# Log Periodic Power Analysis of Critical Crashes: Evidence from the Portuguese Stock Market

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

## 3. The Model: The Log-Periodic Power Law (LPPL)

#### The LPPL Equation

## 4. Data and Methodology

## 5. Results and Discussion

#### 5.1. Analysis of the 1998 Crash

#### Sensitivity Analysis of the Critical Times (tc) for 1996–1998: The Impact of Tlast

#### 5.2. Analysis of the 2007 Crash

#### Sensitivity Analysis of the Critical Times (tc) for 2007: The Impact of Tlast

#### 5.3. Analysis of the 2015 Crash

#### Sensitivity Analysis of the Critical Times (tc) for 2015: The Impact of Tlast

#### 5.4. Robustness Analysis

#### 5.4.1. Log-Periodic Analysis of the Data Minimizing the Root Mean Squared Deviation

#### 5.4.2. Artificial Series and Critical Time Sensitivity

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Andraszewicz, Sandra. 2020. Stock Markets, Market Crashes, and Market Bubbles. In Psychological Perspectives on Financial Decision Making. Berlin: Springer, pp. 205–31. [Google Scholar] [CrossRef]
- Baker, Scott R., Nicholas Bloom, Steven J. Davis, and Marco C. Sammon. 2021. What Triggers Stock Market Jumps? Cambridge: National Bureau of Economic Research, No. w28687. [Google Scholar] [CrossRef]
- Barlevy, Gadi, and Pietro Veronesi. 2003. Rational panics and stock market crashes. Journal of Economic Theory 110: 234–63. [Google Scholar] [CrossRef]
- Bastiaensen, Ken, Peter Cauwels, Didier Sornette, Ryan Woodard, and Wei-Xing Zhou. 2009. The Chinese Equity Bubble: Ready to Burst. arXiv arXiv:0907.1827. [Google Scholar]
- Black, Fisher. 1986. Noise. The Journal of Finance 41: 529–43. [Google Scholar] [CrossRef]
- Blanchard, Olivier J. 1979. Speculative bubbles, crashes and rational expectations. Economics Letters 3: 387–89. [Google Scholar] [CrossRef]
- Contessi, Silvio, and Pierangelo De Pace. 2021. The international spread of COVID-19 stock market collapses. Finance Research Letters 42: 101894. [Google Scholar] [CrossRef]
- Crutchfield, James P. 2009. The Hidden Fragility of Complex Systems: Consequences of Change, Changing Consequences. Santa Fe: Santa Fe Institute. [Google Scholar]
- Dai, Peng Fei, Xiong Xiong, Zhifeng Liu, Toan Luu Duc Huynh, and Jianjun Sun. 2021. Preventing crash in stock market: The role of economic policy uncertainty during COVID-19. Financial Innovation 7: 1–15. [Google Scholar] [CrossRef]
- Devenow, Andrea, and Ivo Welch. 1996. Rational herding in financial economics. European Economic Review 40: 603–15. [Google Scholar] [CrossRef]
- Eguiluz, Victor M., and Martin G. Zimmermann. 2000. Transmission of Information and Herd Behavior: An Application to Financial Markets. Physical Review Letters 85: 5659–62. [Google Scholar] [CrossRef][Green Version]
- Farmer, J. Doyne, Paolo Patelli, and Iliya I. Zovko. 2005. The predictive power of zero intelligence in financial markets. Proceedings of the National Academy of Sciences 102: 2254–59. [Google Scholar] [CrossRef][Green Version]
- Feigenbaum, James. 2001. A Statistical Analysis of Log-Periodic Precursors to Financial Crashes. Quantitative Finance 1: 346–60. [Google Scholar] [CrossRef]
- Gonçalves, Tiago, Cristina Gaio, and Carlos Lélis. 2020. Accrual mispricing: Evidence from European sovereign debt crisis. Research in International Business and Finance 52: 101111. [Google Scholar] [CrossRef]
- Gonçalves, Tiago, Diego Pimentel, and Cristina Gaio. 2021. Risk and Performance of European Green and Conventional Funds. Sustainability 13: 4226. [Google Scholar] [CrossRef]
- Graham, John R. 1999. Herding Among Investment Newsletters: Theory and Evidence. The Journal of Finance 49: 237–68. [Google Scholar] [CrossRef]
- Granovetter, Mark. 1978. Threshold Models of Collective Behavior. The American Journal of Sociology 83: 1420–43. [Google Scholar] [CrossRef][Green Version]
- Harsha, S., and Bahadou Ismail. 2019. Review on financial bubbles. Statistical Journal of the IAOS 35: 501–10. [Google Scholar] [CrossRef]
- Ide, Kayo, and Didier Sornette. 2002. Oscillatory Finite-Time Singularities in Finance, Population and Rupture. Physica A 307: 63–106. [Google Scholar] [CrossRef][Green Version]
- Johansen, Anders, and Didier Sornette. 1999a. Critical Crashes. Risk 12: 91–94. [Google Scholar]
- Johansen, Anders, and Didier Sornette. 1999b. Modeling the Stock Market prior to large crashes. The European Physical Journal B 9: 167–74. [Google Scholar] [CrossRef][Green Version]
- Johansen, Anders, and Didier Sornette. 2002. Large Stock Market Price Drawdowns Are Outliers. Journal of Risk 4: 69–110. [Google Scholar] [CrossRef][Green Version]
- Johansen, Anders, and Didier Sornette. 2010. Shocks, Crashes and Bubbles in Financial Markets. Brussels Economic Review 53: 201–53. [Google Scholar]
