. mathematics

Article

Hyers—Ulam Stability of a System of Hyperbolic Partial
Differential Equations

Daniela Marian *

check for
updates

Citation: Marian, D.; Ciplea, S.A,;
Lungu, N. Hyers-Ulam Stability of
a System of Hyperbolic Partial
Differential Equations. Mathematics
2022, 10,2183. https://doi.org/
10.3390/math10132183

Academic Editor: Ana-Maria Acu

Received: 30 May 2022
Accepted: 20 June 2022
Published: 23 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

, Sorina Anamaria Ciplea ? and Nicolaie Lungu !

Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street,

400114 Cluj-Napoca, Romania; nlungu@math.utcluj.ro

Department of Management and Technology, Technical University of Cluj-Napoca, 28 Memorandumului
Street, 400114 Cluj-Napoca, Romania; sorina.ciplea@ccm.utcluj.ro

*  Correspondence: daniela.marian@math.utcluj.ro

Abstract: In this paper, we study Hyers-Ulam and generalized Hyers—Ulam—Rassias stability of
a system of hyperbolic partial differential equations using Gronwall’s lemma and Perov’s theorem.

Keywords: system of hyperbolic partial differential equations; Hyers—Ulam stability; Gronwall’s
lemma; Perov’s theorem

MSC: 35B35; 35B20

1. Introduction

In many practical applications, there are problems modeled by differential equations,
partial differential equations, differential inequalities, and systems of differential and partial
differential equations. Ulam’s stability of differential and partial differential equations
has been studied by many mathematicians since 1940, when Ulam posed this problem [1].
In 1941, Hyers [2] established the first result regarding this type of stability. This was
followed by the work of Obloza and Ger [3,4] on the stability of differential equations.
The field then continued to grow rapidly. We mention the works [5-19]. A summary of
certain works can be consulted in [20,21]. Ulam stability of systems of differential equations
began with the paper by Prastaro and Rassias [22]. Systems have also been studied, for
example, in [23,24].

We specify that Hyers—Ulam stability for coupled fixed points of contractive-type
operators have been studied, for example, in [25,26] and Hyers-Ulam stability for coupled
systems of fractional differential equations in [27-29].

In this paper, we study the Ulam stability of a system of second-order hyperbolic
partial differential equations for functions of two variables. The system we consider is
nonlinear and has the form

Pu;
a;cay —fl(x,y,ul(x,y),uz(x,y)) ) (1)
5y = vy (o), wa(xy))

satisfying the conditions

u1(x,0) = ¢1(x)

u1(0,y) = ¢1(y)

u(x,0) = ¢a(x) 2)
u2(0,y) = ¥2(y)

u1(0,0) = u2(0,0) = @1(0) = 91(0) = @2(0) = ¥2(0) = ao,

where uj,u; € C2(D,R), fi,f» € C(D xR xR,R), ¢1,¢2 € C[0,a],¥1,92 € C[0,b],
a€0,+00),be[0,+00),D=][0,a] x[0,b],ap € R.
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The outline of the paper is as follows: in Section 2, we present the stability notions
and prove several auxiliary results that are useful in the following sections (Remarks 2-5).
The first main result (Theorem 3) is given in the next section and concerns the Hyers-Ulam
stability of system (1) and (2), using Perov’s theorem and Gronwall’s lemma. The second
main result (Theorem 4), regarding the generalized Hyers-Ulam—Rassias stability of sys-
tem (1) and (2), using Gronwall’s lemma, is proved in Section 4. Example 1 is also given in
Section 3 to illustrate the results of Theorem 3.

2. Preliminary Notions and Results

Letn € Non > 2,x,y € R", x = (x1,x2,...,%), ¥y = (Y1,Y2,...,Yn). By x < y, we
understand x; < y;, foralli =1,2,...,n. We will make an identification between column
and row vectors in R”.

In the following, we recall the definition of generalized metric space.

Definition 1 ([30]). Let X be a nonempty set. Amappingd : X x X — R" is called a generalized
metric on X (or vector-valued metric) if the following properties are satisfied:

(i) d(x,y) >O0forallx,y € X;d(x,y) =0 x=y;
(i) d(x,y) =d(y,x) forall x,y € X;
(i) d(x,y) <d(x,z)+d(z,y) forall x,y,z € X.

