear and has the form
2 u 1 x y = f 1 x , y , u 1 x , y , u 2 x , y 2 u 2 x y = f 2 x , y , u 1 x , y , u 2 x , y ,
satisfying the conditions
u 1 x , 0 = φ 1 ( x ) u 1 0 , y = ψ 1 ( y ) u 2 x , 0 = φ 2 ( x ) u 2 0 , y = ψ 2 ( y ) u 1 0 , 0 = u 2 0 , 0 = φ 1 ( 0 ) = ψ 1 ( 0 ) = φ 2 ( 0 ) = ψ 2 ( 0 ) = α 0 ,
where u 1 , u 2 C 2 D , R , f 1 , f 2 C D × R × R , R , φ 1 , φ 2 C 0 , a , ψ 1 , ψ 2 C 0 , b , a 0 , + , b 0 , + , D = 0 , a × 0 , b , α 0 R .
The outline of the paper is as follows: in Section 2, we present the stability notions and prove several auxiliary results that are useful in the following sections (Remarks 2–5). The first main result (Theorem 3) is given in the next section and concerns the Hyers–Ulam stability of system (1) and (2), using Perov’s theorem and Gronwall’s lemma. The second main result (Theorem 4), regarding the generalized Hyers–Ulam–Rassias stability of system (1) and (2), using Gronwall’s lemma, is proved in Section 4. Example 1 is also given in Section 3 to illustrate the results of Theorem 3.