- Johansen, Anders, Didier Sornette, and Olivier Ledoit. 1999. Predicting Financial Crashes Using Discrete Scale Invariance. Journal of Risk 1: 5–32. [Google Scholar] [CrossRef][Green Version]
- Johansen, Anders, Olivier Ledoit, and Didier Sornette. 2000. Crashes as Critical Points. International Journal of Theoretical and Applied Finance 3: 219–55. [Google Scholar] [CrossRef]
- Kaizoji, Taisei, and Didier Sornette. 2008. Market Bubbles and Crashes. MPRA Paper 40798. Munich: MPRA. [Google Scholar]
- Ko, Bonggyun, Jae Wook Song, and Woojin Chang. 2018. Crash forecasting in the Korean stock market based on the log-periodic structure and pattern recognition. Physica A: Statistical Mechanics and Its Applications 492: 308–23. [Google Scholar] [CrossRef]
- Krause, Andreas. 2004. Herding Behavior of Financial Analysts: A Model of Self-Organized Criticality. In The Complex Dynamics of Economic Interaction. Edited by Mauro Gallegat, Alan P. Kirman and Matteo Marsili. Berlin: Springer, pp. 257–67. [Google Scholar]
- Li, Chong. 2017. Log-periodic view on critical dates of the Chinese stock market bubbles. Physica A: Statistical Mechanics and Its Applications 465: 305–11. [Google Scholar] [CrossRef]
- Lin, Li, Ruo En Ren, and Didier Sornette. 2014. The volatility-confined LPPL model: A consistent model of ‘explosive’financial bubbles with mean-reverting residuals. International Review of Financial Analysis 33: 210–25. [Google Scholar] [CrossRef]
- Liu, Zhifeng, Toan Luu Duc Huynh, and Peng Fei Dai. 2021. The impact of COVID-19 on the stock market crash risk in China. Research in international Business and Finance 57: 101419. [Google Scholar] [CrossRef] [PubMed]
- Orlean, Andre. 1989. Mimetic Contagion and Speculative Bubbles. Theory and Decision 27: 63–92. [Google Scholar] [CrossRef]
- Pan, Wei-fong. 2019. Does Investor Sentiment Drive Stock Market Bubbles? Beware of Excessive Optimism! Journal of Behavioral Finance 21: 27–41. [Google Scholar] [CrossRef]
- Shu, Min, Ruiqiang Somng, and Wei Zhu. 2020. The ‘COVID’ crash of the 2020 U.S. Stock market. North American Journal of Economics and Finance 58: 101497. [Google Scholar] [CrossRef]
- Song, Ruiqiang, Min Shu, and Wei Zhu. 2022. The 2020 global stock market crash: Endogenous or exogenous? Physica A: Statistical Mechanics and Its Applications 585: 126425. [Google Scholar] [CrossRef]
- Sornette, Didier. 1998. Discrete scale invariance and complex dimensions. Physics Reports 297: 239–70. [Google Scholar] [CrossRef][Green Version]
- Sornette, Didier. 2003. Critical market crashes. Physics Reports 378: 1–98. [Google Scholar] [CrossRef][Green Version]
- Sornette, Didier. 2004. Why Stock Markets Crash? Critical Events in Complex Financial Systems, 5th Printing and 1st Paperback Printing ed. Princeton: Princeton University Press. [Google Scholar]
- Sornette, Didier. 2007. Probability Distributions in Complex Systems. In Encyclopedia of Complexity and System Science. New York: Springer, pp. 7009–24. [Google Scholar] [CrossRef]
- Sornette, Didier, and Jørgen Vitting Andersen. 2002. A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles. International Journal of Modern Physics C 13: 171–88. [Google Scholar] [CrossRef][Green Version]
- Sornette, Didier, and Peter Cauwels. 2014. 1980–2008: The Illusion of the Perpetual Money Machine and What It Bodes for the Future. Risks 2: 103–31. [Google Scholar] [CrossRef][Green Version]
- Sornette, Didier, and Anders Johansen. 1997. Large financial crashes. Physica A: Statistical Mechanics and Its Applications 245: 411–22. [Google Scholar] [CrossRef][Green Version]
- Sornette, Didier, Ryan Woodard, Wanfeng Yan, and Wei-Xing Zhou. 2013. Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model. Physica A 392: 4417–28. [Google Scholar] [CrossRef][Green Version]
- Yan, Wanfeng, Ryan Woodard, and Didier Sornette. 2011. Diagnosis and Prediction of Market Rebounds in Financial Markets. Physica A: Statistical Mechanics and Its Applications 391: 1361–80. [Google Scholar] [CrossRef]
- Youssefmir, Michael, Bernardo A. Huberman, and Hogg Tad. 1998. Bubbles and Market Crashes. Computational Economics 12: 97–114. [Google Scholar] [CrossRef]
- Zheng, Huanhuan. 2020. Coordinated bubbles and crashes. Journal of Economic Dynamics and Control 120: 103974. [Google Scholar] [CrossRef]
- Zhou, Wei-Xing, and Didier Sornette. 2009. A case study of speculative financial bubbles in the South African stock market 2003–6. Physica A: Statistical Mechanics and Its Applications 388: 869–80. [Google Scholar] [CrossRef][Green Version]
- Ziemann, Volker. 2021. Bubbles, Crashes, Fat Tails and Lévy-Stable Distributions. In Physics and Finance. Berlin: Springer, pp. 113–43. [Google Scholar] [CrossRef]

