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1. Introduction

In many practical applications, there are problems modeled by differential equations,
partial differential equations, differential inequalities, and systems of differential and partial
differential equations. Ulam’s stability of differential and partial differential equations
has been studied by many mathematicians since 1940, when Ulam posed this problem [1].
In 1941, Hyers [2] established the first result regarding this type of stability. This was
followed by the work of Obloza and Ger [3,4] on the stability of differential equations.
The field then continued to grow rapidly. We mention the works [5–19]. A summary of
certain works can be consulted in [20,21]. Ulam stability of systems of differential equations
began with the paper by Prastaro and Rassias [22]. Systems have also been studied, for
example, in [23,24].

We specify that Hyers–Ulam stability for coupled fixed points of contractive-type
operators have been studied, for example, in [25,26] and Hyers–Ulam stability for coupled
systems of fractional differential equations in [27–29].

In this paper, we study the Ulam stability of a system of second-order hyperbolic
partial differential equations for functions of two variables. The system we consider is
nonlinear and has the form

∂2u1
∂x∂y = f1(x, y, u1(x, y), u2(x, y))
∂2u2
∂x∂y = f2(x, y, u1(x, y), u2(x, y))

, (1)

satisfying the conditions
u1(x, 0) = ϕ1(x)
u1(0, y) = ψ1(y)
u2(x, 0) = ϕ2(x)
u2(0, y) = ψ2(y)
u1(0, 0) = u2(0, 0) = ϕ1(0) = ψ1(0) = ϕ2(0) = ψ2(0) = α0,

(2)

where u1, u2 ∈ C2(D,R), f1, f2 ∈ C(D×R×R,R), ϕ1, ϕ2 ∈ C[0, a], ψ1, ψ2 ∈ C[0, b],
a ∈ [0,+∞), b ∈ [0,+∞), D = [0, a]× [0, b], α0 ∈ R.
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The outline of the paper is as follows: in Section 2, we present the stability notions
and prove several auxiliary results that are useful in the following sections (Remarks 2–5).
The first main result (Theorem 3) is given in the next section and concerns the Hyers–Ulam
stability of system (1) and (2), using Perov’s theorem and Gronwall’s lemma. The second
main result (Theorem 4), regarding the generalized Hyers–Ulam–Rassias stability of sys-
tem (1) and (2), using Gronwall’s lemma, is proved in Section 4. Example 1 is also given in
Section 3 to illustrate the results of Theorem 3.

2. Preliminary Notions and Results

Let n ∈ N, n ≥ 2, x, y ∈ Rn, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). By x ≤ y, we
understand xi ≤ yi, for all i = 1, 2, . . . , n. We will make an identification between column
and row vectors in Rn.

In the following, we recall the definition of generalized metric space.

Definition 1 ([30]). Let X be a nonempty set. A mapping d : X×X −→ Rn is called a generalized
metric on X (or vector-valued metric) if the following properties are satisfied:

(i) d(x, y) ≥ 0 for all x, y ∈ X; d(x, y) = 0⇔ x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A set endowed with a generalized metric d is called a generalized metric space.
In a generalized metric space, the notions of convergent sequence, Cauchy sequence,
completeness, open subset, and closed subset are similar to those for the usual metric space.

We denote byMnn(R) the set of all n× n matrices and byMnn(R+) the set of all
n× n matrices with nonegative elements. Let be O the zero n× n matrix and I the identity
n× n matrix.

Definition 2. A matrix A ∈ Mnn(R) is called convergent to zero if Am → O, as m −→ +∞.

Let us remember the following properties of matrices convergent to zero:

Theorem 1 ([30]). Let A ∈ Mnn(R+). The following assertions are equivalents:

(i) A is convergent to zero;
(ii) the eigenvalues of A are in the open unit disc, i.e., |λ| < 1, for every λ ∈ C with

det(A− λI) = 0;
(iii) the matrix (I − A) is nonsingular and

(I − A)−1 = I + A + · · ·+ An + · · · ;

(iv) the matrix (I − A) is nonsingular and (I − A)−1 has nonegative elements.