A set endowed with a generalized metric d is called a generalized metric space.
In a generalized metric space, the notions of convergent sequence, Cauchy sequence,
completeness, open subset, and closed subset are similar to those for the usual metric space.

We denote by M,;,(R) the set of all n x n matrices and by M,,,(R) the set of all
n X n matrices with nonegative elements. Let be O the zero n x n matrix and I the identity
n X n matrix.

Definition 2. A matrix A € M;;,(R) is called convergent to zero if A™ — O, as m — +oo.
Let us remember the following properties of matrices convergent to zero:

Theorem 1 ([30]). Let A € M;,(R). The following assertions are equivalents:

(i) A is convergent to zero;

(ii)  the eigenvalues of A are in the open unit disc, i.e., |A| < 1, for every A € C with
det(A —AI) =0;

(iii)  the matrix (I — A) is nonsingular and

(I—A)_1:1+A+...+Aﬂ+...;

(iv) the matrix (I — A) is nonsingular and (I — A) ™" has nonegative elements.

Remark 1. Every matrix A = ( ) € Mo (Ry) witha+ b < 1 converges to O.

a a
b b
The following Perov’s theorem is used in the paper:

Theorem 2 (Perov [31]). Let (X,d) be a complete generalized metric space, f : X — X and
A € My, (Ry) a matrix convergent to zero such that

d(f(x), f(y)) < Ad(x,y) forall x,y € X.

Then:
(i) f has a unique fixed point x* € X;
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(ii)  the sequence of succesive approximation (X ),,cn, Xm = f™(x0), is convergent to x*, for all
Xp € X;
(iii)  d(xm, x*) < A™(I — A) Yd(xo,x1), forall xg € X and m > 1.

Lete; > 0,60 > 0andw, B € C(D, Ry). We consider the following systems of inequalities:

2
gxg; —fl(xryful(X,y),uz(x,y))‘ < e
)
2
gxg; —fz(X,y,ul(x,y),@(x,y))‘ < e
and ;
gxgé - h(xy, ”1(35/]/)/142(35,]/))‘ <a(x,y)
@)
2
oy _f2(x'%“1(xfy),uz(x,y))\ < B(x,y)

Definition 3. System (1) is called Hyers—Ulam-stable if there exists a real number c > 0 so that
for any solution (uy,u) of system (3), satisfying (2), there is a solution (u3,u3) of system (1),

satisfying (2), such that
up(x,y) — u(l](x,y)‘ + ‘uz(x,y) - ug(x,y) <c-(eg+¢2), forall(x,y) € D.

Definition 4. System (1) is called generalized Hyers—Ulam—Rassias-stable if there exists a real
number ¢ > 0 so that for any solution (11, uy) of system (4), satisfying (2), there is a solution
(u9,u9) of system (1), satisfying (2), such that

ur (x,y) = ) (x,) | + w2, y) = 1 (x,y)| < e (@(x,y) + B(x,y)), forall(x,y) € D.

In Definitions 3 and 4, (uy, uy) is called an approximate solution and (u9,u3) is called an exact

solution of (1).

Remark 2. A pair of functions (uq,uy), u1, uz € C?(D,R), is a solution of system (3) if and only
if there exist a pair of functions (g1,2), 1,82 € C*(D,R) such that

L si(oy)| < e Ig2(x,y)| < €2, forall (x,y) € D;

and

azul _
- rJr 7 7 7 + 7
5 { S = Ay () el )+ y; vl < D,

P — fo(x,y, (%), ua(x,y)) + g2(%,y

Remark 3. A pair of functions (uq,uz), uy, uz € C2(D,R), is a solution of system (4) if and only
if there exist a pair of functions (g1,2), 1,82 € C*(D,R) such that

L g1yl <alx,y), [g20x,y)| < B(x,y), forall(x,y) € D;

and

'Y)
, forall (x,y) € D.
P2 = fax,y,(x,y), w22, ) + g2(x,¥)