**Table 1.**Fitting of the Log-Periodic Linear Model for the 1996–1998 period, for samples with different ending points (tlast).

A | B | C | β | φ | tc | ω | λ | SRSD | SRSD/NDP | Tlast | Tlast Natural | Nosc | NDP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | 9.41 | −0.68 | 0.14 | 0.51 | 199.91 | 98.18 | 7.35 | 2.35 | 12.57 | 0.02 | 98.08 | 29 January 1998 | 3.60 | 542 |

2 | 9.41 | −0.68 | 0.14 | 0.51 | 199.91 | 98.18 | 7.35 | 2.35 | 12.74 | 0.02 | 98.12 | 13 February 1998 | 4.23 | 553 |

3 | 9.41 | −0.69 | 0.14 | 0.51 | 199.91 | 98.18 | 7.42 | 2.33 | 12.88 | 0.02 | 98.17 | 2 March 1998 | 6.05 | 564 |

4 | 9.69 | −0.93 | 0.09 | 0.42 | 199.42 | 98.28 | 8.91 | 2.02 | 13.53 | 0.02 | 98.21 | 17 March 1998 | 4.84 | 575 |

5 | 11.78 | −2.86 | −0.02 | 0.20 | 74.86 | 98.64 | 14.09 | 1.56 | 13.69 | 0.02 | 98.25 | 1 April 1998 | 4.27 | 586 |

6 | 11.79 | −2.86 | −0.02 | 0.20 | 74.91 | 98.64 | 13.96 | 1.57 | 14.09 | 0.02 | 98.29 | 16 April 1998 | 4.49 | 597 |

7 | 10.94 | −1.99 | 0.03 | 0.30 | 109.37 | 98.66 | 15.00 | 1.52 | 14.83 | 0.02 | 98.33 | 1 May 1998 | 4.95 | 608 |