2. Preliminary Notions and Results

Let n N , n 2 , x , y R n , x = x 1 , x 2 , , x n , y = y 1 , y 2 , , y n . By x y , we understand x i y i , for all i = 1 , 2 , , n . We will make an identification between column and row vectors in R n .
In the following, we recall the definition of generalized metric space.
Definition 1
([30]). Let X be a nonempty set. A mapping d : X × X R n is called a generalized metric on X (or vector-valued metric) if the following properties are satisfied:
(i) 
d x , y 0 for all x , y X ; d x , y = 0 x = y ;
(ii) 
d x , y = d y , x for all x , y X ;
(iii) 
d x , y d x , z + d z , y for all x , y , z X .
A set endowed with a generalized metric d is called a generalized metric space. In a generalized metric space, the notions of convergent sequence, Cauchy sequence, completeness, open subset, and closed subset are similar to those for the usual metric space.
We denote by M n n R the set of all n × n matrices and by M n n R + the set of all n × n matrices with nonegative elements. Let be O the zero n × n matrix and I the identity n × n matrix.
Definition 2.
A matrix A M n n R is called convergent to zero if A m O , as m + .
Let us remember the following properties of matrices convergent to zero:
Theorem 1
([30]). Let A M n n R + . The following assertions are equivalents:
(i) 
A is convergent to zero;
(ii) 
the eigenvalues of A are in the open unit disc, i.e., λ < 1 , for every λ C with det A λ I = 0 ;
(iii) 
the matrix I A is nonsingular and
I A 1 = I + A + + A n + ;
(iv) 
the matrix I A is nonsingular and I A 1 has nonegative elements.
Remark 1.
Every matrix A = a a b b M 22 ( R + ) with a + b < 1 converges to O .
The following Perov’s theorem is used in the paper:
Theorem 2
(Perov [31]). Let X , d be a complete generalized metric space, f : X X and A M n n R + a matrix convergent to zero such that
d f x , f y A d x , y f o r a l l x , y X .
Then:
(i) 
f has a unique fixed point x * X ;
(ii) 
the sequence of succesive approximation x m m N ,   x m = f m x 0 , is convergent to x * , for all x 0 X ;
(iii) 
d x m , x * A m I A 1 d x 0 , x 1 , for all x 0 X and m 1 .
Let ε 1 > 0 , ε 2 > 0 and α , β C D , R + . We consider the following systems of inequalities:
2 u 1 x y f 1 x , y , u 1 x , y , u 2 x , y ε 1 2 u 2 x y f 2 x , y , u 1 x , y , u 2 x , y ε 2
and
2 u 1 x y f 1 x , y , u 1 x , y , u 2 x , y α ( x , y ) 2 u 2 x y f 2 x , y , u 1 x , y , u 2 x , y β ( x , y ) .
Definition 3.
System (1) is called Hyers–Ulam-stable if there exists a real number c > 0 so that for any solution ( u 1 , u 2 ) of system (3), satisfying (2), there is a solution ( u 1 0 , u 2 0 ) of system (1), satisfying (2), such that
| u 1 x , y u 1 0 x , y | + | u 2 x , y u 2 0 x , y | c · ( ε 1 + ε 2 ) , f o r a l l x , y D .
Definition 4.