21/[
) { T — il (x,), 12, ) + g (x

Remark 4. If (uy,up), uy,us € C>(D,R), is a solution of system (3), then

X ry
uy(x,y) —up(x,0) —u1(0,y) +u1(0,0) — /0 /0 fi(x,y,ur(x,y), uzx(x,y))dsdt| < e1xy, forall(x,y) € D,
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up(x,y) —ua(x,0) —up(0,y) +u2(0,0) — /(;x/oy fa(x,y, ul(x,y),uz(x,y))dsdt’ < eyxy, forall(x,y) € D

Indeed, from Remark 2 we have:
X ry X ry
u(x,y) = ui(x,0) +u1(0,y) — u1(0,0) —I—/O /0 fi(s, t,ui(s,t),uz(s,t))dsdt —1—/0 /0 g1(s, t)dsdt

X ry X ry
us(x,y) = up(x,0) + 1u2(0,y) — uz(0,0) +/0 /0 fa(s, t,ui(s, t),us(s,t))dsdt —i—/o /0 Qo(s, t)dsdt,
forall(x,y) € D. Hence

up(x,y) —up(x,0) —ui(0,y) +u1(0,0) / / filx,y,ui(x,y),uz(x, y))dsdt’

X ry
< / / |g1(s, t)|dsdt < ejxy, forall(x,y) € D,
0 Jo

up(x,y) —uz(x,0) —uz(0,y) + uz(0,0) / / fo(x,y,ur(x,y), ux(x, y))dsdt’
< /Ox/oy|g2(s,t)|dsdt < eyxy, forall(x,y) € D.

Remark 5. If (uq,u3), uy,up € CZ(D,R), is a solution of system (4), then

uq(x,y) —uq(x,0) —uy(0,y) + u1(0,0) / / fi(x,y,ui(x,y), uz(x, y))dsdt’

X ry
g/o /0 (s, t)dsdt, forall(x,y) € D

uz(x,y) — ua(x,0) — u2(0,y) + 12(0,0) / / fa(xy,u(x,y),u2(x, y))dsdl"
< /Ox/oy B(s, t)dsdt, forall(x,y) € D

Indeed, we have:

uq(x,y) —uq(x,0) —uy(0,y) +11(0,0) — /Ox/oy filx,y, ul(x,y),uz(x,y))dsdt’

Xy Xy
S/O /0 |81(s,t)|dsdt§/0/0 (s, t)dsdt, forall(x,y) € D

uz(x,y) — uz2(x,0) — uz(0,y) + u2(0,0) / / fa(x,y,u1(x,y), uz(x, y))dsdt’
< /Ox/oy|gz(s,t)|dsdt < /Oxfoyﬁ(s,t)dsdt, forall(x,y) € D

3. Hyers-Ulam Stability

We present below a result regarding Hyers—-Ulam stability of system (1), with the
conditions (2), using Gronwall’s lemma .

Leta € [0,+00),b € [0, +0c0), D = [0,a] x [0,b], a9 € R.

Let 1,92 € C[0,a], 1, 42 € C[0,b],ur, u, 07,73 € CX(D),u = (), = (), f = (),
¢ = (g;),#’ = (i;),tx = ()20 €R, f1, o € C(D x R x R,R). Consider a column vector
equal to the corresponding line vector.
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Theorem 3. We suppose that
(i) There exists the matrix function I : D — Mn(Ry), l(x,y) = (Lij(x,y))1<i<2,

1<j<2
I € C(D, Mxn(Ry)) such that

LAy, ui(x,y),ua(x,y)) — filx, v, u1(x,y), m2(x, )|
X,

( ) —

<hi(xy)ui(xy) —u1(xy)| + ha(xy) [u2(x,y) —u2(x,y)l,
|f2(x,y,u1(x, ), ua(x,y)) — fa(x, v, u1(x,y), 2(x, )|

< bn(x,y)ui(x,y) —u(x,y)| + la(x,y) [ua(x,y) —u2(x,y)],

forall x € [0,a], y € [0,b] and uy, up, 1y, %; € C?(D).

(ii)  We denote by A;; = max I lij(s, t)dsdt. Let A = (Ajj)1<i<o € Mp(Ry). We
1<j<2
suppose that the matrix A converges to O € Mo (R).

Then:
1. System (1) has a unique solution satisfying (2).
2. System (1), with the conditions (2), is Hyers—Ulam-stable.