8 | 10.94 | −1.99 | 0.03 | 0.30 | 109.36 | 98.66 | 15.00 | 1.52 | 15.36 | 0.02 | 98.38 | 18 May 1998 | 5.33 | 619 |

9 | 10.87 | −1.92 | 0.03 | 0.30 | 109.35 | 98.66 | 15.00 | 1.52 | 16.12 | 0.03 | 98.42 | 2 June 1998 | 5.70 | 630 |

10 | 10.61 | −1.65 | 0.04 | 0.35 | 109.26 | 98.68 | 15.00 | 1.52 | 17.93 | 0.03 | 98.46 | 17 June 1998 | 5.97 | 641 |

11 | 10.57 | −1.60 | 0.04 | 0.36 | 109.13 | 98.70 | 15.00 | 1.52 | 20.63 | 0.03 | 98.50 | 2 July 1998 | 6.21 | 652 |

12 | 9.61 | −0.71 | −0.08 | 0.74 | 194.99 | 98.55 | 15.00 | 1.52 | 22.95 | 0.03 | 98.54 | 17 July 1998 | 12.93 | 663 |

13 | 9.61 | −0.68 | −0.08 | 0.77 | 194.77 | 98.60 | 15.00 | 1.52 | 24.27 | 0.04 | 98.59 | 3 August 1998 | 13.05 | 674 |

**Table 2.**Fitting of the Log-Periodic Linear Model for the 2003–2007 period, for samples with different ending points (tlast).

A | B | C | β | φ | tc | ω | λ | SRSD | SRSD/NDP | Tlast | Tlast Natural | Nosc | NDP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | 9.33 | −0.25 | 0.16 | 0.76 | −20.35 | 107.02 | 11.59 | 1.72 | 23.00 | 0.02 | 106.96 | 15 December 2006 | 7.65 | 994 |

2 | 9.33 | −0.25 | 0.16 | 0.75 | −20.29 | 107.01 | 11.50 | 1.73 | 23.09 | 0.02 | 107.00 | 1 January 2007 | 11.11 | 1005 |

3 | 9.35 | −0.27 | 0.16 | 0.72 | −20.64 | 107.05 | 12.23 | 1.67 | 23.32 | 0.02 | 107.04 | 16 January 2007 | 12.55 | 1016 |

4 | 9.37 | −0.28 | 0.15 | 0.70 | −20.90 | 107.10 | 12.57 | 1.65 | 23.87 | 0.02 | 107.09 | 1 February 2007 | 11.54 | 1028 |

5 | 9.52 | −0.35 | 0.11 | 0.64 | −22.52 | 107.44 | 14.48 | 1.54 | 25.43 | 0.02 | 107.13 | 15 February 2007 | 6.02 | 1038 |

6 | 9.54 | −0.36 | 0.11 | 0.63 | −22.71 | 107.47 | 14.72 | 1.53 | 25.79 | 0.02 | 107.16 | 1 March 2007 | 6.18 | 1048 |

7 | 9.54 | −0.36 | 0.11 | 0.63 | −22.72 | 107.47 | 14.75 | 1.53 | 25.89 | 0.02 | 107.21 | 16 March 2007 | 6.52 | 1059 |

8 | 9.54 | −0.35 | 0.11 | 0.63 | −22.88 | 107.50 | 14.97 | 1.52 | 26.00 | 0.02 | 107.25 | 2 April 2007 | 6.85 | 1070 |

9 | 9.54 | −0.35 | 0.11 | 0.64 | −22.92 | 107.51 | 15.00 | 1.52 | 26.25 | 0.02 | 107.29 | 17 April 2007 | 7.20 | 1081 |

10 | 9.54 | −0.35 | 0.11 | 0.64 | −22.95 | 107.51 | 15.00 | 1.52 | 26.33 | 0.02 | 107.33 | 2 May 2007 | 7.62 | 1092 |

11 | 9.53 | −0.35 | 0.11 | 0.64 | −22.94 | 107.51 | 15.00 | 1.52 | 26.47 | 0.02 | 107.38 | 17 May 2007 | 8.32 | 1103 |

**Table 3.**Fitting of the Log-Periodic Linear Model for the 2012–2015 period, for samples with different ending points (tlast).