System (1) is called generalized Hyers–Ulam–Rassias-stable if there exists a real number c > 0 so that for any solution ( u 1 , u 2 ) of system (4), satisfying (2), there is a solution ( u 1 0 , u 2 0 ) of system (1), satisfying (2), such that
| u 1 x , y u 1 0 x , y | + | u 2 x , y u 2 0 x , y | c · α ( x , y ) + β ( x , y ) , f o r a l l x , y D .
In Definitions 3 and 4, ( u 1 , u 2 ) is called an approximate solution and ( u 1 0 , u 2 0 ) is called an exact solution of (1).
Remark 2.
A pair of functions ( u 1 , u 2 ) , u 1 , u 2 C 2 D , R , is a solution of system (3) if and only if there exist a pair of functions ( g 1 , g 2 ) , g 1 , g 2 C 2 D , R such that
1. 
g 1 x , y ε 1 , g 2 x , y ε 2 , f o r a l l x , y D ; a n d
2. 
2 u 1 x y = f 1 x , y , u 1 x , y , u 2 x , y + g 1 ( x , y ) 2 u 2 x y = f 2 x , y , u 1 x , y , u 2 x , y + g 2 ( x , y ) , f o r a l l x , y D .
Remark 3.
A pair of functions ( u 1 , u 2 ) , u 1 , u 2 C 2 D , R , is a solution of system (4) if and only if there exist a pair of functions ( g 1 , g 2 ) , g 1 , g 2 C 2 D , R such that
1. 
g 1 x , y α ( x , y ) , g 2 x , y β ( x , y ) , f o r a l l x , y D ; a n d
2. 
2 u 1 x y = f 1 x , y , u 1 x , y , u 2 x , y + g 1 ( x , y ) 2 u 2 x y = f 2 x , y , u 1 x , y , u 2 x , y + g 2 ( x , y ) , f o r a l l x , y D .
Remark 4.
If ( u 1 , u 2 ) , u 1 , u 2 C 2 D , R , is a solution of system (3), then
u 1 x , y u 1 x , 0 u 1 0 , y + u 1 0 , 0 0 x 0 y f 1 x , y , u 1 x , y , u 2 x , y d s d t ε 1 x y , f o r a l l x , y D ,
u 2 x , y u 2 x , 0 u 2 0 , y + u 2 0 , 0 0 x 0 y f 2 x , y , u 1 x , y , u 2 x , y d s d t ε 2 x y , f o r a l l x , y D .
Indeed, from Remark 2 we have:
u 1 x , y = u 1 x , 0 + u 1 0 , y u 1 0 , 0 + 0 x 0 y f 1 s , t , u 1 s , t , u 2 s , t d s d t + 0 x 0 y g 1 ( s , t ) d s d t
u 2 x , y = u 2 x , 0 + u 2 0 , y u 2 0 , 0 + 0 x 0 y f 2 s , t , u 1 s , t , u 2 s , t d s d t + 0 x 0 y g 2 ( s , t ) d s d t ,
f o r a l l x , y D . Hence
u 1 x , y u 1 x , 0 u 1 0 , y + u 1 0 , 0 0 x 0 y f 1 x , y , u 1 x , y , u 2 x , y d s d t 0 x 0 y g 1 ( s , t ) d s d t ε 1 x y , f o r a l l x , y D ,
u 2 x , y u 2 x , 0 u 2 0 , y + u 2 0 , 0 0 x 0 y f 2 x , y , u 1 x , y , u 2 x , y d s d t 0 x 0 y g 2 ( s , t ) d s d t ε 2 x y , f o r a l l x , y D .
Remark 5.
If ( u 1 , u 2 ) , u 1 , u 2 C 2 D , R , is a solution of system (4), then
u 1 x , y u 1 x , 0 u 1 0 , y + u 1 0 , 0 0 x 0 y f 1 x , y , u 1 x , y , u 2 x , y d s d t 0 x 0 y α ( s , t ) d s d t , f o r a l l x , y D ,
u 2 x , y u 2 x , 0 u 2 0 , y + u 2 0 , 0 0 x 0 y f 2 x , y , u 1 x , y , u 2 x , y d s d t 0 x 0 y β ( s , t ) d s d t , f o r a l l x , y D .
Indeed, we have:
u 1 x , y u 1 x , 0 u 1 0 , y + u 1 0 , 0 0 x 0 y f 1 x , y , u 1 x , y , u 2 x , y d s d t 0 x 0 y g 1 ( s , t ) d s d t 0 x 0 y α ( s , t ) d s d t , f o r a l l x , y D ,
u 2 x , y u 2 x , 0 u 2 0 , y + u 2 0 , 0 0 x 0 y f 2 x , y , u 1 x , y , u 2 x , y d s d t 0 x 0 y g 2 ( s , t ) d s d t 0 x 0 y β ( s , t ) d s d t , f o r a l l x , y D .