Proof. 1. We consider the matrix form of the system:

0%u
axay — S Koy u(xy)),

with the boundary conditions

The problem is equivalent to the following system of integral equations:
xory
u(x,y) = u(x,0)+u(0,y) —u(0,0) —i—/ / f(s, t,u(s,t))dsdt.
0 Jo

For the proof, we use the generalized norm in R?, ||a|| = ( Izli ) fora = (a1,a;) € R?
2

(see [30]). We consider the operator T : C2(D, R?) — C(D,R?) defined by

(Tu)(x,) = u(x,0) + (0, y) — u(0,0) + /0 /Oyf(s, b (s, £))dsdt,

forallu € C?(D,R?) and (x,y) € D.
We prove that the operator T is a contraction . We have:

[1(Tu) (x, y) — (Tw)( xy)H
< / / Il f(s, t,u(s,t)) — f(s,t,(s,t))|dsdt

/ / I(s, 8)||u — ml|dsdt < Allu— ],
0 Jo

IN

hence
| Tu — T < Alju —]|.

Since the matrix A converges to the null matrix, from Perov’s Theorem 2, it follows
that the operator T has a unique fixed point (19, 13), which is the solution of the integral
system and therefore of the problem (1) and (2).
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2. Let (uy,uz) be a solution of system (3), satisfying (2) and (u9,u9) the unique
solution of system (1), satisfying (2). Let I;(x,y) = max{lj1(x,v), l12(x,¥)}, L(x,y) =

max{l(x,y),l2(x,y)}, (x,y) € D.
We have

ui(xy) — i (xy)| <

u1(x,0) — @1(x) — 1(y) —ao + /Ox /Oyfl (s,t,u1(s, 1), ua (s, t))dsdt‘
+ /Ox /Oy‘fl(s, tun(s, ), ua(s, t) — fi (s, tud(s,£), u3(s, t))‘ dsdt
< elxy+/0x /Oy ll(S,t)(‘Ml(S,t) — u(l’(s,t)‘ + ‘uz(s,t) — ug(S,t)’)dsdt.

Analog

uz(x,y) — ug(x,y)‘ < |uz(x,0) — @2(x) — P2(y) — ag + /0" /Oy s t, ul(s,t),uz(s,t))dsdt‘
+/Ox /Oy‘fz(s, t,ug(s, t),us(s, t)) — fo (s, t,ul(s, 1), ud(s, t))‘ dsdt
< erxy + /Ox /Oylz(s,t)(’ul(s,t) — ”?(Srf)‘ + ‘uz(s,t) _ ug(S,t)’)dsdt.

Adding these relations, we obtain

+ [1a(ry) — ud(x v)|

< (e1+e2)xy + /Ox /Oy(h(s,t) + lz(s,t))(‘ul(s,t) - u(l)(s,t)‘ + ‘uz(s,t) —u3(s, t)‘)dsdt.

i (x,y) — ()

Applying Gronwall’s Lemma, we obtain
X ry
i) = )]+ [uatoe ) = 35, | < (er - expayenp ([ [ s,0) +1ats 1) )

< (g1 +¢€2)abexp </Oﬂ /Ob(ll (s,t) +Ia(s, t))dsdt>

< c(e1 +¢€2),
where c = abexp (f(;l fob(ll (s,t) +1a(s, t))dsdt); that is, system (1) is Hyers-Ulam-stable. [
Example 1. Consider D = [0,1] x [0,1], f1, f» € C(D xR xR,R), o € C[0,1], 1,9 €
C[0,1], ap € R,

1
filx,y,ug,up) = %x}/COS(Ml + uy),

1
x2y? sin(uy + uy).

fZ(x/ y,uy, 1/[2) = 10

We remark that

1 1
|f1(x/y/ullu2) _fl(x/ylflrfz)| S %‘ul _ﬂ1| + %‘uz _ﬂ2|

and

10|M2—M2|,

o 1 _
|f2(x,y,u1,uz) — fo(x,y, 17, uz)| < E'”l — |+

forall uy, up, up, upy € R. Using Remark 1, we obtain the result that the matrix A = (

-5~
-8~
~

converges to O.
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We consider the system
82u1 1
oy = 20Xy cos(uq + uz) )
Puyg _ 1,22 :
vy = 10X°Y sin(uq + up)
Let e1 > 0,2 > 0. We consider also the following system of inequalities:
0? 1
Bxg; — a5y cos(ug + uz)‘ <g .
Pup 1,22 <o ©)
vy — 10%°Y sin(u; +up)| < €

From Theorem 3, we have that system (5) with the conditions (2) is Hyers—Ulam-stable; that is,
for each solution (u1,uz) of system (6) satisfying (2) and for (u3,u3), which is the unique solution
of system (5) satisfying (2), we have

ur(x,y) — u?(x,y)‘ + ‘uz(x,y) —ud(x,y)| < (e1 +e2) exp(230>.

4. Generalized Hyers-Ulam-Rassias Stability

We present below a result regarding generalized Hyers-Ulam—-Rassias stability of
system (1), with the conditions (2), using Gronwall’s lemma .

Leta € [0,+00),b € [0,+0c0),D = [0,a] x [0,b],a9 € R.

Let @1, 92 € C[O,Ll],lpl,lpz € C[O, b},ul, Uy € CZ(D), f1,f2 S C(D x R x R,R), a, B e
C(D,Ry).

Theorem 4. We suppose that

(i) The conditions (i), (ii) from Theorem 3 are satisfied.
(ii)  There exists a1, B1 € R4 such that

Xy
/ / a(s,t)dsdt < wy-a(x,y), forall(x,y) € D,
Jo Jo

/Ox /Oyﬁ(s,t)dsdt < B1-B(x,y), forall(x,y) € D.

(iti) wa,B € C(D,Ry) are increasing.
Then, system (1), with the conditions (2), is generalized Hyers—Ulam—Rassias-stable.

Proof. Let (u1,u;) be a solution of system (4) satisfying (2) and (19, u3) the unique so-
lution of system (1) satisfying (2) (this solution exists; see Theorem 3). Let /;(x,y) =
max{l1(x,y), h2(x,y) }, (%, y) = max{l1 (x,y), 2 (x,y) }, (x,y) € D.

We have
w1, ) )|

< /O"/Oyac(s,t)dsdt+ /OX /Oy Ii(s,t) (‘m(S,t) - u(f(s,t)‘ + ’uz(s, £ — Mg(S,t)Ddsdt.
<wap-a(xy)+ /Ox /Oy ll(s,t)(’ul(s,t) - u?(s,t)‘ + ’ug(s, t) — ug(s,t)Ddsdt'

Analog
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jua(iy) 1 (x,y)|
S/(;x/()y'ﬁ(s,t)dsdt+/Ox/oylz(s,t)qul(S,t)—u(l)(s,t)‘—F‘uz(s,t)—ug(s,t)‘)dsdt
< B1-B(x,y) +(/Ox /Oy lz(s,t)(‘m(sff) - u?(s,t)’ + ‘Mz(S,f) - ug(s,t)‘)dsdt.

Adding these relations, we obtain

116, y) = 1ey)| + |2 y) = w3, )| < (a1 -a(x,y) + Br - B(x,))
x oy
+ /0 /0 (h(s,1) + (s, 1) ([ (5, 1) = 135, 1)| + [wa(s, ) — (s, 1)) sl
Applying Gronwall’s Lemma, we obtain

‘ul(x,y) — u‘l)(x,y)‘ + ‘uz(x,y) - ug(x,y)’

< (@r-a(x) + B exp( [ [ (s, +1a(s, )t

< (ag-a(x,y) + B1-B(x,y)) exp (/Ou /Ob(ll (s, t) + lz(s,t))dsdt>
<c (a(xy)+B(x,y)),

where ¢ = max{ay, B1} - exp (fou fob(ll (s,t) + (s, t))dsdt); that is, system (1) is generalized
Hyers-Ulam—Rassias-stable. [

5. Conclusions

In this paper, we have studied Hyers—Ulam and generalized Hyers—-Ulam—-Rassias
stability of systems (1) and (2) , using Gronwall’s lemma (in Theorems 3 and 4, respectively).
We also gave Example 1, to see the application of Theorem 3.
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