A | B | C | β | φ | tc | ω | λ | SRSD | SRSD/NDP | Tlast | Tlast Natural | Nosc | NDP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | 8.37 | 0.31 | 0.56 | 0.20 | 31.84 | 115.20 | 5.64 | 3.05 | 34.15 | 0.05 | 115.09 | 2 February 2015 | 2.88 | 685 |

2 | 8.37 | 0.31 | 0.55 | 0.20 | 31.67 | 115.25 | 5.92 | 2.89 | 34.61 | 0.05 | 115.13 | 16 February 2015 | 2.99 | 695 |

3 | 8.37 | 0.31 | 0.55 | 0.20 | 31.54 | 115.28 | 6.19 | 2.76 | 34.90 | 0.05 | 115.17 | 2 March 2015 | 3.13 | 705 |

4 | 8.40 | 0.28 | 0.60 | 0.25 | 0.17 | 115.28 | 6.23 | 2.74 | 35.05 | 0.05 | 115.21 | 16 March 2015 | 3.63 | 715 |

5 | 8.63 | 0.01 | −21.10 | 0.23 | 53.27 | 115.29 | 5.25 | 3.31 | 36.56 | 0.05 | 115.25 | 2 April 2015 | 3.57 | 728 |

6 | 8.30 | 0.39 | 0.40 | 0.20 | −13.07 | 115.47 | 8.41 | 2.11 | 36.86 | 0.05 | 115.29 | 16 April 2015 | 3.81 | 736 |

7 | 8.65 | 0.01 | −20.07 | 0.23 | 52.95 | 115.39 | 6.10 | 2.80 | 37.54 | 0.05 | 115.34 | 4 May 2015 | 3.95 | 747 |

8 | 8.42 | 0.26 | 0.57 | 0.20 | −13.45 | 115.54 | 8.53 | 2.09 | 37.86 | 0.05 | 115.38 | 18 May 2015 | 4.03 | 757 |

9 | 8.42 | 0.27 | 0.53 | 0.20 | 30.04 | 115.65 | 9.72 | 1.91 | 38.77 | 0.05 | 115.42 | 2 June 2015 | 4.09 | 768 |

10 | 8.45 | 0.24 | 0.59 | 0.20 | −13.96 | 115.65 | 9.55 | 1.93 | 39.31 | 0.05 | 115.46 | 16 June 2015 | 4.29 | 778 |

11 | 8.66 | 0.01 | −19.07 | 0.27 | 52.50 | 115.51 | 7.21 | 2.39 | 40.29 | 0.05 | 115.50 | 2 July 2015 | 6.70 | 790 |

Parameters | 1998 | 2007 | 2015 |
---|---|---|---|

A | 10.58 | 9.55 | 8.55 |

B | −1.58 | −0.37 | 0.13 |

C | 0.04 | −0.11 | 1.20 |

β | 0.36 | 0.61 | 0.20 |

φ | 108.75 | 11.45 | 30.48 |

tc | 98.75 | 107.51 | 115.54 |

ω | 15.00 | 15.43 | 7.76 |

RMSD | 0.04 | 0.03 | 0.06 |

tlast | 98.50 | 107.29 | 115.42 |

tlast natural | 2 July 1998 | 17 April 2007 | 2 June 2015 |

NDP | 652 | 1081 | 768 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gonçalves, T.C.; Borda, J.V.Q.; Vieira, P.R.; Matos, P.V.
Log Periodic Power Analysis of Critical Crashes: Evidence from the Portuguese Stock Market. *Economies* **2022**, *10*, 14.
https://doi.org/10.3390/economies10010014

**AMA Style**

Gonçalves TC, Borda JVQ, Vieira PR, Matos PV.
Log Periodic Power Analysis of Critical Crashes: Evidence from the Portuguese Stock Market. *Economies*. 2022; 10(1):14.
https://doi.org/10.3390/economies10010014

**Chicago/Turabian Style**

Gonçalves, Tiago Cruz, Jorge Victor Quiñones Borda, Pedro Rino Vieira, and Pedro Verga Matos.
2022. "Log Periodic Power Analysis of Critical Crashes: Evidence from the Portuguese Stock Market" *Economies* 10, no. 1: 14.
https://doi.org/10.3390/economies10010014