3. Hyers–Ulam Stability

We present below a result regarding Hyers–Ulam stability of system (1), with the conditions (2), using Gronwall’s lemma.
Let a 0 , + , b 0 , + , D = 0 , a × 0 , b , α 0 R .
Let φ 1 , φ 2 C 0 , a , ψ 1 , ψ 2 C 0 , b , u 1 , u 2 , u 1 ¯ , u 2 ¯ C 2 D , u = ( u 1 u 2 ) , u ¯ = ( u 1 ¯ u 2 ¯ ) , f = ( f 1 f 2 ) , φ = ( φ 1 φ 2 ) , ψ = ( ψ 1 ψ 2 ) , α = ( α 0 α 0 ) , α 0 R , f 1 , f 2 C D × R × R , R . Consider a column vector equal to the corresponding line vector.
Theorem 3.
We suppose that
(i) 
There exists the matrix function l : D M 22 R + , l x , y = l i j x , y 1 i 2 1 j 2 , l C D , M 22 R + such that
f 1 x , y , u 1 x , y , u 2 x , y f 1 x , y , u 1 ¯ x , y , u 2 ¯ x , y l 11 x , y u 1 x , y u 1 ¯ x , y + l 12 x , y u 2 x , y u 2 ¯ x , y ,
f 2 x , y , u 1 x , y , u 2 x , y f 2 x , y , u 1 ¯ x , y , u 2 ¯ x , y l 21 x , y u 1 x , y u 1 ¯ x , y + l 22 x , y u 2 x , y u 2 ¯ x , y ,
f o r a l l x 0 , a , y 0 , b and u 1 , u 2 , u 1 ¯ , u 2 ¯ C 2 D .
(ii) 
We denote by A i j = max D 0 x 0 y l i j s , t d s d t . Let A = A i j 1 i 2 1 j 2 M 22 R + . We suppose that the matrix A converges to O M 22 R .
Then:
  • System (1) has a unique solution satisfying (2).
  • System (1), with the conditions (2), is Hyers–Ulam-stable.
Proof. 
1. We consider the matrix form of the system:
2 u x y = f x , y , u x , y ,
with the boundary conditions
u x , 0 = φ x , u 0 , y = ψ y , u 0 , 0 = φ 0 = ψ 0 = α .
The problem is equivalent to the following system of integral equations:
u x , y = u x , 0 + u 0 , y u 0 , 0 + 0 x 0 y f s , t , u s , t d s d t .
For the proof, we use the generalized norm in R 2 , a = a 1 a 2 for a = a 1 , a 2 R 2 (see [30]). We consider the operator T : C 2 D , R 2 C D , R 2 defined by
T u x , y = u x , 0 + u 0 , y u 0 , 0 + 0 x 0 y f s , t , u s , t d s d t ,
for all u C 2 D , R 2 and x , y D .
We prove that the operator T is a contraction. We have:
T u x , y T u ¯ x , y 0 x 0 y f s , t , u s , t f s , t , u ¯ s , t d s d t 0 x 0 y l s , t u u ¯ d s d t A u u ¯ ,
hence
T u T u ¯ A u u ¯ .
Since the matrix A converges to the null matrix, from Perov’s Theorem 2, it follows that the operator T has a unique fixed point ( u 1 0 , u 2 0 ) , which is the solution of the integral system and therefore of the problem (1) and (2).
2. Let ( u 1 , u 2 ) be a solution of system (3), satisfying (2) and ( u 1 0 , u 2 0 ) the unique solution of system (1), satisfying (2). Let l 1 x , y = max { l 11 x , y , l 12 x , y } , l 2 x , y = max { l 21 x , y , l 22 x , y } , x , y D .
We have
u 1 x , y u 1 0 x , y u 1 x , 0 φ 1 x ψ 1 y α 0 + 0 x 0 y f 1 s , t , u 1 s , t , u 2 s , t d s d t + 0 x 0 y f 1 s , t , u 1 s , t , u 2 s , t f 1 s , t , u 1 0 s , t , u 2 0 s , t d s d t ε 1 x y + 0 x 0 y l 1 s , t u 1 s , t u 1 0 s , t + u 2 s , t u 2 0 s , t d s d t .
Analog
| u 2 x , y u 2 0 x , y | u 2 x , 0 φ 2 x ψ 2 y α 0 + 0 x 0 y f 2 s , t , u 1 s , t , u 2 s , t d s d t + 0 x 0 y f 2 s , t , u 1 s , t , u 2 s , t f 2 s , t , u 1 0 s , t , u 2 0 s , t d s d t ε 2 x y + 0 x 0 y l 2 s , t u 1 s , t u 1 0 s , t + u 2 s , t u 2 0 s , t d s d t .
Adding these relations, we obtain
| u 1 x , y u 1 0 x , y | + u 2 x , y u 2 0 x , y ε 1 + ε 2 x y + 0 x 0 y l 1 s , t + l 2 s , t u 1 s , t u 1 0 s , t + u 2 s , t u 2 0 s , t d s d t .
Applying Gronwall’s Lemma, we obtain
u 1 x , y u 1 0 x , y + u 2 x , y u 2 0 x , y ε 1 + ε 2 x y exp 0 x 0 y l 1 s , t + l 2 s , t d s d t ε 1 + ε 2 a b exp 0 a 0 b l 1 s , t + l 2 s , t d s d t c ε 1 + ε 2 ,
where c = a b exp 0 a 0 b l 1 s , t + l 2 s , t d s d t ; that is, system (1) is Hyers–Ulam-stable. □
Example 1.
Consider D = [ 0 , 1 ] × [ 0 , 1 ] , f 1 , f 2 C D × R × R , R , φ 2 C 0 , 1 , ψ 1 , ψ 2 C 0 , 1 , α 0 R ,
f 1 x , y , u 1 , u 2 = 1 20 x y cos u 1 + u 2 ,
f 2 x , y , u 1 , u 2 = 1 10 x 2 y 2 sin u 1 + u 2 .
We remark that
f 1 x , y , u 1 , u 2 f 1 x , y , u 1 ¯ , u 2 ¯ 1 20 u 1 u ¯ 1 + 1 20 u 2 u ¯ 2
and
f 2 x , y , u 1 , u 2 f 2 x , y , u 1 ¯ , u 2 ¯ 1 10 u 1 u ¯ 1 + 1 10 u 2 u ¯ 2 ,
f o r a l l u 1 , u 2 , u 1 ¯ , u 2 ¯ R . Using Remark 1, we obtain the result that the matrix A = 1 20 1 20 1 10 1 10 converges to O.
We consider the system
2 u 1 x y = 1 20 x y cos u 1 + u 2 2 u 2 x y = 1 10 x 2 y 2 sin u 1 + u 2 .
Let ε 1 > 0 , ε 2 > 0 . We consider also the following system of inequalities:
2 u 1 x y 1 20 x y cos u 1 + u 2 ε 1 2 u 2 x y 1 10 x 2 y 2 sin u 1 + u 2 ε 2 .
From Theorem 3, we have that system (5) with the conditions (2) is Hyers–Ulam-stable; that is, for each solution ( u 1 , u 2 ) of system (6) satisfying (2) and for ( u 1 0 , u 2 0 ) , which is the unique solution of system (5) satisfying (2), we have
| u 1 x , y u 1 0 x , y | + | u 2 x , y u 2 0 x , y | ε 1 + ε 2 exp 3 20 .