Remark 1. Every matrix A =

(
a a
b b

)
∈ M22(R+) with a + b < 1 converges to O.

The following Perov’s theorem is used in the paper:

Theorem 2 (Perov [31]). Let (X, d) be a complete generalized metric space, f : X −→ X and
A ∈ Mnn(R+) a matrix convergent to zero such that

d( f (x), f (y)) ≤ Ad(x, y) for all x, y ∈ X.

Then:

(i) f has a unique fixed point x∗ ∈ X;
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(ii) the sequence of succesive approximation(xm)m∈N , xm = f m(x0), is convergent to x∗, for all
x0 ∈ X;

(iii) d(xm, x∗) ≤ Am(I − A)−1d(x0, x1), for all x0 ∈ X and m ≥ 1.

Let ε1 > 0, ε2 > 0 and α, β ∈ C(D, R+). We consider the following systems of inequalities:
∣∣∣ ∂2u1

∂x∂y − f1(x, y, u1(x, y), u2(x, y))
∣∣∣ ≤ ε1∣∣∣ ∂2u2

∂x∂y − f2(x, y, u1(x, y), u2(x, y))
∣∣∣ ≤ ε2

(3)

and 
∣∣∣ ∂2u1

∂x∂y − f1(x, y, u1(x, y), u2(x, y))
∣∣∣ ≤ α(x, y)

∣∣∣ ∂2u2
∂x∂y − f2(x, y, u1(x, y), u2(x, y))

∣∣∣ ≤ β(x, y)
. (4)

Definition 3. System (1) is called Hyers–Ulam-stable if there exists a real number c > 0 so that
for any solution (u1, u2) of system (3), satisfying (2), there is a solution (u0

1, u0
2) of system (1),

satisfying (2), such that∣∣∣u1(x, y)− u0
1(x, y)

∣∣∣+ ∣∣∣u2(x, y)− u0
2(x, y)

∣∣∣ ≤ c · (ε1 + ε2), for all(x, y) ∈ D.

Definition 4. System (1) is called generalized Hyers–Ulam–Rassias-stable if there exists a real
number c > 0 so that for any solution (u1, u2) of system (4), satisfying (2), there is a solution
(u0

1, u0
2) of system (1), satisfying (2), such that∣∣∣u1(x, y)− u0

1(x, y)
∣∣∣+ ∣∣∣u2(x, y)− u0

2(x, y)
∣∣∣ ≤ c · (α(x, y) + β(x, y)), for all(x, y) ∈ D.

In Definitions 3 and 4, (u1, u2) is called an approximate solution and (u0
1, u0

2) is called an exact
solution of (1).

Remark 2. A pair of functions (u1, u2), u1, u2 ∈ C2(D,R), is a solution of system (3) if and only
if there exist a pair of functions (g1, g2), g1, g2 ∈ C2(D,R) such that

1. |g1(x, y)| ≤ ε1, |g2(x, y)| ≤ ε2, for all (x, y) ∈ D;

and

2.


∂2u1
∂x∂y = f1(x, y, u1(x, y), u2(x, y)) + g1(x, y)
∂2u2
∂x∂y = f2(x, y, u1(x, y), u2(x, y)) + g2(x, y)

, for all(x, y) ∈ D.

Remark 3. A pair of functions (u1, u2), u1, u2 ∈ C2(D,R), is a solution of system (4) if and only
if there exist a pair of functions (g1, g2), g1, g2 ∈ C2(D,R) such that

1. |g1(x, y)| ≤ α(x, y), |g2(x, y)| ≤ β(x, y), for all(x, y) ∈ D;

and

2.


∂2u1
∂x∂y = f1(x, y, u1(x, y), u2(x, y)) + g1(x, y)
∂2u2
∂x∂y = f2(x, y, u1(x, y), u2(x, y)) + g2(x, y)

, for all (x, y) ∈ D.

Remark 4. If (u1, u2), u1, u2 ∈ C2(D,R), is a solution of system (3), then∣∣∣∣u1(x, y)− u1(x, 0)− u1(0, y) + u1(0, 0)−
∫ x

0

∫ y

0
f1(x, y, u1(x, y), u2(x, y))dsdt

∣∣∣∣ ≤ ε1xy, for all(x, y) ∈ D,
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∣∣∣∣u2(x, y)− u2(x, 0)− u2(0, y) + u2(0, 0)−
∫ x

0

∫ y

0
f2(x, y, u1(x, y), u2(x, y))dsdt

∣∣∣∣ ≤ ε2xy, for all(x, y) ∈ D.

Indeed, from Remark 2 we have:

u1(x, y) = u1(x, 0) + u1(0, y)− u1(0, 0) +
∫ x

0

∫ y

0
f1(s, t, u1(s, t), u2(s, t))dsdt +

∫ x

0

∫ y

0
g1(s, t)dsdt

u2(x, y) = u2(x, 0) + u2(0, y)− u2(0, 0) +
∫ x

0

∫ y

0
f2(s, t, u1(s, t), u2(s, t))dsdt +

∫ x

0

∫ y

0
g2(s, t)dsdt,

for all(x, y) ∈ D. Hence∣∣∣∣u1(x, y)− u1(x, 0)− u1(0, y) + u1(0, 0)−
∫ x

0

∫ y

0
f1(x, y, u1(x, y), u2(x, y))dsdt

∣∣∣∣
≤
∫ x

0

∫ y

0
|g1(s, t)|dsdt ≤ ε1xy, for all(x, y) ∈ D,

∣∣∣∣u2(x, y)− u2(x, 0)− u2(0, y) + u2(0, 0)−
∫ x

0

∫ y

0
f2(x, y, u1(x, y), u2(x, y))dsdt

∣∣∣∣
≤
∫ x

0

∫ y

0
|g2(s, t)|dsdt ≤ ε2xy, for all(x, y) ∈ D.

Remark 5. If (u1, u2), u1, u2 ∈ C2(D,R), is a solution of system (4), then∣∣∣∣u1(x, y)− u1(x, 0)− u1(0, y) + u1(0, 0)−
∫ x

0

∫ y

0
f1(x, y, u1(x, y), u2(x, y))dsdt

∣∣∣∣
≤
∫ x

0

∫ y

0
α(s, t)dsdt, for all(x, y) ∈ D,

∣∣∣∣u2(x, y)− u2(x, 0)− u2(0, y) + u2(0, 0)−
∫ x

0

∫ y

0
f2(x, y, u1(x, y), u2(x, y))dsdt

∣∣∣∣
≤
∫ x

0

∫ y

0
β(s, t)dsdt, for all(x, y) ∈ D.

Indeed, we have:∣∣∣∣u1(x, y)− u1(x, 0)− u1(0, y) + u1(0, 0)−
∫ x

0

∫ y

0
f1(x, y, u1(x, y), u2(x, y))dsdt

∣∣∣∣
≤
∫ x

0

∫ y

0
|g1(s, t)|dsdt ≤

∫ x

0

∫ y

0
α(s, t)dsdt, for all(x, y) ∈ D,

∣∣∣∣u2(x, y)− u2(x, 0)− u2(0, y) + u2(0, 0)−
∫ x

0

∫ y

0
f2(x, y, u1(x, y), u2(x, y))dsdt

∣∣∣∣
≤
∫ x

0

∫ y

0
|g2(s, t)|dsdt ≤

∫ x

0

∫ y

0
β(s, t)dsdt, for all(x, y) ∈ D.

3. Hyers–Ulam Stability

We present below a result regarding Hyers–Ulam stability of system (1), with the
conditions (2), using Gronwall’s lemma .

Let a ∈ [0,+∞), b ∈ [0,+∞), D = [0, a]× [0, b], α0 ∈ R.
Let ϕ1, ϕ2 ∈ C[0, a], ψ1, ψ2 ∈ C[0, b], u1, u2, u1, u2 ∈ C2(D), u = (u1

u2
), u = (u1

u2
), f = ( f1

f2
),

ϕ = (ϕ1
ϕ2
), ψ = (ψ1

ψ2
), α = (α0

α0
), α0 ∈ R, f1, f2 ∈ C(D×R×R,R). Consider a column vector

equal to the corresponding line vector.
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Theorem 3. We suppose that

(i) There exists the matrix function l : D −→ M22(R+), l(x, y) =
(
lij(x, y)

)
1≤i≤2
1≤j≤2

,

l ∈ C(D,M22(R+)) such that

| f1(x, y, u1(x, y), u2(x, y))− f1(x, y, u1(x, y), u2(x, y))|
≤ l11(x, y)|u1(x, y)− u1(x, y)|+ l12(x, y)|u2(x, y)− u2(x, y)|,

| f2(x, y, u1(x, y), u2(x, y))− f2(x, y, u1(x, y), u2(x, y))|
≤ l21(x, y)|u1(x, y)− u1(x, y)|+ l22(x, y)|u2(x, y)− u2(x, y)|,

for all x ∈ [0, a], y ∈ [0, b] and u1, u2, u1, u2 ∈ C2(D).
(ii) We denote by Aij = max

D

∫ x
0

∫ y
0 lij(s, t)dsdt. Let A =

(
Aij
)

1≤i≤2
1≤j≤2

∈ M22(R+). We

suppose that the matrix A converges to O ∈ M22(R).

Then:

1. System (1) has a unique solution satisfying (2).
2. System (1), with the conditions (2), is Hyers–Ulam-stable.

Proof. 1. We consider the matrix form of the system:

∂2u
∂x∂y

= f (x, y, u(x, y)),

with the boundary conditions
u(x, 0) = ϕ(x),
u(0, y) = ψ(y),
u(0, 0) = ϕ(0) = ψ(0) = α.

The problem is equivalent to the following system of integral equations:

u(x, y) = u(x, 0) + u(0, y)− u(0, 0) +
∫ x

0

∫ y

0
f (s, t, u(s, t))dsdt.

For the proof, we use the generalized norm in R2, ‖a‖ =
(
|a1|
|a2|

)
for a = (a1, a2) ∈ R2

(see [30]). We consider the operator T : C2(D, R2) −→ C
(

D,R2) defined by

(Tu)(x, y) = u(x, 0) + u(0, y)− u(0, 0) +
∫ x

0

∫ y

0
f (s, t, u(s, t))dsdt,

for all u ∈ C2(D,R2) and (x, y) ∈ D.
We prove that the operator T is a contraction . We have:

‖(Tu)(x, y)− (Tu)(x, y)‖

≤
∫ x

0

∫ y

0
‖ f (s, t, u(s, t))− f (s, t, u(s, t))‖dsdt

≤
∫ x

0

∫ y

0
l(s, t)‖u− u‖dsdt ≤ A‖u− u‖,

hence
‖Tu− Tu‖ ≤ A‖u− u‖.

Since the matrix A converges to the null matrix, from Perov’s Theorem 2, it follows
that the operator T has a unique fixed point (u0

1, u0
2), which is the solution of the integral

system and therefore of the problem (1) and (2).
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2. Let (u1, u2) be a solution of system (3), satisfying (2) and (u0
1, u0

2) the unique
solution of system (1), satisfying (2). Let l1(x, y) = max{l11(x, y), l12(x, y)}, l2(x, y) =
max{l21(x, y), l22(x, y)}, (x, y) ∈ D.

We have∣∣∣u1(x, y)− u0
1(x, y)

∣∣∣ ≤ ∣∣∣∣u1(x, 0)− ϕ1(x)− ψ1(y)− α0 +
∫ x

0

∫ y

0
f1(s, t, u1(s, t), u2(s, t))dsdt

∣∣∣∣
+
∫ x

0

∫ y

0

∣∣∣ f1(s, t, u1(s, t), u2(s, t))− f1

(
s, t, u0

1(s, t), u0
2(s, t)

)∣∣∣ dsdt

≤ ε1xy +
∫ x

0

∫ y

0
l1(s, t)

(∣∣∣u1(s, t)− u0
1(s, t)

∣∣∣+ ∣∣∣u2(s, t)− u0
2(s, t)

∣∣∣)dsdt.

Analog∣∣∣u2(x, y)− u0
2(x, y)

∣∣∣ ≤ ∣∣∣∣u2(x, 0)− ϕ2(x)− ψ2(y)− α0 +
∫ x

0

∫ y

0
f2(s, t, u1(s, t), u2(s, t))dsdt

∣∣∣∣
+
∫ x

0

∫ y

0

∣∣∣ f2(s, t, u1(s, t), u2(s, t))− f2

(
s, t, u0

1(s, t), u0
2(s, t)

)∣∣∣ dsdt

≤ ε2xy +
∫ x

0

∫ y

0
l2(s, t)

(∣∣∣u1(s, t)− u0
1(s, t)

∣∣∣+ ∣∣∣u2(s, t)− u0
2(s, t)

∣∣∣)dsdt.

Adding these relations, we obtain∣∣∣u1(x, y)− u0
1(x, y)

∣∣∣+ ∣∣∣u2(x, y)− u0
2(x, y)

∣∣∣
≤ (ε1 + ε2)xy +

∫ x

0

∫ y

0
(l1(s, t) + l2(s, t))

(∣∣∣u1(s, t)− u0
1(s, t)

∣∣∣+ ∣∣∣u2(s, t)− u0
2(s, t)

∣∣∣)dsdt.

Applying Gronwall’s Lemma, we obtain∣∣∣u1(x, y)− u0
1(x, y)

∣∣∣+ ∣∣∣u2(x, y)− u0
2(x, y)

∣∣∣ ≤ (ε1 + ε2)xy exp
(∫ x

0

∫ y

0
(l1(s, t) + l2(s, t))dsdt

)
≤ (ε1 + ε2)ab exp

(∫ a

0

∫ b

0
(l1(s, t) + l2(s, t))dsdt

)
≤ c(ε1 + ε2),

where c = ab exp
(∫ a

0

∫ b
0 (l1(s, t) + l2(s, t))dsdt

)
; that is, system (1) is Hyers–Ulam-stable.

Example 1. Consider D = [0, 1] × [0, 1], f1, f2 ∈ C(D×R×R,R), ϕ2 ∈ C[0, 1], ψ1, ψ2 ∈
C[0, 1], α0 ∈ R,

f1(x, y, u1, u2) =
1

20
xy cos(u1 + u2),

f2(x, y, u1, u2) =
1

10
x2y2 sin(u1 + u2).

We remark that

| f1(x, y, u1, u2)− f1(x, y, u1, u2)| ≤
1

20
|u1 − u1|+

1
20
|u2 − u2|

and
| f2(x, y, u1, u2)− f2(x, y, u1, u2)| ≤

1
10
|u1 − u1|+

1
10
|u2 − u2|,

for all u1, u2, u1, u2 ∈ R. Using Remark 1, we obtain the result that the matrix A =

( 1
20

1
20

1
10

1
10

)
converges to O.
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We consider the system 
∂2u1
∂x∂y = 1

20 xy cos(u1 + u2)
∂2u2
∂x∂y = 1

10 x2y2 sin(u1 + u2)
. (5)

Let ε1 > 0, ε2 > 0. We consider also the following system of inequalities:
∣∣∣ ∂2u1

∂x∂y −
1

20 xy cos(u1 + u2)
∣∣∣ ≤ ε1∣∣∣ ∂2u2

∂x∂y −
1

10 x2y2 sin(u1 + u2)
∣∣∣ ≤ ε2

. (6)

From Theorem 3, we have that system (5) with the conditions (2) is Hyers–Ulam-stable; that is,
for each solution (u1, u2) of system (6) satisfying (2) and for (u0

1, u0
2), which is the unique solution

of system (5) satisfying (2), we have∣∣∣u1(x, y)− u0
1(x, y)

∣∣∣+ ∣∣∣u2(x, y)− u0
2(x, y)

∣∣∣ ≤ (ε1 + ε2) exp
(

3
20

)
.

4. Generalized Hyers–Ulam–Rassias Stability

We present below a result regarding generalized Hyers–Ulam–Rassias stability of
system (1), with the conditions (2), using Gronwall’s lemma .

Let a ∈ [0,+∞), b ∈ [0,+∞), D = [0, a]× [0, b], α0 ∈ R.
Let ϕ1, ϕ2 ∈ C[0, a], ψ1, ψ2 ∈ C[0, b], u1, u2 ∈ C2(D), f1, f2 ∈ C(D×R×R,R), α, β ∈

C(D, R+).

Theorem 4. We suppose that

(i) The conditions (i), (ii) from Theorem 3 are satisfied.
(ii) There exists α1, β1 ∈ R+ such that∫ x

0

∫ y

0
α(s, t)dsdt ≤ α1 · α(x, y), for all(x, y) ∈ D,

∫ x

0

∫ y

0
β(s, t)dsdt ≤ β1 · β(x, y), for all(x, y) ∈ D.

(iii) α, β ∈ C(D, R+) are increasing.

Then, system (1), with the conditions (2), is generalized Hyers–Ulam–Rassias-stable.

Proof. Let (u1, u2) be a solution of system (4) satisfying (2) and (u0
1, u0

2) the unique so-
lution of system (1) satisfying (2) (this solution exists; see Theorem 3). Let l1(x, y) =
max{l11(x, y), l12(x, y)}, l2(x, y) = max{l21(x, y), l22(x, y)}, (x, y) ∈ D.

We have∣∣∣u1(x, y)− u0
1(x, y)

∣∣∣
≤
∫ x

0

∫ y

0
α(s, t)dsdt +

∫ x

0

∫ y

0
l1(s, t)

(∣∣∣u1(s, t)− u0
1(s, t)

∣∣∣+ ∣∣∣u2(s, t)− u0
2(s, t)

∣∣∣)dsdt.

≤ α1 · α(x, y) +
∫ x

0

∫ y

0
l1(s, t)

(∣∣∣u1(s, t)− u0
1(s, t)

∣∣∣+ ∣∣∣u2(s, t)− u0
2(s, t)

∣∣∣)dsdt.

Analog
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∣∣∣u2(x, y)− u0
2(x, y)

∣∣∣
≤
∫ x

0

∫ y

0
β(s, t)dsdt +

∫ x

0

∫ y

0
l2(s, t)

(∣∣∣u1(s, t)− u0
1(s, t)

∣∣∣+ ∣∣∣u2(s, t)− u0
2(s, t)

∣∣∣)dsdt

≤ β1 · β(x, y) +
∫ x

0

∫ y

0
l2(s, t)

(∣∣∣u1(s, t)− u0
1(s, t)

∣∣∣+ ∣∣∣u2(s, t)− u0
2(s, t)

∣∣∣)dsdt.

Adding these relations, we obtain∣∣∣u1(x, y)− u0
1(x, y)

∣∣∣+ ∣∣∣u2(x, y)− u0
2(x, y)

∣∣∣ ≤ (α1 · α(x, y) + β1 · β(x, y))

+
∫ x

0

∫ y

0
(l1(s, t) + l2(s, t))

(∣∣∣u1(s, t)− u0
1(s, t)

∣∣∣+ ∣∣∣u2(s, t)− u0
2(s, t)

∣∣∣)dsdt.

Applying Gronwall’s Lemma, we obtain∣∣∣u1(x, y)− u0
1(x, y)

∣∣∣+ ∣∣∣u2(x, y)− u0
2(x, y)

∣∣∣
≤ (α1 · α(x, y) + β1 · β(x, y)) exp

(∫ x

0

∫ y

0
(l1(s, t) + l2(s, t))dsdt

)
≤ (α1 · α(x, y) + β1 · β(x, y)) exp

(∫ a

0

∫ b

0
(l1(s, t) + l2(s, t))dsdt

)
≤ c · (α(x, y) + β(x, y)),

where c = max{α1, β1} · exp
(∫ a

0

∫ b
0 (l1(s, t) + l2(s, t))dsdt

)
; that is, system (1) is generalized

Hyers–Ulam–Rassias-stable.

5. Conclusions

In this paper, we have studied Hyers–Ulam and generalized Hyers–Ulam–Rassias
stability of systems (1) and (2) , using Gronwall’s lemma (in Theorems 3 and 4, respectively).
We also gave Example 1, to see the application of Theorem 3.
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