4. Generalized Hyers–Ulam–Rassias Stability

We present below a result regarding generalized Hyers–Ulam–Rassias stability of system (1), with the conditions (2), using Gronwall’s lemma.
Let a 0 , + , b 0 , + , D = 0 , a × 0 , b , α 0 R .
Let φ 1 , φ 2 C 0 , a , ψ 1 , ψ 2 C 0 , b , u 1 , u 2 C 2 D , f 1 , f 2 C D × R × R , R , α , β C D , R + .
Theorem 4.
We suppose that
(i) 
The conditions (i), (ii) from Theorem 3 are satisfied.
(ii) 
There exists α 1 , β 1 R + such that
0 x 0 y α s , t d s d t α 1 · α x , y , f o r a l l x , y D ,
0 x 0 y β s , t d s d t β 1 · β x , y , f o r a l l x , y D .
(iii) 
α , β C D , R + are increasing.
Then, system (1), with the conditions (2), is generalized Hyers–Ulam–Rassias-stable.
Proof. 
Let ( u 1 , u 2 ) be a solution of system (4) satisfying (2) and ( u 1 0 , u 2 0 ) the unique solution of system (1) satisfying (2) (this solution exists; see Theorem 3). Let l 1 x , y = max { l 11 x , y , l 12 x , y } , l 2 x , y = max { l 21 x , y , l 22 x , y } , x , y D .
We have
u 1 x , y u 1 0 x , y 0 x 0 y α ( s , t ) d s d t + 0 x 0 y l 1 s , t u 1 s , t u 1 0 s , t + u 2 s , t u 2 0 s , t d s d t . α 1 · α x , y + 0 x 0 y l 1 s , t u 1 s , t u 1 0 s , t + u 2 s , t u 2 0 s , t d s d t .
Analog
u 2 x , y u 2 0 x , y 0 x 0 y β ( s , t ) d s d t + 0 x 0 y l 2 s , t u 1 s , t u 1 0 s , t + u 2 s , t u 2 0 s , t d s d t β 1 · β x , y + 0 x 0 y l 2 s , t u 1 s , t u 1 0 s , t + u 2 s , t u 2 0 s , t d s d t .
Adding these relations, we obtain
u 1 x , y u 1 0 x , y + u 2 x , y u 2 0 x , y α 1 · α x , y + β 1 · β x , y + 0 x 0 y l 1 s , t + l 2 s , t u 1 s , t u 1 0 s , t + u 2 s , t u 2 0 s , t d s d t .
Applying Gronwall’s Lemma, we obtain
u 1 x , y u 1 0 x , y + u 2 x , y u 2 0 x , y α 1 · α x , y + β 1 · β x , y exp 0 x 0 y l 1 s , t + l 2 s , t d s d t α 1 · α x , y + β 1 · β x , y exp 0 a 0 b l 1 s , t + l 2 s , t d s d t c · α x , y + β x , y ,
where c = m a x { α 1 , β 1 } · exp 0 a 0 b l 1 s , t + l 2 s , t d s d t ; that is, system (1) is generalized Hyers–Ulam–Rassias-stable. □

5. Conclusions

In this paper, we have studied Hyers–Ulam and generalized Hyers–Ulam–Rassias stability of systems (1) and (2), using Gronwall’s lemma (in Theorems 3 and 4, respectively). We also gave Example 1, to see the application of Theorem 3.

Author Contributions

Conceptualization, D.M. and N.L.; Formal analysis, D.M.; Investigation, D.M. and S.A.C.; Methodology, S.A.C. and N.L.; Supervision, N.L.; Validation, S.A.C.; Writing—original draft, D.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ulam, S.M. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
  2. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Obloza, M. Hyers stability of the linear differential equation. Rocz. Nauk-Dydakt. Pr. Mat. 1993, 13, 259–270. [Google Scholar]
  4. Alsina, C.; Ger, R. On some inequalities and stability results related to exponential function. J. Inequal. Appl. 1998, 2, 373–380. [Google Scholar] [CrossRef]
  5. Takahasi, S.E.; Takagi, H.; Miura, T.; Miyajima, S. The Hyers-Ulam stability constant of first order linear differential operators. J. Math. Anal. Appl. 2004, 296, 403–409. [Google Scholar] [CrossRef] [Green Version]
  6. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2004, 17, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
  7. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, II. Appl. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef] [Green Version]
  8. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, III. J. Math. Anal. Appl. 2005, 311, 139–146. [Google Scholar] [CrossRef] [Green Version]
  9. Jung, S.-M. Hyers-Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 2009, 22, 70–74. [Google Scholar] [CrossRef] [Green Version]
  10. Cimpean, D.S.; Popa, D. On the stability of the linear differential equation of higher order with constant coefficients. Appl. Math. Comput. 2010, 217, 4141–4146. [Google Scholar] [CrossRef]
  11. Novac, A.; Otrocol, D.; Popa, D. Ulam stability of a linear difference equation in locally convex spaces. Results Math. 2021, 76, 33. [Google Scholar] [CrossRef]
  12. Otrocol, D. Ulam stabilities of differential equation with abstract Volterra operator in a Banach space. Nonlinear Funct. Anal. Appl. 2010, 15, 613–619. [Google Scholar]
  13. Rus, I.A. Ulam stability of ordinay differential equations. Stud. Univ. Babes Bolyai Math. 2009, 4, 125–133. [Google Scholar]
  14. Li, Y.; Shen, Y. Hyers-Ulam stability of linear differential equations of second order. Appl. Math. Lett. 2010, 23, 306–309. [Google Scholar] [CrossRef] [Green Version]
  15. Li, Y.; Shen, Y. Hyers-Ulam stability of nonhomogeneous linear differential equations of second order. Int. J. Math. Math. Sci. 2009, 2009, 576852. [Google Scholar] [CrossRef] [Green Version]
  16. Marian, D.; Ciplea, S.A.; Lungu, N. On the Ulam-Hyers stability of biharmonic equation. U.P.B. Sci. Bull. Ser. A 2020, 8, 141–148. [Google Scholar]
  17. Marian, D. Semi-Hyers-Ulam-Rassias stability of the convection partial differential equation via Laplace transform. Mathematics 2021, 9, 2980. [Google Scholar] [CrossRef]
  18. Marian, D. Laplace transform and semi-Hyers-Ulam-Rassias stability of some delay differential equations. Mathematics 2021, 9, 3260. [Google Scholar] [CrossRef]
  19. Shokri, A. A symmetric P-stable hybrid Obrechkoff methods for the numerical solution of second order IVPS. J. Pure Appl. Math. 2012, 2012 5, 28–35. [Google Scholar]
  20. Brzdek, J.; Popa, D.; Rasa, I.; Xu, B. Ulam Stability of Operators; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
  21. Tripathy, A.K. Hyers-Ulam Stability of Ordinary Differential Equations; Taylor and Francis: Boca Raton, FL, USA, 2021. [Google Scholar]
  22. Prastaro, A.; Rassias, T.M. Ulam stability in geometry of PDE’s. Nonlinear Funct. Anal. Appl. 2003, 8, 259–278. [Google Scholar]
  23. Jung, S.-M. Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients. J. Math. Anal. Appl. 2006, 320, 549–561. [Google Scholar] [CrossRef] [Green Version]
  24. Marian, D.; Ciplea, S.A.; Lungu, N. On Ulam–Hyers stability for a system of partial differential equations of first order. Symmetry 2020, 12, 1060. [Google Scholar] [CrossRef]
  25. Urs, C. Coupled fixed point theorems and applications to periodic boundary value problems. Miskolc Math. Notes 2013, 14, 323–333. [Google Scholar] [CrossRef]
  26. Urs, C. Ulam-Hyers stability for coupled fixed points of contractive type operators. J. Nonlinear Sci. Appl. 2013, 6, 124–136. [Google Scholar]
  27. Belbali, H.; Benbachir, M. Existence results and Ulam-Hyers stability to impulsive coupled system fractional differential equations. Turk. J. Math. 2021, 45, 1368–1385. [Google Scholar] [CrossRef]
  28. Belbali, H.; Benbachir, M. Stability for coupled systems on networks with Caputo-Hadamard fractional derivative. J. Math. Model. 2021, 9, 107–118. [Google Scholar]
  29. Khan, A.; Shah, K.; Li, Y.; Khan, T.S. Ulam Type Stability for a Coupled System of Boundary Value Problems of Nonlinear Fractional Differential Equations. J. Funct. Spaces 2017, 2017, 3046013. [Google Scholar] [CrossRef] [Green Version]
  30. Rus, I.A. Principii si Aplicatii ale Teoriei Punctului Fix; Editura Dacia: Cluj-Napoca, Romania, 1979. [Google Scholar]
  31. Perov, A.I. On the Cauchy problem for a system of ordinary differential equations. Pviblizhen. Met. Reshen. Differ. Uvavn. 1964, 2, 115–134. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Marian, D.; Ciplea, S.A.; Lungu, N. Hyers–Ulam Stability of a System of Hyperbolic Partial Differential Equations. Mathematics 2022, 10, 2183. https://doi.org/10.3390/math10132183

AMA Style

Marian D, Ciplea SA, Lungu N. Hyers–Ulam Stability of a System of Hyperbolic Partial Differential Equations. Mathematics. 2022; 10(13):2183. https://doi.org/10.3390/math10132183

Chicago/Turabian Style

Marian, Daniela, Sorina Anamaria Ciplea, and Nicolaie Lungu. 2022. "Hyers–Ulam Stability of a System of Hyperbolic Partial Differential Equations" Mathematics 10, no. 13: 2183. https://doi.org/10.3390/math10132183

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop