Next Article in Journal
Osmoregulatory and Antioxidants Modulation by Salicylic Acid and Methionine in Cowpea Plants under the Water Restriction
Next Article in Special Issue
Effect of Two Seeding Rates on Nitrogen Yield and Nitrogen Fixation of Winter and Spring Faba Bean
Previous Article in Journal
Aspergillus luchuensis, an Endophyte Fungus from the Metal Hyperaccumulator Plant Prosopis laevigata, Promotes Its Growth and Increases Metal Translocation
Previous Article in Special Issue
Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Cowpea Constraints and Breeding in Europe

by
Efstathia Lazaridi
and
Penelope J. Bebeli
*
Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
*
Author to whom correspondence should be addressed.
Plants 2023, 12(6), 1339; https://doi.org/10.3390/plants12061339
Submission received: 25 February 2023 / Revised: 12 March 2023 / Accepted: 13 March 2023 / Published: 16 March 2023
(This article belongs to the Special Issue Breeding and Cultivation Management of Legumes)

Abstract

:
Cowpea (Vigna unguiculata (L.) Walp.) is a legume with a constant rate of cultivation in Southern European countries. Consumer demand for cowpea worldwide is rising due to its nutritional content, while Europe is constantly attempting to reduce the deficit in the production of pulses and invest in new, healthy food market products. Although the climatic conditions that prevail in Europe are not so harsh in terms of heat and drought as in the tropical climates where cowpea is mainly cultivated, cowpea confronts with a plethora of abiotic and biotic stresses and yield-limiting factors in Southern European countries. In this paper, we summarize the main constraints for cowpea cultivation in Europe and the breeding methods that have been or can be used. A special mention is made of the availability plant genetic resources (PGRs) and their potential for breeding purposes, aiming to promote more sustainable cropping systems as climatic shifts become more frequent and fiercer, and environmental degradation expands worldwide.

1. Introduction

Cowpea (Vigna unguiculata (L.) Walp.) (2n = 2x = 22) is an important legume species, both for its consumption as food and as animal feed worldwide, especially in semi-arid tropical and desert regions [1,2]. It is an excellent source of vitamins, antioxidants, fiber, trace elements and other nutrients [2,3] and plays an important role in malnutrition avoidance in the least developed countries (LDCs) where it is mainly cultivated [4,5]. Almost all its above-ground plant parts are consumed [6]. In addition to its mature dry seeds, its leaves, green pods and green seeds are consumed in various countries [5,7,8,9,10]. It is also used for flour [3,11,12,13], as its seeds contain a high protein content (23–32%) compared to many other legume species [14,15].
In addition to its important nutritional potential, its short biological cycle makes this crop ideal for participation in organic farming systems due to its high rates of nitrogen fixation, phosphorus use efficiency and regrowth capacity [16,17]. Like other leguminous crops, it enhances soil improvement due to its ability to coexist with several Rhizobium bacteria species [18,19], resulting in the enrichment of the soil with nitrogen [20,21]. Cowpea can also improve soil structure by forming a deep root system and reduce soil erosion due to the extensive coverage that the plants provide [22].

2. Botanical Taxonomy

The genus Vigna belongs to the legume family and currently includes approximately two hundred species [23], among them ten cultivated species, such as cowpea (Vigna unguiculata (L.) Walp.) and green mung bean (Vigna radiata (L.) Wilczek) [24]. The genus was established in 1824 by the botanist Savi, who named it in honor of Domenico Vigna, a professor of botany in Pisa [25]. Before the creation of the genus Vigna, the species classified in it were previously classified either into the genus Dolichos or into the genus Phaseolus [26].
Initially, the genus Vigna included very few species, Vigna glabra Savi and V. villosa Savi, which today both belong to the species V. luteola (Jacq.) Benth. It was not until 1842 that Walpers transferred cowpea (Vigna unguiculata (L.) Walp.) to the specific genus [25]. The species of the genus are now grouped into six subgenera (Vigna, Ceratotropis, Plectotropis, Sigmoidotropis, Lasiosporon and Haydonia) [27,28] from eight originally [29], while more recent studies through molecular phylogenetic analyses recommended the removal of the subgenus Sigmoidotropis [30,31]. The subgenus Vigna is further divided into six sections; Catiang, Comosae and Macrodontae each includes two species, Liebrechtsia includes one species, Reticulatae includes nine species and Vigna includes twenty species [24].
Cowpea is classified into the Catiang section of the subgenus Vigna [32]. The species before its current name had received many names during taxonomic efforts, and this is the reason why it has several synonyms such as Dolichos biflorus L., Dolichos melanopthalmus DC., Dolichos unguiculatus L., Vigna catjang (Burm. f.) Walp., Vigna sinensis (L.) Savi ex Hausskn. and Vigna unguiculata (L.) Walp. ssp. dekindtiana sensu Verdc. [33]. The cultivated types of the species (Vigna unguiculata ssp. unguiculata var. unguiculata) are further categorized into four cultivated groups (cultivar groups, cv.-gr.): sesquipedalis, textilis, biflora and unguiculata [26,34], while Pasquet [35] proposed the introduction of one more cultivated group, melanophthalmus, separating types with black eye and wrinkled seed coat morphotypes from the group cv.-gr. unguiculata. In many cases, these cultivar groups are considered by some researchers as separate subspecies and not as cultivar groups of a specific subspecies [36]. Furthermore, the Vigna subgenus includes ten wild subspecies [37], as well as wild forms within the subspecies V. unguiculata ssp. unguiculata, e.g., Vigna unguiculata ssp. unguiculata var. spontanea [38,39].

3. Origin and Spread

Cowpea (Vigna unguiculata (L.) Walp.) was domesticated in Africa before 1500 B.C. [40]. Southeast Africa or West and Central Africa [25,41,42,43,44] are suggested as the primary center of the species origin. The existence of a parallel double center of cowpea domestication was mentioned lately [45]. The analysis of 1200 single nucleotide polymorphisms (SNPs) led to the formation of two distinct groups of local populations, one similar to wild species originating from Southeast Africa and one to wild species originating from West and Central Africa [46]. In fact, local varieties from Europe appeared to be more similar to the group originating from West and Central Africa, and local varieties from Asia and America to the group originating from Southeast Africa. Landraces originating from Southeast Africa also showed greater interpopulation diversity compared to West and Central Africa [46]. Xu et al. [36], analyzing the genetic similarity of 95 entries of yardlong bean (Vigna unguiculata cv.-gr. sesquipedalis), categorized the accessions into two separate groups according to their pod length and growth habit. In addition, Herniter et al. [47], presenting linguistic data for cowpea in the two African regions (Southeast Africa/West and Central Africa) seem to converge on the existence of two parallel centers of origin.
It seems that cowpea was first introduced into Asia during the Neolithic period, around 1500 B.C. [48,49], and in India, a secondary center of origin for the species was formed. Upon entering Asia, cowpea encountered different climatic conditions, and after selection for fresh pod consumption, the cultivated group V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis was formed [45,46]. This cultivated group was later introduced into the European continent. Asia is also a primary center of origin for many Vigna species, such as V. radiata and V. mungo. Their wild ancestors are also abundant in the area, such as V. unguiculata ssp. unguiculata var. sublobata and V. unguiculata ssp. unguiculata var. silvestris [50]. Along with the spread of cultivar group V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis in the European area, the spread of the African cultivated Vigna (Vigna unguiculata ssp. unguiculata cv.-gr. unguiculata) probably also took place [51]. As testified by the texts of Theophrastus, cultivation of the “bean” was familiar to the ancient Greeks in 300 B.C. [52]. The two cultivated groups later spread from Europe to South America during the 17th century A.D. [51], and then to the USA during the 18th century A.D. [53].
Today, cowpea is cultivated in areas of Southern Europe such as Greece, Italy, Spain, Cyprus, Croatia, Portugal and Serbia, Bosnia and Herzegovina, and North Macedonia [54,55,56,57,58,59], but is less widespread in Central Europe [52]. Cultivated areas for cowpea dry beans production are also reported in Slovenia and Hungary [58]. In total, cowpea corresponds to the 0.3% of pulses production in Europe and the 0.3% of world cowpea production for dry seed, reaching up to 23,825.22 ton in 2021 [58,60]. However, not many data are available regarding cowpea production for fresh pod production despite that its production was enhanced in Southern European countries lately [10,61].

4. Breeding Methods

Maximizing seed yield is the main breeding objective for cowpea [49,62]. Yield is also considered by farmers as the most desirable trait, taking also into consideration its limiting factors [63,64,65]. Classical breeding methods that are used mainly for cv.-gr. unguiculata are pedigree selection, mixed-population selection and single-seed-derived selection [5,66,67,68]. Selection of pure lines has also been used mainly to form parental lines, as cowpea is a species characterized by a narrow genetic base [69,70] and this method does not have the ability to produce new available genetic variability. As for the cultivated group cv.-gr. sesquipedalis, many cultivars have been created through pure-line selection [67]. To introduce a desired trait into an already adapted parent, backcrosses are usually applied [71,72,73]. The preferred breeding method is directly dependent on the total variability available, the heritability (H or h2) of the trait of interest and the selective pressure exerted.
The heritability of various traits associated with cowpea fresh pod and seed yield differs depending on the available variability in the evaluated populations and the environmental conditions and is presented in Table 1 and Table 2 for cv-gr. unguiculata and cv.-gr. sesquipedalis, respectively. Comparing the two main cultivated cowpea cultivar groups (cv-gr unguiculata and cv-gr sesquipedalis), one observes that more traits, such as plant height and fresh pod yield, with high broad sense heritability (H > 70%) and significant genetic advance are presented in the cv-gr sesquipedalis cultivar group.
Use of molecular markers aiming to assist classical breeding methods is also common, thus reducing the time required to make a new variety available. Molecular markers are used either by assisting classical methods with trait selection (MAS), or by assisting the detection of a specific trait in backcrossing (MABC), or by assisted recurrent selection (MARS) [106]. In recent years, genome sequencing resulted in significant progress through genetic quantitative trait loci (QTLs) identification, using either linkage mapping or association mapping and revealing the linkage of these genomic regions to phenotype [107]. As a reference the genome of IT97K-499-35 breeding line from Nigeria was sequenced [108], with an assembled genome size of 519.44 Mb [109].
Genome-wide association studies (GWAS) were therefore helped in this direction, through SNPs and candidate genes identification and their correspondence to desirable plant traits such as flowering time and pod indehiscence, and tolerance to biotic and abiotic stresses [46,110,111,112,113,114,115,116,117,118,119,120,121,122]. Cowpea genetic similarities with other widely studied legumes such as soybean (Glycine max (L.) Merr.), alfalfa (Medicago truncatula Gaertn.) and common bean (Phaseolus vulgaris L.) have contributed to better understanding, mapping and confirmation of cowpea QTLs in relation to expressed characteristics [108,123,124,125] (Table 3).
Resistance to abiotic factors, such as drought and high temperatures [123,134], and biotic factors such as resistance to the fungus Macrophomina phaseolina [135], aphids [136], nematodes [137] and thrips [138], have also been facilitated through finding the corresponding QTLs. To investigate quantitative trait loci in cowpea, either generation F3 populations (F2:3) or recombinant homozygous lines of RILs are established [131,137,139,140,141].
Other breeding methods are also used to increase the available cowpea genetic diversity [142]. Induced mutagenesis offers the possibility of generating variability in a shorter period compared to classical breeding methods [143]. Cowpea traits that have been shown to be positively affected by induced mutagenesis are plant height, number of pods per plant, pod length, number of seeds per pod, seed yield per plant and seed protein content [144,145]. Gamma radiation (γ) is the most frequently used method with the highest success rates [142,145,146,147,148], while the use of chemical induction with ethyl methane sulfonate ester (EMS) in concentrations of 0.25% to 0.40% also has significant success rates [146,149,150,151]. The use of sodium azide (NaN3) in low concentrations also resulted in encouraging results [148,149,152].
Tissue culture and genetic modification to obtain resistance to factors affecting yield have also been used successfully, especially in the case of resistance to the pantropical insect pest of leguminous crops Maruca vitrata (Fabricius, 1787), by creating Bt genotypes through the introduction of the Cry1Ab Bt gene from Agrobacterium tumefaciens [116], as there is no possibility of introducing resistance through a classical method application [153]. Introgression breeding has also been explored with the aim of transferring desirable traits from wild species to cultivated cowpea [116,154].
Recently the investigation of relationships between cultivated plants and insects has increased. The benefits of understanding relationships that govern these systems and finding traits that enhance them are manifold. In terms of crops, the quality and yield of the produced fruits and seeds increases several times, while in terms of pollinating insects, the conservation of their diversity is enhanced and their number is increased, which are major ecological issues due to their rapid decline [155], and the environmental benefits they provide [156,157,158,159]. Morphological and phenological traits of flowers [160], nectar secretion [161] and pollen production [162] as well as the release of volatile aromatic substances [163,164] are key traits to investigate for pollinator attraction enhancement. The ultimate goal is usually to exploit heterosis and create a hybrid resulting in increased yield of a mainly self-pollinated or a partially allogamous crop. Success so far has been observed to be limited in terms of leguminous species [165,166]. However, this could be a solution for cowpea breeding, which is mainly a self-fertilizing species but retains pollinator-attracting features, such as extracellular nectaries [167,168].
The identification of floral traits that are directly related to the prediction of insect-pollinators’ presence and action is very complex [169], with little prediction success [170] and a time-consuming [171] process. The use of molecular markers and genomics could potentially assist towards this breeding approach as well. For example, genetic loci (QTLs) of various aromatic volatiles emitted from cowpea flowers have been reported by Andargie et al. [141], substances that could possibly influence pollinators’ visitation. Therefore, detection or genotyping these genetic loci could probably lead to increased visitation of cowpea genotypes by pollinators.

5. Cowpea Plant Genetic Resources for Main Productivity Constraints in Europe

Cowpea faces a multitude of biotic and abiotic factors that negatively affect its productivity worldwide [172]. In Europe, the cowpea cultivation area is increasing [10] as it is considered a drought- and high-temperature-tolerant plant species in comparison to other legumes. Recently, cowpea fresh pods and green seeds started to be investigated as new products for the market [10], while more intense efforts are made to increase pulse production and grain-legume-based products in Europe [173].
Cowpea cultivation in temperate climates lasts from late Spring to early Autumn. Although the area is characterized by mild climatic conditions and the crop is not subjected to such adverse conditions as in Africa [5], cowpea confronts with a plethora of stresses and yield-limiting factors regarding seed and fresh pod production. Exploitation of nutrient content of its fresh pods and seeds is also important worldwide as many substances are essential for humans [174].
Identification of genetic material available and suitable regarding adaptation and tolerance to the main cowpea restrictive factors is the first step for breeding due to the narrow genetic base that characterizes breeding varieties [175]. Wild relatives, exotic germplasm and landraces are sources of hidden diversity. Landraces form the main variability source for cowpea, as there are incompatibility difficulties and production of non-fertile hybrids while inter-crossing with crop wild relatives [45].
According to Genesys PGR [176], a total of 33,832 registered samples of cowpea (Vigna unguiculata (L.) Walp.) are stored in gene banks worldwide, with the largest collection held in the International Institute of Tropical Agriculture (IITA) [176]. Regarding their improvement level, the most abundant group consists of landraces with 16,983 entries, while improved varieties amount to 501. Among the accessions that are kept worldwide, 1085 are of European origin, of which most (343) are of Italian origin. Their improvement level is mainly landraces (669), while only sixteen are improved varieties [176]. According to EURISCO [177] 4301 accessions are conserved ex situ in European national gene banks, of which 1508 are kept in the Russian Federation, 498 in Spain, 363 in Italy, 359 in Portugal, 332 in Belgium, 319 in Germany, 310 in Bulgaria, 262 in Hungary, 208 in Romania and 142 in other countries. At the same time, there are few cowpea varieties registered in the national catalogues of European countries [55,178,179,180] compared to the varieties in circulation in the market worldwide, while the species is not mentioned in the Common Catalogues of Varieties of Agricultural Plant and Vegetable Species [181,182].
Cowpea genetic material is also conserved worldwide on-farm through its cultivation by farmers that promote the conservation of landraces, also known as local varieties or local populations, which are most often sown in small-scale plots or gardens (on-farm conservation) for personal use by farmers or to supply the local market in some cases [56]. Cultivated local varieties are usually part of the cuisine and culinary preferences of the region [183,184,185] or accompany some cultivation management tradition [186]. Their cultivation in many cases is so directly intertwined with the local society that they take the name of the region where they are cultivated [20,187,188,189,190]. An advantage of this specific form of conservation is the continuous adaptation to the current soil and climatic conditions and agricultural practices, which allows the material to evolve over time compared to ex situ conservation, which is static [191]. On-farm cowpea material conserved therefore constitutes a valuable source of diversity, in most cases underexploited.

5.1. Genetic Resources for Abiotic Stress Factors

Cowpea confronts with various abiotic stresses i.e., high temperatures [124], drought especially during flowering and pod setting periods [180,192], photoperiodic requirements [172,193] and soil limiting factors [194] such as salinity and sodicity problems [195]. In Southern Europe, with reduced water availability looming worldwide [14], searching for drought-tolerant genetic material along with production stability under limiting water conditions is of primary importance. The development of drought-tolerant cultivars is based on finding efficient methods to evaluate the tolerance levels of the available germplasm [194], as well as identifying various plant traits [119,195] and physiological and metabolic pathways [196,197] associated with stress resistance.
Due to the short-day photosensitivity that many genotypes present, selection of material appropriate for cultivation in Europe consists also of a breeding goal. Genotypes should be therefore selected depending on the climatic conditions and the duration of the cowpea growing season available in each region. Photosensitive genotypes are late maturing and often do not produce pods until the end of the growing season. As such genotypes are planted during longer day length due to the extended duration of the vegetative stage preventing early transition into reproductive growth, resulting often in higher production [198,199]. Therefore, an appropriate sowing time should be selected for them. Selecting yardlong bean genotypes for photo-insensitivity is also a primary breeding goal [200]. Regarding soil limiting factors, increasing salinity observed in many areas of Southern European countries [201,202] renders this factor important for cowpea production as for other crops. Cowpea also faces problems growing in alkaline soil conditions (pH ≥ 7.5), developing severe leaf chlorosis and stunted plant growth [203].
Crop wild relatives of cowpea were assessed leading to the identification of high levels of abiotic stress tolerance, however efforts proved fruitless due to failure of crossing [204]. Numerous genotypes and accessions, including landraces, have been therefore characterized and evaluated with the goal of being a genetic resource for drought, heat and salinity tolerance [180,205,206,207,208,209,210,211,212,213,214]. Landraces’ potential to tolerate drought and salinity stress under different developmental stages was revealed through these studies (Table 4). Limited screening and evaluation of cowpea landrace material have been done with regard to the rest of abiotic stresses. However, several cowpea genotypes and cultivars have been identified [209,210,215,216], and breeding lines with high temperature tolerance have been developed [49,217]. Landraces and other cultivated material were screened and appeared also to be promising in cultivation under calcareous and high alkaline soils [56,203]. A landrace coded “ID7” was identified as one of the two most suitable genotypes for three different soil types in Sudan [218].

5.2. Genetic Resources for Biotic Stress Factors

Pest attacks are the main factors reducing cowpea productivity in many areas worldwide [49,237]. Major insect pests that cause cowpea economic losses include cowpea aphids (Aphis craccivora C.L. Koch, 1854), thrips (Megalurothrips sjostedti Trybom, 1908), green stink bugs (Nezara viridula Linnaeus, 1758) and cowpea weevils (Callosobruchus maculatus Fabricius, 1775). In Africa, Maruca vitrata (Fabricius, 1787), is one of the most serious pests, causing tremendous losses [238,239], while in Europe, cowpea weevils and aphids constitute the main insect pests. Nematodes also seriously affect cowpea plants worldwide including Europe [240], leading to nutrient deficiencies and stunting or wilting; thus, the root system is incapable of absorbing adequate amounts of water and mineral nutrients. Furthermore, fusarium wilt is also enhanced because of the root injuries caused by nematodes. Meloidogyne, Pratylenchus and Scutellonema are the most important nematode genera worldwide leading to losses of cowpea yield [241].
The primary goal of several breeding programs worldwide is therefore to find and create varieties with resistance to the main cowpea pests. Many genotypes have been developed and are available in African countries, e.g., TVu-6464, TVu-1583 and TVu-810, from IITA (International Institute of Tropical Agriculture) [242]. However, finding genotypes with resistance to pests in most cases has proved fruitless [49], as it is difficult to find resistant genotypes, and usually their resistance relies on a dominant gene which can be easily overcome [172]. For example, the aphid resistance of the improved line IT97K-499-35 appears to have been overcome by aphid populations in Ghana [243].
A plethora of aphid-resistant improved lines, genotypes and commercial varieties have been identified worldwide [243,244,245,246,247,248], while aphids did not prefer resistant cowpea genotypes and fed significantly less on them [249]. Among the screened genotypes, some landraces and wild cowpea accessions presented resistance to aphids (Table 5). Worth mentioning is that work has also been done in India for biotic stresses resistance [250]. A corresponding investigation has not yet taken place for cowpea genetic material of European origin, however the potential of twelve Greek cowpea landraces to Aphis craccivora was highlighted, as they were found to possess the allele CP-171-172 indicative for aphid resistance of the TVu-2876 genotype [59].
In an effort to find genotypes resistant to weevil, both the inability to easily deposit eggs on the seed coat and the reduced rates of hatching adults are taken into account [267]. Based on these factors, Cruz et al. [268] identified four resistant cowpea genotypes. Kalpna et al. [269] reported also that the variety TVu-2027 showed resistance to weevil due to its increased content of trypsin inhibitors and specific amino acids. Lines and genotypes resistant to weevil were also identified [270,271,272]. Recently, Ferreira et al. [173] published the finding of a resistant cultivar (cv. BRS Xiquexique) based on the increased presence of chitin-binding proteins (e.g., chitinases). Wild Vigna species such as V. luteola, V. vexillata and V. reticulata are also considered resistant to weevil [273]. Two landraces were also identified by Nyarko et al. [239] to present weevil resistance (Table 5).
Resistance to nematodes of the genus Meloidogyne spp. has been found to be a quantitative trait locus based on the abundance of additive genes [274]. Huynh et al. [274] discovered the gene region (QTL) (QRk-vu11.1) harboring the Rk gene, which confers resistance or partial resistance to nematodes of the genus Meloidogyne. Two more genes, one in a dominant (Rk2) and one in a recessive form (rk3), also contribute complementarily to resistance [275,276]. Varieties CB5, CB27, CB46, CB50 and CB88 in the USA express dominance of this gene [275,277]. The International Institute of Tropical Agriculture (IITA) has also released many nematode-tolerant breeding lines [71,278,279]. Broad-based nematode resistance was reported by Ndeve et al. [257] for cowpea genotypes from South-East Africa, including also landraces. Nematodes resistance was also observed in twelve wild and landrace accessions by Dareus et al. [256] (Table 5).
Fungal diseases such as anthracnose (Colletotrichum lindemuthianum), cercospora (Cercospora canescens), fusarium (Fusarium oxysporum f. sp. phaseoli), root rot (Macrophomina phaseolina) and septoria (Septoria vignicola) infect cowpea worldwide [261,264]. Furthermore, more than twenty different viruses have been recorded that infect cowpea worldwide [53,280,281,282], causing losses ranging from 10 to 100% [283]. Among the most common in Europe are Cowpea-aphid-borne mosaic virus (CABMV), Cowpea mosaic virus (CPMV), Southern bean mosaic virus (SBMV) and Cucumber mosaic virus (CMV) [282].
Several genotypes, including landraces (Table 5), with resistance to cowpea pathogens have been identified, such as for bacterial blight [261], cercospora [284] and fusarium wilt [260]. Diallel crosses were used to breed for resistance to macrophomina root rot disease [285], while eight resistant lines were identified by Lamini et al. [286].
Efforts to find parallel resistance to many pathogens have been underway for years [287,288]. A new variety, VBN 09-013 (VBN 3), was created with parallel resistance to rust, anthracnose and Bean mosaic virus [289]. The genomic regions harboring disease resistance genes are currently beginning to be mapped [290,291,292]. Cultivation of resistant varieties is considered the most effective and environmentally friendly method for confronting viruses diseases. A number of improved resistant lines and varieties to viruses have been released [90,293]. Many resistant landraces along with genotypes and varieties to viruses have also been identified [294,295] (Table 5).

5.3. Genetic Resources for Yield Increase and Stability

Cowpea yield is strongly affected by environment (E) and genotype x environment interaction (G × E) [193,296,297,298,299,300] (Table 6). Identification of high-seed-yielding genotypes with broad adaptability and therefore yield stability [301] is considered one of the primary improvement goals [302] in Europe as in the rest of the world. However, cowpea yield is a complex trait, and it is difficult to directly breed for it, as it presents low heritability and pleiotropic effects [303].
Evaluation of genotypes for fresh pod consumption is usually performed separately from seed yield evaluation [5,318,319,320,321], as the desired traits for the consumers are different compared to those for dry seed consumption. For example, the presence of large seed size is not desirable for fresh pod consumption [61], while it is preferable for dry seed production. At the same time, the seeds, after the filling developmental stage (around ten days following their formation), seem to compete with the fresh pods for nutrients such as nitrogen, thus reducing their nutritional value [322].
Nowadays, the observed climatic fluctuations affect yield stability of crops globally [323,324,325]. The ability to produce stable yields in different environments and under changing weather conditions therefore comes to the foreground. Landraces are by definition genetic material that exhibits intermediate yield production capacity but also high yield stability in low-input cropping systems [326,327]. Therefore they can play a major role in finding genotypes that present yield stability [327,328]. The shift towards the stability of performance rather than its maximization has begun to be revealed through participatory breeding programs, and stability is being considered as one of the most desired properties by producers [329].
Numerous landraces have been screened for their seed and fresh pod yield performance under adverse environments [296,330,331,332,333]. Among landraces evaluated, some were proved to yield similarly to improved genotypes, such as the “Akidi Ala” local variety from Nigeria and “Chimponogo” local variety from Zambia [334,335]. Some of them even managed to express higher seed or fresh pod yield compared to the used standard checks [322,336] and presented higher stability [337].
European cowpea landraces have been studied, revealing interesting material regarding their yield potential. In a collection of 48 cowpea accessions evaluated by Stoilova and Pereira [338] including landraces, a landrace from Bulgaria named “A4E007” was among the genotypes selected to be included in a breeding programme aiming to increase seed yield. Martos-Fuentes et al. [193], evaluating, at three locations and two consecutive years, twelve cowpea genotypes, consisting mainly of landraces material from Greece, Portugal and Spain, defined cowpea landraces with high productivity levels such as “BGE038474” in the Cartagena region and “Vg73” at the Elvas site. In Vila Real the most promising landraces were “Cp5553” and “Vg60” from Portugal and “AUA1” from Greece, depending on the experimental year [193]. Statistically significant differences were observed in a Greek cowpea collection assessed by Lazaridi et al. [56] regarding their traits related to yield, revealing useful breeding material. Among the landraces, “VG18”produced the highest number of pods per plant, while “VG19” presented the highest seed weight per plant.
Cowpea fresh pods are also consumed as vegetables in many countries in Europe; in this direction some European cowpea landraces have also been studied. Lazaridi et al. [332] preliminary evaluating cowpea landraces from Southern European countries found that the “Cp5128” landrace from Portugal resulted in a higher number of fresh pods per plant and fresh pod weight per plant in comparison to the other landraces, providing therefore valuable material for cultivation and breeding purposes regarding fresh pod production. Omirou et al. [339] managed to increase cowpea fresh pod yield of the “Argaka” landrace, a traditional landrace of Cyprus, through whole plant phenotyping and continuous selections. Pekşen and Pekşen [320] evaluating twelve breeding lines developed from landraces, defined new material (L3, L12, L13 lines) that statistically significantly exceeded fresh pod yield of cowpea varieties that were included in the experiment.

5.4. Genetic Resources for Enhanced Nutritional Value

Cowpea nutritional value and its importance is widely reported [2,340]. Recently, the species has gained more attention due to its positive effects on human health [6,341]. Food dishes containing cowpea leaves especially are characterized by extremely high Fe and Ca levels [342]. Recently, in Europe the consumption of high protein vegetables, such as cowpea, is intensively promoted [10]. Cowpea is characterized by high seed protein content even higher than 30% [343,344] and low-fat content as well as a significant concentration of carbohydrates [3,345].
Padhi et al. [345], evaluating 120 cowpea genotypes, found remarkable variability among them regarding their proximate composition. Proximate and nutrient composition of cowpea fresh pods and seeds have been found to be strongly affected by environment [15] and genotype [346,347,348], while a genotype x environment interaction is also usually present [10,174,349]. Cooking methods and food processing are also reported to drastically affect cowpea nutrient content [3,350], e.g., fermentation of cowpea flour was found to improve P availability and Mg digestibility [351]. Recently, cowpea flour up to 4% was incorporated successfully in a traditional plate called “Kırklareli meatballs” in Turkey, aiming to improve its nutritional content without changing its textural and sensory properties [13].
Cowpea is rich in proteins and carbohydrates but its essential micronutrients content is not satisfactory. Biofortification of cowpea is considered crucial to target for an adequate dietary intake of micronutrients [352,353]. Strong correlations among seed crude protein and Fe and Zn contents [354] and between K and Mg as well as between Ca and Mg [56] indicate the possibility of breeding for increased concentrations of some nutrient components simultaneously. However, cowpea contains various amounts of several antinutritional factors such as alkaloids, flavonoids, saponins, tannins [355], phenols and phytic acid [345] in seeds, and oxalates, phytates and nitrates in leaves, reducing its nutritional value [356]. Statistically significant differences were observed among European cowpea cultivars regarding their antinutritional factors [357]. Karapanos et al. [61], evaluating the fresh pods of 36 cowpea landraces and a cowpea variety from Southern Europe for nutritional value, recorded low raffinose-family oligosaccharides (RFOs) and nitrate concentrations similar to those of snap bean pods and lower than leafy vegetables.
Several studies aimed to identify cowpea accessions with high nutrient content in anticipation of alleviating malnutrition [352] and micronutrients deficiencies observed in low- and middle-income countries [358], as well as to promote the creation of new vegetable products for the market [10,61]. Among the accessions, some landraces were also included that often exhibited desirable proximate and nutrient values.
Proximate composition of cowpea seeds, cultivated in Bulgaria, ranged from 22.5 to 25.6% protein content, 28.3 to 36.2% starch, 1.3 to 1.9% fat, 1.7 to 3.0% insoluble fiber and 3.2 to 3.7% minerals [346]. Among the accessions evaluated, two Bulgarian landraces presented higher protein and starch seed content than the ex situ obtained material. Their oil, sterol, tocopherol and phospholipid content was also equal or higher than the rest of the accessions studied [344]. Verma et al. [359] found that the Indian landrace “Pusa Komal” had significantly lower proximate seed composition in comparison to seven improved varieties, while in Swaziland a local variety “Mtilane” also compared with five improved lines and presented no statistically significant differences for seed crude protein and fat content [360]. Its nutrient seed content (Ca, Fe, Zn) was also equivalent to the assessed breeding lines [360]. High Fe seed content (67 μg g−1) was recorded in the “Soronko” landrace, while a very high seed protein content, up to 40%, was recorded in the “Bengpla” landrace [15]. The “Bengpla” landrace along with the “Glenda” landrace also exhibited extremely high leaf protein content [15]. Significant statistical differences were recorded for seven cowpea landraces from Indonesia that were compared with three commercial varieties. Among them, landrace “KM7” presented high lipid and protein content, and “KM1” presented high carbohydrate and folic acid content [361]. A local variety “GH3684” presented lower carbohydrate seed content but higher fiber content compared to six advanced and parental lines [362].
Cowpea landraces with European origin have been evaluated regarding the proximate and nutrient composition of their seeds, fresh seeds and green pods, revealing some promising genotypes such as “Cp5647” and “Cp4877” originating from Portugal that exhibited high total soluble solids (7.6 and 6.5 °Brix, respectively) and titratable acidity of fresh pods [61], “BGE038477” and “BGE038478” from Spain that presented high seed antioxidant capacity (17.78 mg GA g−1 dw and 18.26 mg GA g−1 dw, respectively) and phenolic content [10], “AUA2” from Greece that presented high Ca (6.10 g kg−1), Mg (3.40 g kg−1), S (1.21 g kg−1), B (20.60 mg kg−1) and Zn (64.10 mg kg−1) content of fresh pods and P (5.40 g kg−1) and Fe (70.90 mg kg−1) content of immature seeds [10] as well as “BGE038477”, “BGE038478” and “VG20” that presented high seed protein content, 29.52%, 29.46% and 28.37%, respectively [10,56].

6. Conclusions

Cowpea, an orphan legume and a staple crop for African countries, has gained breeders’ attention in recent years worldwide. Southern European countries traditionally cultivate cowpea, using as the main cultivating material landraces, and thus a hidden genetic diversity has been conserved. Cowpea landraces have been proved valuable sources of tolerance to abiotic stresses and of resistance to main pests and pathogens prevailing worldwide. However, the majority of cowpea plant genetic resources remain unexploited. Cowpea landraces originating from Europe could provide valuable material for breeding, combining tolerance and resistance characteristics but also adaptability to the climatic and soil conditions of the area. Despite the progress that has been made recently, through the implementation of classical and modern breeding techniques, more research is necessary to further access their potential, to develop high yielding varieties and to create new variable and nutritional products for the market.

Author Contributions

Conceptualization, E.L. and P.J.B.; writing—original draft preparation, E.L.; writing—review and editing, P.J.B.; visualization, E.L. and P.J.B.; supervision, P.J.B. supervised E.L.’s doctorate thesis, was in charge of overall coordination; project administration, P.J.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Horn, L.N.; Shimelis, H. Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Ann. Agric. Sci. 2020, 65, 83–91. [Google Scholar] [CrossRef]
  2. Abebe, B.K.; Alemayehu, M.T. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J. Agric. Food Res. 2022, 10, 100383. [Google Scholar] [CrossRef]
  3. Affrifah, N.S.; Phillips, R.D.; Saalia, F.K. Cowpeas: Nutritional profile, processing methods and products—A review. Legum. Sci. 2022, 4, e131. [Google Scholar] [CrossRef]
  4. Omomowo, O.I.; Babalola, O.O. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability. Front. Plant Sci. 2021, 12, 751731. [Google Scholar] [CrossRef] [PubMed]
  5. Mekonnen, T.W.; Gerrano, A.S.; Mbuma, N.W.; Labuschagne, M.T. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. Plants 2022, 11, 1583. [Google Scholar] [CrossRef]
  6. Gonçalves, A.; Goufo, P.; Barros, A.; Domínguez-Perles, r.; Trindade, H.; Rosa, E.A.S.; Ferreira, L.; Rodrigues, M. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: Nutritional advantages and constraints. J. Soc. Chem. Ind. 2016, 96, 2941–2951. [Google Scholar] [CrossRef]
  7. da Silva, E.F.; Júnior, A.P.B.; de Albuquerque, M.C.T.; de Albuquerque, J.R.T.; Lins, H.A.; Simões, A. do N. Quality of three cowpea green-grains cultivars refrigerated. Amazon. J. Plant Res. 2017, 1, 14–19. [Google Scholar] [CrossRef]
  8. Enyiukwu, D.N.; Amadioha, A.C.; Ononuju, C.C. Nutritional Significance of Cowpea Leaves for Human Consumption. Trends Food Sci Technol. 2018, 1, 1–10. [Google Scholar] [CrossRef]
  9. Kriesemer, S.K.; Keding, G.B.; Huluka, A.T.; Dürr, J. Leafy Vegetables under Shade? Performance, Consumer Acceptance, and Nutritional Contribution of Cowpea (Vigna unguiculata (L.) Walp.) Leaves in the Yayu Coffee Forest Biosphere Reserve in Southwest Ethiopia. Sustainability 2021, 13, 2218. [Google Scholar] [CrossRef]
  10. Carvalho, M.; Carnide, V.; Sobreira, C.; Castro, I.; Coutinho, J.; Barros, A.; Rosa, E. Cowpea Immature Pods and Grains Evaluation: An Opportunity for Different Food Sources. Plants 2022, 11, 2079. [Google Scholar] [CrossRef] [PubMed]
  11. Ngoma, T.N.; Chimimba, U.K.; Mwangwela, A.M.; Thakwalakwa, C.; Maleta, K.M.; Manary, M.J.; Trehan, I. Effect of cowpea flour processing on the chemical properties and acceptability of a novel cowpea blended maize porridge. PLoS ONE 2018, 13, e0200418. [Google Scholar] [CrossRef] [Green Version]
  12. Queiroz, V.A.V.; Dizlek, H.; de Barros, F.A.R.; Tardin, F.D.; Figueiredo, J.E.F.; Awika, J.M. Baking Process Effects and Combined Cowpea Flour and Sorghum Bran on Functional Properties of Gluten-Free Cookies. Plant Foods Hum. Nutr. 2022, 77, 552–559. [Google Scholar] [CrossRef]
  13. Kahraman, E.; Dağlioğlu, O.; Yilmaz, I. Physicochemical and sensory characteristics of traditional Kırklareli meatballs with added cowpea (Vigna unguiculata) flour. Food Prod. Process. Nutr. 2023, 5, 5. [Google Scholar] [CrossRef]
  14. Carvalho, M.; Lino-Neto, T.; Rosa, E.; Carnide, V. Cowpea: A legume crop for a challenging environment. J. Sci. Food Agric. 2017, 97, 4273–4284. [Google Scholar] [CrossRef] [PubMed]
  15. Dakora, F.D.; Belane, A.K. Evaluation of Protein and Micronutrient Levels in Edible Cowpea (Vigna Unguiculata L. Walp.) Leaves and Seeds. Front. Sustain. Food Syst. 2019, 3, 70. [Google Scholar] [CrossRef]
  16. Hill, S.L. Cowpea Adaptability to Southeastern Organic Farming Systems: Forage Productivity and Charcoal Rot Susceptibility. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, December 2015. [Google Scholar]
  17. Beye, A.; Diakhate, P.B.; Diouf, O.; Faye, A.; Obour, A.K.; Stewart, Z.P.; Assefa, Y.; Min, D.; Prasad, P.V.V. Socio-Economic Constraints of Adopting New Cowpea Varieties in Three Agro-Ecological Zones in the Senegalese Peanut Basin. Sustainability 2022, 14, 14550. [Google Scholar] [CrossRef]
  18. Ayalew, T.; Yoseph, T.; Petra, H.; Cadisch, G. Yield response of field-grown cowpea varieties to Bradyrhizobium inoculation. Agron. J. 2021, 113, 3258–3268. [Google Scholar] [CrossRef]
  19. Ayalew, T.; Yoseph, T. Cowpea (Vigna unguiculata L. Walp.): A choice crop for sustainability during the climate change periods. J. Appl. Biol. Biotechnol 2022, 10, 154–162. [Google Scholar] [CrossRef]
  20. Lioi, L.; Morgese, A.; Cifarelli, S.; Sonnante, G. Germplasm collection, genetic diversity and on-farm conservation of cowpea [Vigna unguiculata (L.) Walp.] landraces from Apulia region (southern Italy). Genet. Resour. Crop. Evol. 2018, 66, 165–175. [Google Scholar] [CrossRef]
  21. Michel, D.C.; Guimarães, A.A.; da Costa, E.M.; de Carvalho, T.S.; Balsanelli, E.; Willems, A.; de Souza, A.M.; de Souza Moreira, F.M. Bradyrhizobium uaiense sp. nov., a new highly efficient cowpea symbiont. Arch. Microbiol. 2020, 202, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
  22. Clark, A. Managing Cover Crops Profitably, 3rd ed.; Sustainable Agriculture Research and Education (SARE) Program: College Park, ML, USA, 2008; pp. 125–129. [Google Scholar]
  23. Pratap, A.; Basu, P.S.; Gupta, S.; Malviya, N.; Rajan, N.; Tomar, R.; Madhavan, L.; Nadarajan, N.; Singh, N.P. Identification and characterization of sources for photo- and thermo-insensitivity in Vigna species. Plant Breed. 2014, 133, 756–764. [Google Scholar] [CrossRef]
  24. Takahashi, Y.; Somta, P.; Muto, C.; Iseki, K.; Naito, K.; Pandiyan, M.; Natesan, S.; Tomooka, N. Novel Genetic Resources in the Genus Vigna Unveiled from Gene Bank Accessions. PLoS ONE 2016, 11, e0147568. [Google Scholar] [CrossRef]
  25. Baudoin, J.P.; Maréchal, R. Taxonomy and Evolution of the Genus Vigna. In Proceedings of the 2nd International Symposium, Bangkok, Thailand, 16–20 November 1988; Asian Vegetable Research and Development Center, Mungbean: Taiwan, China. [Google Scholar]
  26. Pasquet, R.S.; Padulosi, S. Genus Vigna and cowpea (V. unguiculata [L.] Walp.) taxonomy: Current status and prospects. In Innovative Research Along the Cowpea Value Chain; Boukar, O., Coulibaly, O., Fatokun, C.A., Lopez, K., Tamo, M., Eds.; IITA: Ibadan, Nigeria, 2012; pp. 66–87. [Google Scholar]
  27. Vaillancourt, R.E.; Weeden, N.F.; Barnard, J. Isozyme diversity in the cowpea species complex. Crop Sci. 1993, 3, 606–613. [Google Scholar] [CrossRef]
  28. Vijaykumar, A.; Saini, A.; Jawali, N. Phylogenetic analysis of subgenus Vigna species using ribosomal RNA ITS: Evidence of hybridization among V. unguiculata subspecies. J. Hered. 2010, 101, 177–188. [Google Scholar] [CrossRef] [Green Version]
  29. Verdcourt, B. Studies in the Leguminosae-Papilionoïdeae for the “Flora of Tropical East Africa”: V. Kew Bull. 1971, 25, 65–169. [Google Scholar] [CrossRef]
  30. Thulin, M.; Lavin, M.; Pasquet, R.; Delgado-Salinas, A. Phylogeny and biogeography of Wajira (Leguminosae): A monophyletic segregate of Vigna centered in the Horn of Africa region. Syst. Bot. 2004, 29, 903–920. [Google Scholar] [CrossRef]
  31. Delgado-Salinas, A.; Thulin, M.; Pasquet, R.; Weeden, N.; Lavin, M. Vigna (Leguminosae) sensu Lato: The names and identities of the American segregate genera. Am. J. Bot. 2011, 98, 1694–1715. [Google Scholar] [CrossRef] [PubMed]
  32. Maréchal, R.; Mascherpa, J.; Stainier, F. Etude Taxonomique d’un Groupe D’especes des Genres Phaseolus et Vigna (Papilonaceae) Sur la Base des Donnees Morphologiques et Polliques, Traitees pour L’analyse Informatique; Conservatoire et Jardin Botaniques: Genève, Italy, 1978; pp. 1–273. [Google Scholar]
  33. International Legume Database & Information Service. Available online: https://ildis.org/LegumeWeb (accessed on 3 January 2023).
  34. Ng, N.Q.; Maréchal, R. Cowpea taxonomy, origin and germplasm. In Cowpea Research, Production, and Utilization; Singh, S., Rachie, K., Eds.; Wiley: Chichester, UK, 1985; pp. 11–21. [Google Scholar]
  35. Pasquet, R.S. Morphological study of cultivated cowpea Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv gr Melanophthalmus. Agronomie 1998, 18, 61–70. Available online: https://hal.archives-ouvertes.fr/hal-00885870 (accessed on 28 December 2022). [CrossRef] [Green Version]
  36. Xu, P.; Wang, B.; Luo, J.; Liu, Y.; Ehlers, J.D.; Close, T.J.; Roberts, P.A.; Lu, Z.; Wang, S.; Li, G. Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: Implications for domestication history and genome wide association studies. Heredity 2012, 109, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Zuluaga, D.L.; Lioi, L.; Delvento, C.; Pavan, S.; Sonnante, G. Genotyping-by-Sequencing in Vigna unguiculata Landraces and Its Utility for Assessing Taxonomic Relationships. Plants 2021, 10, 509. [Google Scholar] [CrossRef] [PubMed]
  38. Pasquet, R.S. Classification infraspécifique des formes spontanées de Vigna unguiculata (L.) Walp. à partir de données morphologiques. Bull. Jard. Bot. Nat. Belg. 1993, 62, 127–173. [Google Scholar] [CrossRef]
  39. Maxted, N.; Mabuza-Diamini, P.; Moss, H.; Padulosi, S.; Jarvis, A.; Guarino, L. An ecogeographic study African Vigna. Systematic and Ecogeographic Studies on Crop Genepools; Bioversity Books; CGIAR: Montpellier, France, 2004; p. 454. [Google Scholar]
  40. D’Andrea, A.C.; Kahlheber, S.; Logan, A.L.; Watson, D.J. Early domesticated cowpea (Vigna unguiculata) from Central Ghana. Antiquity 2007, 81, 686–698. [Google Scholar] [CrossRef]
  41. Padulosi, S.; Ng, N.Q. Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In Advances in Cowpea Research; Singh, B.B., MohanRaj, D.R., Dashiell, K.E., Jackai, L.E.N., Eds.; IITA: Ibadan, Nigeria, 1997; pp. 1–12. [Google Scholar]
  42. Coulibaly, S.; Pasquet, R.S.; Papa, R.; Gepts, P. AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata (L.) Walp. Reveals extensive gene flow between wild and domesticated types. Theor. Appl. Genet. 2002, 104, 358–366. [Google Scholar] [CrossRef] [PubMed]
  43. Vaillancourt, R.E.; Weeden, N.F. Chloroplast DNA polymorphism suggest Nigerian center of domestication for the cowpea. Vigna unguiculata (Leguminosae). Am. J. Bot. 1992, 79, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
  44. Smýkal, P.; Coyne, C.J.; Ambroce, M.J.; Maxted, N.; Schaefer, H.; Blair, M.W.; Berger, J.; Greene, S.L.; Nelson, M.N.; Besharat, N.; et al. Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Crit. Rev. Plant Sci. 2015, 34, 43–104. [Google Scholar] [CrossRef] [Green Version]
  45. Panzeri, D.; Guidi Nissim, W.; Labra, M.; Grassi, F. Revisiting the Domestication Process of African Vigna Species (Fabaceae): Background, Perspectives and Challenges. Plants 2022, 11, 532. [Google Scholar] [CrossRef]
  46. Huynh, B.-L.; Close, T.J.; Roberts, P.A.; Hu, Z.; Wanamaker, S.; Lucas, M.R.; Chiulele, R.; Cissé, N.; David, A.; Hearne, S.; et al. Gene Pools and the Genetic Architecture of Domesticated Cowpea. Plant Genome 2013, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
  47. Herniter, I.A.; Muñoz-Amatriaín, M.; Close, T.J. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legum. Sci. 2020, 2, e57. [Google Scholar] [CrossRef]
  48. Fuller, D.Q. African crops in prehistoric south Asia: A critical review. In Food, Fuel and Fields: Progress in African archaeobotany; Neumann, K., Butler, A., Kahlheber, S., Eds.; Heinrich-Barth-Institut: Koln, Germany, 2003; pp. 239–272. [Google Scholar]
  49. Timko, M.P.; Singh, B.B. Cowpea a multifunctional legume. In Genomics of Tropical Crop Plants; Plant Genetics and Genomics; Moore, P.H., Ming, R., Eds.; Springer: New York, NY, USA, 2008; pp. 227–258. [Google Scholar]
  50. Lawn, R.J. The Asiatic Vigna species. In Evolution of Crop Plants, 2nd ed.; Smartt, J., Simmonds, N.W., Eds.; Longman Scientific and Technical: Essex, UK, 1995; pp. 321–326. [Google Scholar]
  51. Ng, N.Q. Cowpea Vigna unguiculata (Leguminosea—Papilionoidaea). In Evolution of Crop Plants; Smartt, J., Simmonds, N., Eds.; Longman: London, UK, 1995; pp. 326–332. [Google Scholar]
  52. Tosti, N.; Negri, V. On-going on-farm microevolutionary processes in neighbouring cowpea landraces revealed by molecular markers. Appl Genet. 2005, 110, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
  53. Osipitan, O.A.; Fields, J.S.; Lo, S.; Cuvaca, I. Production Systems and Prospects of Cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy 2021, 11, 2312. [Google Scholar] [CrossRef]
  54. Tosti, N.; Negri, V. Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata subsp. unguiculata) landraces. Genome 2002, 45, 268–275. [Google Scholar] [CrossRef] [PubMed]
  55. Mikić, A.; Milošević, M.; Mihailović, V.; Nualsri, C.; Milošević, D.; Vasić, M.; Delić, D. Cowpea and other Vigna species in Serbia. IITA R4D Rev. 2010, 5, 17–19. [Google Scholar] [CrossRef]
  56. Lazaridi, E.; Ntatsi, G.; Savvas, D.; Bebeli, P.J. Diversity in cowpea (Vigna unguiculata (L.) Walp.) local populations from Greece. Genet. Resour. Crop. Evol. 2016, 64, 1529–1551. [Google Scholar] [CrossRef]
  57. Carvalho, M.; Muñoz-Amatriaín, M.; Castro, I.; Lino-Neto, T.; Matos, M.; Egea-Cortines, M.; Rosa, E.; Close, T.; Carnide, V. Genetic diversity and structure of Iberian Peninsula cowpeas compared to worldwide cowpea accessions using high density SNP markers. BMC Genom. 2017, 18, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  58. FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 5 January 2023).
  59. Zafeiriou, I.; Sakellariou, M.; Mylona, P.V. Seed Phenotyping and Genetic Diversity Assessment of Cowpea (V. unguiculata) Germplasm Collection. Agronomy 2023, 13, 274. [Google Scholar] [CrossRef]
  60. Gotor, A.; Marraccini, E. Innovative Pulses for Western European Temperate Regions: A Review. Agronomy 2022, 12, 170. [Google Scholar] [CrossRef]
  61. Karapanos, I.; Papandreou, A.; Skouloudi, M.; Makrogianni, D.; Fernández, J.A.; Rosa, E.; Ntatsi, G.; Bebeli, P.J.; Savvas, D. Cowpea fresh pods—a new legume for the market: Assessment of their quality and dietary characteristics of 37 cowpea accessions grown in southern Europe. J. Sci. Food. Agric. 2017, 97, 4343–4352. [Google Scholar] [CrossRef]
  62. Simion, T. Breeding Cowpea Vigna unguiculata L. Walp for Quality Traits. ARR 2018, 3, 45–51. [Google Scholar] [CrossRef]
  63. Egbadzor, K.F.; Yeboah, M.; Offei, S.K.; Ofori, K.; Danquah, E.Y. Farmers’ key production constraints and traits desired in cowpea in Ghana. J. Agric. Ext. Rural Dev. 2013, 5, 14–20. [Google Scholar] [CrossRef]
  64. Ishikawa, H.; Drabo, I.; Joseph, B.B.; Muranaka, S.; Fatokun, C.; Boukar, O. Characteristics of farmers’ selection criteria for cowpea (Vigna unguiculata) varieties differ between north and south regions of Burkina Faso. Exp. Agric. 2020, 56, 94–103. [Google Scholar] [CrossRef] [Green Version]
  65. Mohammed, S.B.; Dzidzienyo, D.K.; Umar, M.L.; Ishiyaku, M.F.; Tongoona, P.B.; Gracen, V. Appraisal of cowpea cropping systems and farmers’ perceptions of production constraints and preferences in the dry savannah areas of Nigeria. CABI Agric. Biosci. 2021, 2, 25. [Google Scholar] [CrossRef]
  66. Millawithanachchi, M.C.; Sumanasinghe, V.A.; Bentota, A.P.; Abeysiriwardena, S.Z. Performance of Different Breeding Methods in Cowpea (Vigna unguiculata (L). Walp) Improvement Programmes. Trop. Agric. Res. 2015, 26, 294–302. [Google Scholar] [CrossRef] [Green Version]
  67. Pidigam, S.; Thuraga, V.; Pandravada, S.R.; Natarajan, S.; Adimulam, S.; Amarapalli, G.; Nimmarajula, S.; Venkateswaran, K. Genetic Improvement of Yardlong Bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc.). In Advances in Plant Breeding Strategies: Vegetable; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2021; Chapter 10; pp. 379–420. [Google Scholar]
  68. Asiwe, J.N.A. Advanced Breeding Approaches for Developing Cowpea Varieties in Dryland Areas of Limpopo Province, South Africa. In Legumes Research. Volume 1; Jimenez-Lopez, J.C., Clemente, A., Eds.; Intech Open: London, UK, 2022. [Google Scholar] [CrossRef]
  69. Pasquet, R.S. Wild Cowpea (Vigna unguiculata) evolution. In Advances in Legume Systematics 8: Legumes of Economic Importance; Pickersgill, B., Lock, J.M., Eds.; Royal Botanic Gardens, Kew: London, UK, 1996; pp. 95–100. [Google Scholar]
  70. Li, C.-D.; Fatokun, C.A.; Ubi, B.; Singh, B.B.; Scoles, G.J. Determining Genetic Similarities and Relationships among Cowpea Breeding Lines and Cultivars by Microsatellite Markers. Crop Sci. 2001, 41, 189–197. [Google Scholar] [CrossRef]
  71. Batieno, B.J.; Danquah, E.; Tignegre, J.-B.; Huynh, B.-L.; Drabo, I.; Close, T.J.; Ofori, K.; Roberts, P.; Quedraogo, T.J. Application of marker-assisted backcrossing to improve cowpea (Vigna unguiculata L. Walp) for drought tolerance. J. Plant Breed. Crop. Sci. 2016, 8, 273–286. [Google Scholar] [CrossRef] [Green Version]
  72. Isma’ila, M.; Yuguda, U.A. Development of Some Cowpea [Vigna unguiculata (L.) Walp.] Accessions for Tolerance to Drought Stress. GJPBCS 2016, 4, 49–56. [Google Scholar] [CrossRef]
  73. Omoigui, L.O.; Kamara, A.Y.; Moukoumbi, Y.D.; Ogunkanmi, L.A.; Timko, M.P. Breeding cowpea for resistance to Striga gesnerioides in the Nigerian dry savannas using marker-assisted selection. Plant Breed. 2017, 136, 393–399. [Google Scholar] [CrossRef]
  74. Araméndiz-Tatis, H.; Cardona-Ayala, C.; Espitia-Camacho, M. Heritability, genetic gain, and correlations in cowpea beans (Vigna unguiculata [L.] (Walp.). Rev. Colomb. Cienc. Hortic. 2021, 15, e12321. [Google Scholar] [CrossRef]
  75. Belay, F.; Fiseha, K. Genetic Variability, Heritability, Genetic advance and Divergence in Ethiopian Cowpea [Vigna unguiculata (L) Walp] Landraces. IJAFST 2020, 7, 138–146. [Google Scholar] [CrossRef]
  76. Devi, S.M.; Jayamani, P. Genetic variability, heritability, genetic advance studies in cowpea germplasm [Vigna unguiculata (L.) Walp.]. Electron. J. Plant Breed. 2018, 9, 476–481. [Google Scholar] [CrossRef]
  77. Diriba, S.; Andargie, M.; Zelleke, H. Genetic variability and heritability of yield and related characters in cowpea (Vigna unguiculata L. Walp.). Res Plant Biol. 2014, 4, 21–26. [Google Scholar]
  78. dos Santos, S.P.; Damasceno-Silva, K.J.; de Aragão, F.L.; dos Santos Araújo, M.; de Moura Rocha, M. Genetic control of traits related to maturity in cowpea. Crop. Breed. Appl. Biotechnol. 2020, 20, e32722049. [Google Scholar] [CrossRef]
  79. Jonah, P.M.; Fakuta, N.M. Variation among agronomic traits and heritability estimates in some genotypes of cowpea (Vigna unguiculata) in Mubi, Northern Guinea Savannah, Nigeria. Fuw J. Agric. Life Sci. 2021, 4, 12–23. [Google Scholar]
  80. Inuwa, A.H.; Ajeigbe, H.A.; Muhammed, S.G.; Mustapha, Y. Genetic variability and heritability of some selected of cowpea (Vigna unguiculata (L) Walp) lines. In Proceedings of the 46 Annual Conference of the Agricultural Society of Nigeria, Kano, Nigeria, 5–9 November 2012. [Google Scholar]
  81. Ishiyaku, M.F.; Singh, B.B.; Craufurd, P.Q. Inheritance of time to flowering in cowpea (Vigna unguiculata (L.) Walp.). Euphytica 2005, 142, 291–300. [Google Scholar] [CrossRef]
  82. Manggoel, W.; Uguru, M.I.; Ndam, O.N.; Dasbak, M.A. Genetic variability, correlation and path coefficient analysis of some yield components of ten cowpea [Vigna unguiculata (L.) Walp] accessions. J. Plant Breed. Crop Sci. 2012, 4, 80–86. [Google Scholar] [CrossRef]
  83. Mofokeng, M.A.; Mashilo, J.; Rantso, P.; Shimelis, H. Genetic variation and genetic advance in cowpea based on yield and yield-related traits. Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 381–391. [Google Scholar] [CrossRef]
  84. Omoigui, L.O.; Ishiyaku, M.F.; Kamara, A.Y.; Alabi, S.O.; Mohammed, S.G. Genetic variability and heritability studies of some reproductive traits in cowpea (Vigna unguiculate (L.) Walp.). Afr. J. Biotechnol. 2006, 5, 1191–1195. [Google Scholar]
  85. Owusu, E.Y.; Amegbor, I.K.; Darkwa, K.; Oteng-Frimpong, R.; Sie, E.K. Gene action and combining ability studies for grain yield and its related traits in cowpea (Vigna unguiculata). Cogent Food. Agric. 2018, 4, 1519973. [Google Scholar] [CrossRef]
  86. Owusu, E.Y.; Karikari, B.; Kusi, F.; Haruna, M.; Amoah, R.A.; Attamah, P.; Adazebra, G.; Sie, E.K.; Issahaku, M. Genetic variability, heritability and correlation analysis among maturity and yield traits in Cowpea (Vigna unguiculata (L) Walp) in Northern Ghana. Heliyon 2021, 7, e07890. [Google Scholar] [CrossRef]
  87. Owusu, E.Y.; Kusi, F.; Kena, A.W.; Akromah, R.; Attamah, P.; Awuku, F.J.; Mensah, G.; Lamini, S. Genetic control of earliness in cowpea (Vigna unguiculata (L) Walp). Heliyon 2022, 8, e09852. [Google Scholar] [CrossRef]
  88. Pathak, A.R.; Naik, M.R.; Joshi, H.K. Heterosis, inbreeding depression and heritability for yield and yield components in cowpea. Electron. J. Plant Breed. 2017, 8, 72–77. [Google Scholar] [CrossRef]
  89. Shimelis, H.; Shiringani, R. Variance components and heritabilities of yield and agronomic traits among cowpea genotypes. Euphytica 2010, 176, 383–389. [Google Scholar] [CrossRef]
  90. Singh, B.B.; Ehlers, J.D.; Sharma, B.; Freire-Filho, F.R. Recent progress in cowpea breeding. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production.; Fatokun, C.A., Tarawali, S.A., Singh, B.B., Kormawa, P.M., Tamo, M., Eds.; IITA: Ibadan, Nigeria, 2002; pp. 22–40. [Google Scholar]
  91. Vavilapalli, S.; Celine, V.A.; Duggi, S.; Padakipatil, S.; Magadum, S. Genetic Variability and Heritability Studies in Bush Cowpea (Vigna unguiculata (L.) Walp.). Legume Genom. Genet. 2013, 4, 27–31. [Google Scholar]
  92. Ayo-Vaughan, M.A.; Ariyo, O.J.; Alake, C.O. Combining ability and genetic components for pod and seed traits in cowpea lines. Ital. J. Agron. 2013, 8, e10. [Google Scholar] [CrossRef] [Green Version]
  93. Drabo, I.; Landeinde, T.A.O.; Redden, R.; Smithson, J.B. Inheritance of seed size and number per pod in cowpeas (Vigna unguiculata L. Walp.). Field Crops Res. 1985, 11, 335–344. [Google Scholar] [CrossRef]
  94. Rambabu, E.; Reddy, K.R.; Kamala, V.; Saidaiah, P.; Pandravada, S.R. Genetic variability and heritability for quality, yield and yield components in Yardlong bean (Vigna unguiculata (L.) Walp. ssp. Sesquipedalis L. Verdc.). Green Farming Int. J. 2016, 7, 311–315. [Google Scholar]
  95. Bhagavati, P.P.; Kiran Patro, T.S.K.K.; Lakshmi Narayana Reddy, M.; Emmanuel, N.; Salomi Suneetha, D.R.; Prasad, N.V. Studies on genetic variability, heritability and genetic advance in yardlong bean (Vigna ungiculata (L.) walp. ssp. sesquipedalis L. verdc). Int. J. Chem. Stud. 2018, 6, 1135–1138. [Google Scholar]
  96. Haque, M.S.; Azad, A.; Saha, N.R.; Islam, M.M. Genetic variability and correlation studies among yield and yield contributing characters of yardlong bean (Vigna unguiculata ssp. sesquipedalis L. Verdc.). Bangladesh J. Bot. 2021, 50, 93–101. [Google Scholar] [CrossRef]
  97. Kongjaimun, A.; Kaga, A.; Tomooka, N.; Somta, P.; Vaugham, D.A.; Srinives, P. The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann. Bot. 2012, 109, 1185–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  98. Lovely, B.; Radahavedi, D.S. Estimates of genetic variability, heritability and genetic advance for yield and yield component traits in vegetable cowpea (Vigna unguiculata ssp. sesquipedalis (L.) Verdc.) Genotypes. J. Pharmacogn. Phytochem. 2017, 6, 1165–1169. [Google Scholar]
  99. Sharma, M.; Sharma, P.P.; Meghawal, D.R. Genetic variability in cowpea (Vigna unguiculata (L.) Walp.) Germplasm lines. RJPP. 2017, 6, 1384–1387. [Google Scholar]
  100. Sultana, Z.; Ahmed Nm Islam, M.S.; Rahim, M.A. Genetic variability and yield components of yard long bean (Vigna unguiculata var. sesquipedalis L.). Agron. Glas. 2020, 3, 107–122. [Google Scholar] [CrossRef]
  101. Vinay, K.; Rao, P.J.M.; Kishore, S.; Hari, Y. Genetic variability studies for seed yield and yield component traits in cowpea (Vigna unguiculata (L.) Walp.). Electron. J. Plant Breed. 2022, 13, 544–548. [Google Scholar] [CrossRef]
  102. Amusa, O.D.; Ogunkanmi, A.L.; Adetumbi, J.A.; Akinyosoye, S.T.; Ogundipe, O.T. Morpho-genetic variability in F2 progeny cowpea genotypes tolerant to bruchid (Callosobruchus maculatus). J. Agric. Sci. 2019, 64, 53–68. [Google Scholar] [CrossRef] [Green Version]
  103. Kusmiyati, F.; Anwar, S.; Herwibawa, B. Agronomic character evaluation of F3 Yardlong Bean progenies. AIP Conf. Proc. 2021, 2353, 030019. [Google Scholar]
  104. Ramkumar, K.; Anuja, S. Genetic variability, Heritability and Genetic advance studies in Yardlong bean (Vigna unguiculata spp. sesquipedalis) genotypes. Ann. Plant Soil Res. 2021, 23, 215–217. [Google Scholar] [CrossRef]
  105. Umaharan, P.; Ariyanayagam, R.P.; Haque, S.Q. Genetic analysis of yield and its components in vegetable cowpea (Vigna unguiculata L. Walp). Euphytica. 1997, 96, 207–213. [Google Scholar] [CrossRef]
  106. Ribaut, J.-M.; de Vicente, M.C.; Delannay, X. Molecular breeding in developing countries: Challenges and perspectives. Curr. Opin. Plant Biol. 2010, 13, 213–218. [Google Scholar] [CrossRef]
  107. Leng, P.-f.; Lübberstedt, T.; Ming-liang, X.U. Genomics-assisted breeding–A revolutionary strategy for crop improvement. J. Integr. Agric. 2017, 16, 2674–2685. [Google Scholar] [CrossRef]
  108. Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.-C.; et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef] [Green Version]
  109. Liang, Q.; Muñoz-Amatriaín, M.; Shu, S.; Lo, S.; Wu, X.; Carlson, J.W.; Davidson, P.; Goodstein, D.M.; Phillips, J.; Janis, N.M.; et al. A view of the pan-genome of domesticated cowpea (Vigna unguiculata [L.] Walp.). bioRxiv 2022. preprint. [Google Scholar] [CrossRef]
  110. Olatoye, M.O.; Hu, Z.; Aikpokpodion, P.O. Epistasis Detection and Modeling for Genomic Selection in Cowpea (Vigna unguiculata L. Walp.). Front. Genet. 2019, 10, 677. [Google Scholar] [CrossRef] [Green Version]
  111. Muñoz-Amatriaín, M.; Lo, S.; Herniter, I.A.; Boukar, O.; Fatokun, C.; Carvalho, M.; Castro, I.; Guo, Y.-N.; Huynh, B.-L.; Roberts, P.A.; et al. The UCR Minicore: A resource for cowpea research and breeding. Legum. Sci. 2021, 3, e95. [Google Scholar] [CrossRef]
  112. Kumar, P.; Singh, J.; Kaur, G.; Adunola, P.M.; Biswas, A.; Bazzer, S.; Kaur, H.; Kaur, I.; Kaur, H.; Sandhu, K.S.; et al. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr. Issues Mol. Biol. 2022, 44, 5440–5473. [Google Scholar] [CrossRef]
  113. Seo, E.; Kim, K.; Kang, R.; Kim, G.; Park, A.; Kim, W.J.; Sum, H.; Ha, B.-K. Genome-Wide Association Study for Flowering Time in Korean Cowpea Germplasm. Plant Breed. Biotech. 2020, 8, 413–425. [Google Scholar] [CrossRef]
  114. Paudel, D.; Dareus, R.; Rosenwald, J.; Muñoz-Amatriaín, M.; Rios, E.F. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time in Cowpea (Vigna unguiculata [L.] Walp.). Front. Genet. 2021, 12, 667038. [Google Scholar] [CrossRef] [PubMed]
  115. Lo, S.; Parker, T.; Muñoz-Amatriaín, M.; y Teran, J.C.B.-M.; Jernstedt, J.; Close, T.J.; Gepts, P. Genetic, anatomical, and environmental patterns related to pod shattering resistance in domesticated cowpea (Vigna unguiculata (L.) Walp). J. Exp. Bot. 2021, 72, 6219–6229. [Google Scholar] [CrossRef] [PubMed]
  116. Boukar, O.; Abberton, M.; Oyatomi, O.; Togola, A.; Tripathi, L.; Fatokun, C. Introgression Breeding in Cowpea (Vigna unguiculata (L.) Walp.). Front. Plant Sci. 2020, 11, 567425. [Google Scholar] [CrossRef]
  117. Messina, F.J.; Lish, A.M.; Gompert, Z. Disparate genetic variants associated with distinct components of cowpea resistance to the seed beetle Callosobruchus maculatus. Theor. Appl. Genet. 2021, 134, 2749–2766. [Google Scholar] [CrossRef]
  118. Amorim, L.L.B.; Ferreira-Neto, J.R.C.; Bezerra-Neto, J.P.; Pandolfi, V.; Araújo, F.T.; da Silva Matos, M.K.; Santos, M.G.; Kido, E.A.; Benko-Iseppon, A.M. Cowpea and abiotic stresses: Identification of reference genes for transcriptional profiling by Qpcr. Plant Methods 2018, 14, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  119. Ravelombola, W.; Shi, A.; Qin, J.; Weng, Y.; Bhattarai, G.; Zia, B.; Beiquan, M. Investigation on Various Aboveground Traits to Identify Drought Tolerance in Cowpea Seedlings. Hort. Sci. 2018, 53, 1757–1765. [Google Scholar] [CrossRef] [Green Version]
  120. Jha, U.C.; Nayyar, H.; Jha, R.; Paul, P.J.; Siddique, K.H.M. Heat stress and cowpea: Genetics, breeding and modern tools for improving genetic gains. Plant. Physiol. Rep. 2020, 25, 645–653. [Google Scholar] [CrossRef]
  121. Wu, X.; Wang, B.; Wu, S.; Li, S.; Zhang, Y.; Wang, Y.; Li, Y.; Wang, J.; Wu, X.; Lu, Z.; et al. Development of a core set of single nucleotide polymorphism markers for genetic diversity analysis and cultivar fingerprinting in cowpea. Legum. Sci. 2021, 3, e93. [Google Scholar] [CrossRef]
  122. Ravelombola, W.; Shi, A.; Huynh, B.-L.; Qin, J.; Xiong, H.; Manley, A.; Dong, L.; Olaoye, D.; Bhattarai, G.; Zia, B.; et al. Genetic architecture of salt tolerance in a Multi-Parent Advanced Generation Inter-Cross (MAGIC) cowpea population. BMC Genom. 2022, 23, 100. [Google Scholar] [CrossRef] [PubMed]
  123. Muchero, W.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea (Vigna unguiculata (L.) Walp.). Theor Appl Genet. 2009, 118, 849–863. [Google Scholar] [CrossRef]
  124. Lucas, M.R.; Huynh, B.-L.; da Silva Vinholes, P.; Cisse, N.; Drabo, I.; Ehlers, J.G.; Roberts, P.A.; Close, T.J. Association studies and legume synteny reveal haplotypes determining seed size in Vigna unguiculata. Front. Plant Sci. 2013, 4, 95. [Google Scholar] [CrossRef] [Green Version]
  125. Muñoz-Amatriaín, M.; Mirebrachim, H.; Xu, P.; Wanamaker, S.I.; Luo, M.C.; Alhakami, H.; Alpert, M.; Atokple, I.; Batieno, B.J.; Boukar, O.; et al. Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J. 2016, 89, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
  126. Andargie, M.; Pasquet, R.S.; Gowda, B.S.; Muluvi, G.M.; Timko, M.P. Molecular mapping of QTLs for domestication-related traits in cowpea (V. unguiculata (L.) Walp.). Euphytica 2014, 200, 401–412. [Google Scholar] [CrossRef]
  127. Kongjaimun, A.; Somta, P.; Tomooka, N.; Kaga, A.; Vaughan, D.A.; Srinives, P. QTL mapping of pod tenderness and total soluble solid in yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. sesquipedalis). Euphytica 2012, 189, 217–223. [Google Scholar] [CrossRef]
  128. Angira, B.; Zhang, Y.; Scheuring, C.F.; Zhang, Y.; Masor, L.; Coleman, J.R.; Llu, Y.-H.; Singh, B.B.; Zhang, H.-B.; Hays, D.B.; et al. Quantitative trait loci influencing days to flowering and plant height in cowpea, Vigna unguiculata (L.) Walp. Mol. Genet. Genom. 2020, 295, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
  129. Lo, S.; Muñoz-Amatriaín, M.; Boukar, O.; Cisse, N.; Guo, Y.-N.; Roberts, P.A.; Xu, S.; Fatokun, C.; Close, T.J. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 2018, 8, 6261. [Google Scholar] [CrossRef] [Green Version]
  130. Garcia-Oliveira, A.L.; Zate, Z.Z.; Olasanmi, B.; Boukar, O.; Gedil, M.; Fatokun, C. Genetic dissection of yield associated traits in a cross between cowpea and yard-long bean (Vigna unguiculata (L.) Walp.) based on DArT markers. J. Genet. 2020, 99, 57. [Google Scholar] [CrossRef]
  131. Watcharatpong, P.; Kaga, A.; Chen, X.; Somta, P. Narrowing Down a Major QTL Region Conferring Pod Fiber Contents in Yardlong Bean (Vigna unguiculata), a Vegetable Cowpea. Genes 2020, 11, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Pan, L.; Wang, N.; Wu, Z.; Guo, R.; Yu, X.; Zheng, Y.; Xia, Q.; Gui, S.; Chen, C. A High Density Genetic Map Derived from RAD Sequencing and Its Application in QTL Analysis of Yield-Related Traits in Vigna unguiculata. Front. Plant Sci. 2017, 8, 1544. [Google Scholar] [CrossRef] [Green Version]
  133. Andargie, M.; Rasquet, R.S.; Gowda, B.S.; Muluvi, G.M.; Timko, M.P. Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol. Breed. 2011, 28, 413–420. [Google Scholar] [CrossRef]
  134. Pottorff, M.; Roberts, P.A.; Close, T.J.; Lonardi, S.; Wanamaker, S.; Ehlers, J.D. Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea (Vigna unguiculata (L.) Walp). BMC Genom. 2014, 15, 328. Available online: http://www.biomedcentral.com/1471-2164/15/328 (accessed on 30 August 2022). [CrossRef] [Green Version]
  135. Muchero, W.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea (Vigna unguiculata (L) Walp.). BMC Genom. 2011, 12, 8. Available online: http://www.biomedcentral.com/1471-2164/12/8 (accessed on 30 August 2022). [CrossRef] [Green Version]
  136. Huynh, B.-L.; Ehlers, J.D.; Ndeve, A.; Wanamaker, S.; Lucas, M.R.; Close, T.J.; Roberts, P.A. Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol. Breed. 2015, 35, 36. [Google Scholar] [CrossRef] [Green Version]
  137. Santos, J.R.P.; Ndeve, A.D.; Huynh, B.-L.; Matthews, W.C.; Roberts, P.A. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance. PLoS ONE 2018, 13, e0189185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Omo-Ikerodah, E.E.; Fawole, I.; Fatokun, C.A. Genetic mapping of quantitative trait loci (QTLs) with effects on resistance to flower bud thrips (Megalurothrips sjostedti) identified in recombinant inbred lines of cowpea (Vigna unguiculata (L.) Walp. Afr. J. Biotechnol. 2008, 7, 263–270. [Google Scholar]
  139. Gupta, V.P.; Nanda, G.S.; Roy, D. Selection for Simple and Complex Traits. In Plant Breeding—Mendelian to Molecular Approaches; Jain, H.K., Kharkwal, M.C., Eds.; Springer: Dordrecht, Germany, 2005; pp. 373–389. [Google Scholar]
  140. Muchero, W.; Roberts, P.A.; Diop, N.N.; Drabo, I.; Cisse, N.; Close, T.J.; Muranaka, S.; Boukar, O.; Ehlers, J.D. Genetic Architecture of Delayed Senescence, Biomass, and Grain Yield under Drought Stress in Cowpea. PloS ONE 2013, 8, e70041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  141. Andargie, M.; Knudsen, J.T.; Pasquet, R.S.; Gowda, B.S.; Muluvi, G.; Timko, M.P. Mapping of quantitative trait loci for floral scent compounds in cowpea (Vigna unguiculata L.). Plant Breed. 2014, 133, 92–100. [Google Scholar] [CrossRef]
  142. Horn, L.N.; Ghebrehiwot, H.M.; Shimelis, H.A. Selection of Novel Cowpea Genotypes Derived through Gamma Irradiation. Front. Plant Sci. 2016, 7, 262. [Google Scholar] [CrossRef] [Green Version]
  143. Tulmann Neto, A.; Ando, A.; Figueira, A.; Latado, R.R.; dos Santos, P.C.; Correa, L.S.; Peres, L.E.P.; Hauagge, R.; Pulcinelli, C.E.; Ishiy, T.; et al. Genetic improvement of crops by mutation techniques in Brazil. Plant Mutat. Rep. 2011, 2, 24–37. [Google Scholar]
  144. Singh, D.P.; Sharma, S.P.; Lal, M.; Ranwah, B.R. Induction of genetic variability for polygenic traits through physical and chemical mutagens in Cowpea (Vigna unguiculata (L.) Walp). Legum. Res. 2013, 36, 10–14. [Google Scholar]
  145. Ezzat, A.; Adly, M.; El-Fiki, A. Morphological, agronomical and molecular characterization in irradiated Cowpea (Vigna unguiculata (L.) Walp.) and detection by start codon target markers. J. Radiat. Res. Appl. Sci. 2019, 12, 403–412. [Google Scholar] [CrossRef] [Green Version]
  146. Nair, R.; Mehta, A.K. Induced mutagenesis in Cowpea (Vigna unguiculata (L.) Walp.) var. Arka Garima. Indian J. Agric. Res. 2014, 48, 247–257. [Google Scholar] [CrossRef]
  147. Olasupo, F.O.; Ilori, C.O.; Forster, B.P.; Bado, S. Mutagenic Effects of Gamma Radiation on Eight Accessions of Cowpea (Vigna unguiculata [L.] Walp.). Am. J. Plant Sci. 2016, 7, 339–351. [Google Scholar] [CrossRef] [Green Version]
  148. Raina, A.; Laskar, R.A.; Tantray, Y.R.; Khursheed, S.; Wani, M.R.; Khan, S. Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers. Sci. Rep. 2020, 10, 3687. [Google Scholar] [CrossRef] [Green Version]
  149. Odeigah, P.G.C.; Osanyinpeju, A.O.; Myears, G.O. Induced mutations in cowpea, Vigna unguiculata (Leguminosae). Rev. Biol. Trop. 1998, 46, 579–586. [Google Scholar] [CrossRef]
  150. Dhanavel, D.; Pavadai, P.; Mullainathan, L.; Mohana, D.; Raju, G.; Girija, M.; Thilagavathi, C. Effectiveness and efficiency of chemical mutagens in cowpea (Vigna unguiculata (L.) Walp). Afr. J. Biotechnol. 2008, 7, 4116–4117. [Google Scholar]
  151. Sathees, N.; Gowthami, K.; Pramila Devi, R.; Gowtham, T.; Mounika, K.; Nivesh, M.; Mohan, S. Effects of Induced Physical and Chemical Mutagen in Cowpea (Vigna unguiculata L. walp). Int. J. Curr. Microbiol. App. Sci. 2020, 9, 693–703. [Google Scholar] [CrossRef]
  152. Mshembula, M.; Mensah, J.K.; Ikhajiagbe, B. Comparative assessment of the mutagenic effects of sodium azide on some selected growth and yield parameters of five accessions of cowpea—Tvu-3615, Tvu-2521, Tvu-3541, Tvu-3485 and Tvu-3574. Arch. Appl. Sci. Res. 2012, 4, 1682–1691. [Google Scholar]
  153. Togola, A.; Boukar, O.; Belko, N.; Chamarthi, S.K.; Fatokun, C.; Tamo, M.; Oigiangbe, N. Host plant resistance to insect pests of cowpea (Vigna unguiculata L. Walp.): Achievements and future prospects. Euphytica 2017, 213, 239. [Google Scholar] [CrossRef]
  154. Boukar, O.; Fatokun, C.A.; Huynh, B.-L.; Roberts, P.A.; Close, T.J. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives. Front. Plant Sci. 2016, 7, 757. [Google Scholar] [CrossRef] [Green Version]
  155. Biesmeijer, J.T.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Sci. New Ser. 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
  156. Palmer, R.G.; Perez, P.T.; Ortiz-Perez, E.; Maalouf, F.; Suso, M.J. The role of crop-pollinator relationships in breeding for pollinator-friendly legumes: From a breeding perspective. Euphytica 2009, 170, 35–52. [Google Scholar] [CrossRef] [Green Version]
  157. Stein, K.; Coulibaly, D.; Stenchly, K.; Goetze, D.; Porembski, S.; Lindner, A.; Konaté, S.; Linsenmair, E.K. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Sci. Rep. 2017, 7, 17691. [Google Scholar] [CrossRef] [Green Version]
  158. Adamidis, G.C.; Cartar, R.V.; Melathopoulos, A.P.; Pernal, A.F.; Hoover, S.E. Pollinators enhance crop yield and shorten the growing season by modulating plant functional characteristics: A comparison of 23 canola varieties. Sci. Rep. 2019, 9, 14208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  159. Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
  160. Suso, M.J.; Harder, L.; Moreno, M.T.; Maalouf, F. New strategies for increasing heterozygosity in crops: Vicia faba mating system as a study case. Euphytica 2005, 143, 51–65. [Google Scholar] [CrossRef]
  161. Prasifka, J.R.; Mallinger, R.E.; Portlas, Z.M.; Hulke, B.S.; Fugate, K.K.; Paradis, T.; Hampton, M.E.; Carter, C.J. Using Nectar-Related Traits to Enhance Crop-Pollinator Interactions. Front. Plant Sci. 2018, 9, 812. [Google Scholar] [CrossRef]
  162. Fohouo, F.-N.T.; Ngakou, A.; Kengni, B.S. Pollination and yield responses of cowpea (Vigna unguiculata L. Walp.) to the foraging activity of Apis mellifera adansonii (Hymenoptera: Apidae) at Ngaoundéré (Cameroon). Afr. J. Biotechnol. 2009, 8, 1988–1996. [Google Scholar]
  163. Solís-Montero, L.; Cáceres-García, S.; Alavez-Rosas, D.; García-Crisóstomo, J.F.; Vega-Polanco, M.; Grajales-Conesa, J.; Cruz-López, L. Pollinator Preferences for Floral Volatiles Emitted by Dimorphic Anthers of a Buzz-Pollinated Herb. J. Chem. Ecol. 2018, 44, 1058–1067. [Google Scholar] [CrossRef]
  164. Burkle, L.A.; Runyon, J.B. Floral volatiles structure plant–pollinator interactions in a diverse community across the growing season. Funct. Ecol. 2019, 33, 2116–2129. [Google Scholar] [CrossRef]
  165. Suso, M.J.; Bebeli, P.J.; Christmann, S.; Mateus, C.; Negri, V.; Pinheiro de Carvalho, M.A.A.; Torricelli, R.; Veloso, M.M. Enhancing Legume Ecosystem Services through an Understanding of Plant–Pollinator Interplay. Front. Plant Sci. 2016, 7, 333. [Google Scholar] [CrossRef] [Green Version]
  166. Saxena, K.; Bohra, A.; Choudhary, A.K.; Sultana, R.; Sharma, M.; Pazhamala, L.T.R.; Saxena, R.K. The alternative breeding approaches for improving yield gains and stress response in pigeonpea (Cajanus cajan). Plant Breed. 2021, 140, 74–86. [Google Scholar] [CrossRef]
  167. Vaz, C.; de Oliveira, D.; Ohashi, O.S. Pollinator contribution to the production of cowpea in the Amazon. HortScience 1998, 33, 1157–1159. [Google Scholar] [CrossRef] [Green Version]
  168. Lazaridi, E.; Suso, M.J.; Ortiz-Sánchez, F.J.; Bebeli, P.J. Investigation of Cowpea (Vigna unguiculata (L.) Walp.)–Insect Pollinator Interactions Aiming to Increase Cowpea Yield and Define New Breeding Tools. Ecologies 2023, 4, 124–140. [Google Scholar] [CrossRef]
  169. Wang, X.; Wen, M.; Qian, X.; Pei, N.; Zhang, D. Plants are visited by more pollinator species than pollination syndromes predicted in an oceanic island community. Sci. Rep. 2020, 10, 13918. [Google Scholar] [CrossRef]
  170. Parra, S.A.; Thébault, E.; Fontaine, C.; Dakos, V. Interaction fidelity is less common than expected in plant–pollinator communities. J. Anim. Ecol. 2022, 91, 1842–1854. [Google Scholar] [CrossRef] [PubMed]
  171. Petanidou, T.; Kallimanis, A.S.; Tzanopoulos, J.; Sgardelis, S.P.; Pantis, J.D. Long-term observation of a pollination network: Fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 2008, 11, 564–575. [Google Scholar] [CrossRef] [PubMed]
  172. Boukar, O.; Belko, N.; Chamarthi, S.; Togola, A.; Batieno, J.; Owusu, E.; Haruna, M.; Diallo, S.; Umar, M.L.; Olufajo, O.; et al. Cowpea (Vigna unguiculata (L.)): Genetics, genomics and breeding. Plant Breed. 2019, 138, 415–424. [Google Scholar] [CrossRef] [Green Version]
  173. Ferreira, S.R.; de Moura Rocha, M.; Dmasceno-Silva, K.J.; Ferreira, A.T.S.; Perales, J.; Fernandes, K.V.S.; Oliveira, A.E.A. The resistance of the cowpea cv. BRS Xiquexique to infestation by cowpea weevil is related to the presence of toxic chitin-binding proteins. Pestic. Biochem. Physiol. 2021, 173, 104782. [Google Scholar] [CrossRef] [PubMed]
  174. Gerrano, A.S.; van Rensburg, W.A.J.; Venter, S.L.; Shargie, N.G.; Amelework, B.A.; Shimelis, H.A.; Labuschagne, M.T. Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agric. Scand. Section B Soil Plant Sci. 2019, 69, 155–166. [Google Scholar] [CrossRef]
  175. Allier, A.; Teyssèdre, A.; Lehermeier, C.; Moreau, L.; Charcosset, A. Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genom. 2020, 21, 349. [Google Scholar] [CrossRef] [PubMed]
  176. Genesys PGR. Available online: https://www.genesys-pgr.org/ (accessed on 18 January 2023).
  177. EURISCO. Available online: https://eurisco.ipk-gatersleben.de/apex/eurisco_ws/r/eurisco/cropsearchresult?p16_nival=20 (accessed on 18 January 2023).
  178. Draghici, R.; Draghici, I.; Diaconu, A.; Mihaela, C.; Dima, M. Significant progress achieved in Vigna unguiculata L. Walp. breeding. In Proceedings of the NORDSCI Conference on Social Sciences, Sofia, Bulgaria, 9–11 October 2018. [Google Scholar]
  179. Rubiales, D.; Annicchiarico, P.; Vaz Patto, M.C.; Julier, B. Legume Breeding for the Agroecological Transition of Global Agri-Food Systems: A European Perspective. Front. Plant Sci. 2021, 12, 782574. [Google Scholar] [CrossRef] [PubMed]
  180. Nunes, C.; Moreira, R.; Pais, I.; Semedo, J.; Simões, F.; Veloso, M.M.; Scotti-Campos, P. Cowpea Physiological Responses to Terminal Drought—Comparison between Four Landraces and a Commercial Variety. Plants 2022, 11, 593. [Google Scholar] [CrossRef]
  181. Common Catalogue of Varieties of Agricultural Plant Species. Available online: https://food.ec.europa.eu/plants/plant-reproductive-material/plant-variety-catalogues-databases-information-systems_en (accessed on 4 January 2023).
  182. Common Catalogue of Varieties of Vegetable Species. Available online: https://food.ec.europa.eu/plants/plant-reproductive-material/plant-variety-catalogues-databases-information-systems_en (accessed on 4 January 2023).
  183. Dominguez-Perlez, R.; Carnide, V.; Marques, G.; de Castro, I.; de Matos, M.; Carvalho, M.; Rosa, E. Relevance, constraints and perspectives of cowpea crops in the Mediterranean Basin. Legume Perspect. 2015, 10, 40–42. [Google Scholar]
  184. Piergiovanni, A.R.; Margiotta, B. On farm survival of Apulian legume and cereal landraces in relation to land cover/land use changes. A case study. Ital. J. Agron. 2021, 16, 67–75. [Google Scholar] [CrossRef]
  185. Corrado, G. Food history and gastronomic traditions of beans in Italy. J. Ethn. Foods. 2022, 9, 6. [Google Scholar] [CrossRef]
  186. Zannou, A.; Ahanchėdė, A.; Struik, P.C.; Richards, P.; Zoundjihékpon, J.; Tossou, R.; Vodouhè, S. Yam and cowpea diversity management by farmers in the Guinea-Sudan transition zone of Benin. NJAS Wagening. J. Life Sci. 2004, 52, 393–420. [Google Scholar] [CrossRef] [Green Version]
  187. Thomas, K.; Thanopoulos, R.; Knüpffer, H.; Bebeli, P.J. Plant genetic resources of Lemnos (Greece), an isolated island in the Northern Aegean Sea, with emphasis on landraces. Genet. Resour. Crop Evol. 2012, 59, 1417–1440. [Google Scholar] [CrossRef]
  188. Thomas, K.; Thanopoulos, R.; Knüpffer, H.; Bebeli, P.J. Plant genetic resources in a touristic island: The case of Lefkada (Ionian Islands, Greece). Genet. Resour. Crop Evol. 2013, 60, 2431–2455. [Google Scholar] [CrossRef]
  189. Douma, C.; Koutis, K.; Thanopoulos, R.; Tsigou, R.; Galanidis, A.; Bebeli, P.J. Diversity of agricultural plants on Lesvos Island (Northeast Aegean, Greece) with emphasis on fruit trees. Sci. Hort. 2016, 210, 65–84. [Google Scholar] [CrossRef]
  190. Thanopoulos, R.; Chatzigeorgiou, T.; Argyropoulou, K.; Kostouros, N.M.; Bebeli, P.J. State of Crop Landraces in Arcadia (Greece) and In-Situ Conservation Potential. Diversity 2021, 13, 558. [Google Scholar] [CrossRef]
  191. Raggi, L.; Pacicco, L.C.; Caproni, L.; Álvarez-Muñiz, C.; Annamaa, K.; Barata, A.M.; Batir-Rusu, D.; Díez, M.J.; Heinonen, M.; Holubec, V.; et al. Analysis of landrace cultivation in Europe: A means to support in situ conservation of crop diversity. Biol. Conserv. 2022, 267, 109460. [Google Scholar] [CrossRef]
  192. Bastos, E.A.; Nascimento, S.P.; da Silva, E.M.; Rodrigues, F.; Filho, F.; Gomide, R.L. Identification of cowpea genotypes for drought tolerance. Rev. Cienc. Agron. 2011, 42, 100–107. Available online: www.ccarevista.ufc.br (accessed on 22 August 2022). [CrossRef] [Green Version]
  193. Martos-Fuentes, M.; Fernández, J.A.; Ochoa, J.; Carvalho, M.; Carnide, V.; Rosa, E.A.; Pereira, G.; Barcelos, C.; Bebeli, P.J.; Egea-Gilabert, C. Genotype by environment interactions in cowpea (Vigna unguiculata L. Walp.) grown in the Iberian Peninsula. Crop Pasture Sci. 2017, 68, 924–931. [Google Scholar] [CrossRef]
  194. Hamidou, F.; Zombre, G.; Braconier, S. Physiological and Biochemical Responses of Cowpea Genotypes to Water Stress Under Glasshouse and Field Conditions. J. Agron. Crop Sci. 2007, 193, 229–237. [Google Scholar] [CrossRef]
  195. Jongdee, B.; Fukai, S.; Cooper, M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res. 2002, 76, 153–163. [Google Scholar] [CrossRef]
  196. Lestari, M.W.; Arfarita, N.; Sharma, A.; Purkait, B. Tolerance mechanisms of Indonesian plant varieties of yardlong beans (Vigna unguiculata sub sp. sesquipedalis) against drought stress. Indian J. Agric. Res. 2019, 53, 223–227. [Google Scholar]
  197. Jayawardhane, J.; Goyali, J.C.; Zafari, S.; Igamberdiev, A.U. The Response of Cowpea (Vigna unguiculata) Plants to Three Abiotic Stresses Applied with Increasing Intensity: Hypoxia, Salinity, and Water Deficit. Metabolites 2022, 12, 38. [Google Scholar] [CrossRef] [PubMed]
  198. Ehlers, J.D.; Fery, R.L.; Hall, A.E. Cowpea breeding in the USA: New varieties and improved germplasm. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production, Proceedings of the World Cowpea Conference III, IITA, Ibadan, Nigeria, 4–8 September 2000; Fatokun, C.A., Tarawali, S.A., Singh, B.B., Kormawa, P.M., Tamò, M., Eds.; IITA: Ibadan, Nigeria, 2002; pp. 62–77. [Google Scholar]
  199. Hall, A.E.; Cisse, N.; Thiaw, S.; Elawad, H.O.A.; Ehlers, J.D.; Ismail, A.M.; Fery, R.L.; Roberts, P.A.; Kitch, L.W.; Murdock, L.L.; et al. Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crop Sci. 2003, 82, 103–134. [Google Scholar] [CrossRef]
  200. Suma, A.S.; Latha, M.; John, J.K.; Aswathi, P.K.; Pandey, C.D.; Ajinkya, A. Yard-long Bean. In The Beans and the Peas, 1st ed.; Pratap, A., Gupta, S., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 153–172. [Google Scholar]
  201. Tóth, G.; Adhikari, K.; Várallyay, G.; Tóth, T.; Bódis, K.; Stolbovoy, V. Updated Map of Salt Affected Soils in the European Union. In Threats to Soil Quality in Europe; Tóth, G., Montanarella, L., Rusco, E., Eds.; European Communities: Luxembourg, Belgium, 2008; pp. 65–77. [Google Scholar]
  202. Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
  203. Goenaga, R.; Gillaspie, A.G., Jr.; Quiles, A. Field Screening of Cowpea Genotypes for Alkaline Soil Tolerance. Hort. Sci. 2010, 45, 1639–1642. [Google Scholar] [CrossRef] [Green Version]
  204. Kapazoglou, A.; Gerakari, M.; Lazaridi, E.; Kleftogianni, K.; Sarri, E.; Tani, E.; Bebeli, P.J. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants 2023, 12, 328. [Google Scholar] [CrossRef]
  205. Hedge, V.S.; Mishra, S.K. Landraces of cowpea, Vigna unguiculata (L.) Walp., as potential sources of genes for unique characters in breeding. Genet. Resour. Crop Evol. 2009, 56, 615–627. [Google Scholar] [CrossRef]
  206. Mwale, S.E.; Ochwo-Ssemakula, M.; Sadik, K.; Achola, E.; Okul, V.; Gibson, P.; Edema, R.; Singini, W.; Rubaihayo, P. Response of Cowpea Genotypes to Drought Stress in Uganda. Am. J. Plant Sci. 2017, 8, 720–733. [Google Scholar] [CrossRef] [Green Version]
  207. Nkomo, G.V.; Sedibe, M.M.; Mofokeng, M.A. Phenotyping cowpea accessions at the seedling stage for drought tolerance in controlled environments. Open Agric. 2022, 7, 433–444. [Google Scholar] [CrossRef]
  208. Ehlers, J.D.; Hall, A.E. Heat tolerance of contrasting cowpea lines in short and long days. Field Crop. Res. 1998, 55, 11–21. [Google Scholar] [CrossRef]
  209. Selinga, T.I.; Maseko, S.T.; Gabier, H.; Rafudeen, M.S.; Muasya, A.M.; Crespo, O.; Ogola, J.B.O.; Valentine, A.J.; Ottosen, C.-O.; Rosenqvist, E.; et al. Regulation and physiological function of proteins for heat tolerance in cowpea (Vigna unguiculata) genotypes under controlled and field conditions. Front. Plant Sci. 2022, 13, 954527. [Google Scholar] [CrossRef]
  210. Barros, J.R.A.; Guimarães, M.J.M.; Simões, W.L.; de Melo, N.F.; Angelotti, F. Temperature: A major climatic determinant of cowpea production. Acta Sci. 2023, 45, e56812. [Google Scholar] [CrossRef]
  211. Dantas, B.F.; Ribeiro, L.; Aragão, C.A. Physiological response of cowpea seeds to salinity stress. Rev. Bras. Sementes 2005, 27, 144–148. [Google Scholar] [CrossRef] [Green Version]
  212. Kouam, E.B.; Tsague, E.L.; Mandou, M.S. Effects of salinity stress (NaCl) on growth attributes and some nutrient accumulation in cowpea (Vigna unguiculata). Curr. Bot. 2017, 8, 164–170. [Google Scholar] [CrossRef] [Green Version]
  213. Islam Md., M.; Haque, M.S.; Sarwar, A.K.M.G. Salt tolerance of cowpea genotypes during seed germination and seedling growth. J. Bangladesh Agril. Univ. 2019, 17, 39–44. [Google Scholar] [CrossRef] [Green Version]
  214. Trustinah; Nugrahaeni, N. Cowpea genotypes responses to salinity stress. IOP Conf. Ser. Earth Environ. Sci. 2021, 743, 012036. [Google Scholar] [CrossRef]
  215. Nunes, L.R.; De Lima; Pinheiro, P.R.; Pinheiro, C.L.; Lima, K.A.P.; Dutra, A.S. Germination and vigour in seeds of the cowpea in response to salt and heat stress. Rev. Caatinga Mossoró 2019, 32, 143–151. [Google Scholar] [CrossRef]
  216. Barros, J.R.A.; Guimarães, M.J.M.; e Silva, R.M.; Rêgo, M.T.C.; de Melo, N.F.; de Melo Chaves, A.R.; Angelloti, F. Selection of cowpea cultivars for high temperature tolerance: Physiological, biochemical and yield aspects. Physiol. Mol. Biol. Plants 2021, 27, 29–38. [Google Scholar] [CrossRef]
  217. El-Kholy, A.S.; Hall, A.E.; Mohsen, A. Heat and Chilling Tolerance during Germination and Heat Tolerance during Flowering Are Not Associated in Cowpea. Crop Sci. 1997, 37, 456–463. [Google Scholar] [CrossRef]
  218. Iseki, K.; Ikazaki, K.; Baatieno, J.B. Cowpea yield variation in three dominant soil types in the Sudan Savanna of West Africa. Field Crop. Res. 2021, 261, 108012. [Google Scholar] [CrossRef]
  219. Karuwal, R.L.; Suharsono, S.; Tjahjoleksono, A.; Hanif, N. Identification of Drought-tolerant Local Cowpea Varieties of Southwest Maluku (Indonesia). Makara J. Sci. 2018, 22, 179–186. [Google Scholar] [CrossRef]
  220. Carvalho, M.; Matos, M.; Castro, I.; Monteiro, E.; Rosa, E.; Lino-Neto, T.; Carnide, V. Screening of worldwide cowpea collection to drought tolerant at a germination stage. Sci. Hortic. 2019, 247, 107–115. [Google Scholar] [CrossRef]
  221. Nkomo, G.V.; Sedibe, M.M.; Mofokeng, M.A. Phenotyping cowpea accessions at the seedling stage for drought tolerance using the pot method. bioRxiv 2020, 196915. [Google Scholar] [CrossRef]
  222. Gomes, A.M.F.; Rodrigues, A.P.; António, C.; Rodrigues, A.M.; Leitão, A.E.; Batista-Santos, P.; Nhantumbo, N.; Massinga, R.; Ribeiro-Barros, A.I.; Ramalho, J.C. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 2020, 175, 104060. [Google Scholar] [CrossRef]
  223. Martins, C.M.; Lawlor, D.W.; Quilambo, O.A.; Kunert, K.J. Evaluation of four Mozambican cowpea landraces for drought tolerance. S. Afr. J. Plant Soil 2014, 31, 87–91. [Google Scholar] [CrossRef] [Green Version]
  224. Andreopoulou, A. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Master’s Thesis, Agricultural University of Athens, Athens, Greece, May 2015. (In Greek). [Google Scholar]
  225. Santos, R.; Carvalho, M.; Rosa, E.; Carnide, V.; Castro, I. Root and Agro-Morphological Traits Performance in Cowpea under Drought Stress. Agronomy 2020, 10, 1604. [Google Scholar] [CrossRef]
  226. Zegaoui, Z.; Planchais, S.; Cabassa, C.; Djebbar, R.; Belbachir, O.A.; Carol, P. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. J. Plant Physiol. 2017, 218, 26–34. [Google Scholar] [CrossRef]
  227. Gull, M.; Sofi, P.A.; Ara, A. Physiological and biochemical response of cowpea (Vigna unguiculata L.) landraces of Kashmir valley under water stress. Electron. J. Plant Breed. 2019, 10, 1461–1470. [Google Scholar] [CrossRef]
  228. Ezin, V.; Tosse, A.G.C.; Chabi, I.B.; Ahanchede, A. Adaptation of Cowpea (Vigna unguiculata (L.) Walp.) to Water Deficit during Vegetative and Reproductive Phases Using Physiological and Agronomic Characters. Hindawi Int. J. Agron. 2021, 2021, 9665312. [Google Scholar] [CrossRef]
  229. Ajayi, A.T. Screening for drought tolerance in cowpea at the flowering stage. IJSL 2022, 4, 236–268. [Google Scholar] [CrossRef]
  230. Yahaya, D.; Denwar, N.; Blair, M.W. Effects of Moisture Deficit on the Yield of Cowpea Genotypes in the Guinea Savannah of Northern Ghana. Agric. Sci. 2019, 10, 577–595. [Google Scholar] [CrossRef] [Green Version]
  231. Burlyaeva, M.O.; Gurkina, M.V.; Chebukin, P.A.; Perchuk, I.N.; Miroshnichenko, E.V. New varieties of vegetable cowpea (Vigna unguiculata subsp. sesquipedalis (L.) Verdc.) and prospects of their cultivation in southern Russia. Veg. Crops Russ. 2019, 5, 33–37. (In Russian) [Google Scholar] [CrossRef] [Green Version]
  232. Murillo-Amador, B.; Troyo-Diéguez, E.; García-Hernández, J.L.; López-Aguilar, R.; Ávila-Serrano, N.Y.; Zamora-Salgado, S.; Rueda-Puente, E.O.; Kaya, C. Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci. Hort. 2006, 108, 423–431. [Google Scholar] [CrossRef]
  233. Nabi, F.; Chaker-Haddadj, A.; Tellah, S.; Ghalem, A.; Ounane, g.; Ghalmi, N.; Djebbar, R.; Ounane, S.M. Evaluation of Algerian Cowpea genotypes for salt tolerance at germination stage. Adv. Environ. Biol. 2017, 11, 79–88. [Google Scholar]
  234. Ravelombola, W.S.; Shi, A.; Weng, Y.; Motes, D.; Chen, P.; Srivastava, V. Evaluation of Salt Tolerance at Germination Stage in Cowpea [Vigna unguiculata (L.) Walp]. Hort. Sci. 2017, 52, 1168–1176. [Google Scholar] [CrossRef] [Green Version]
  235. Thiam, M.; Champion, A.; Diouf, D.; Sy, M.O. NaCl Effects on In Vitro Germination and Growth of Some Senegalese Cowpea (Vigna unguiculata (L.) Walp.) Cultivars. Hindawi ISRN Biotechnol. 2013, 382417. [Google Scholar] [CrossRef] [Green Version]
  236. Daşgan, H.Y.; Koç, S.; Ekici, B.; Aktaş, H.; Abak, K. Responses of Some Bean and Cow Pea Genotypes to Salt Stress. Alatarim 2006, 5, 23–31. (In Turkish) [Google Scholar]
  237. Murdock, L.; Coulibaly, O.; Higgins, T.J.V.; Huesing, J.E.; Ishiyaku, M.; Sithole-Niang, I.C. Cowpea. Part 3. Transgenic Legume Grains and Forages. In Compendium of Transgenic Crop Plants; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
  238. Jayasinghe, R.C.; Dammini Premachandra, W.T.S.; Neilson, R. A study on Maruca vitrata infestation of Yard-long beans (Vigna unguiculata subspecies sesquipedalis). Heliyon 2015, 1, e00014. [Google Scholar] [CrossRef] [Green Version]
  239. Nyarko, J.; Asare, A.T.; Mensah, B.A.; Adjei, F. Assessment of the response of fifteen cowpea [Vigna unguiculata L. (Walp.)] genotypes to infestation by Callosobruchus maculatus Fab. (Coloeptera: Bruchidae). Cogent Food Agric. 2022, 8, 2095713. [Google Scholar] [CrossRef]
  240. Tazerouni, Z.; Rezaei, M.; Talebi, A.A. Cowpea: Insect Pest Management. In Agricultural Research Updates; Gorawala, P., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2019; Volume 26, pp. 1–48. [Google Scholar]
  241. Sawadogo, A.; Thio, B.; Kiemde, S.; Drabo, I.; Dabire, C.; Quedraogo, J.; Mullens, T.R.; Ehleres, J.D.; Roberts, P.A. Distribution and Prevalence of Parasitic Nematodes of Cowpea (Vigna unguiculata) in Burkina Faso. J. Nematol. 2009, 41, 120–127. [Google Scholar]
  242. Mofokeng, M.A.; Gerrano, A.S. Efforts in breeding cowpea for aphid resistance: A review. Acta Agric. Scand. B Soil Plant Sci. 2021, 71, 489–497. [Google Scholar] [CrossRef]
  243. Kusi, F.; Nboyine, J.A.; Attamah, P.; Awuku, J.F.; Sugri, I.; Zakaria, M.; Lamini, S.; Mensah, G.; Larweh, V.; Owusu, R.K. Stability of Sources of Resistance to Cowpea Aphid (Aphis craccivora Koch, Hemiptera: Aphididae) across Major Cowpea Production Zones in Ghana. Hindawi Int. J. Agron. 2020, 2020, 8869334. [Google Scholar] [CrossRef]
  244. Benchasri, S.; Bairaman, C.; Nualsri, C. Investigation of Cowpea and Yardlong Bean for Resistance to Bean Aphids (Aphis craccivora Koch). In 2nd International Conference on Agricultural and Animal Science, International Proceedings of Chemical, Biological & Environmental Engineering, Singapore, 25–26 November 2011; Li, X., Ed.; IACSIT Press: Singapore, 2011. [Google Scholar]
  245. Souleymane, A.; Ova, M.E.A.; Fatokun, C.A.; Alabi, O.Y. Screening for resistance to cowpea aphid (Aphis craccivora Koch) in wild and cultivated cowpea (Vigna unguiculata L. Walp.) accessions. IJEST 2013, 2, 611–612. [Google Scholar]
  246. Omoigui, L.O.; Ekeuro, G.C.; Kamara, A.Y.; Bello, L.L.; Timko, M.P.; Ogunwolu, G.O. New sources of aphids [Aphis craccivora (Koch)] resistance in cowpea germplasm using phenotypic and molecular marker approaches. Euphytica 2017, 213, 178. [Google Scholar] [CrossRef]
  247. Kityo, R.; Odoi, J.B.; Ozimati, A.; Dramadri, I.O.; Agaba, R.; Ongom, P.O.; Nampala, P.; Edema, R.; Karungi, J.; Gibson, P.; et al. New sources and stability of resistance to aphids in cowpea germplasm across locations in Uganda. Afr. Crop Sci. J. 2021, 29, 209–228. [Google Scholar] [CrossRef]
  248. Siyunda, A.C.; Mwila, N.; Mwala, M.; Munyinda, K.L.; Kamfwa, K.; Nshimbi, D. Screening for resistance to cowpea aphids (Aphis craccivora Koch.) In mutation derived and cultivated cowpea (Vigna unguiculata L. Walp.) Genotypes. MCAES 2022, 2, 36–44. [Google Scholar]
  249. MacWilliams, J.R.; Chesnais, Q.; Nabity, P.; Mauck, K.; Kaloshian, I. Cowpea aphid resistance in cowpea line CB77 functions primarily through antibiosis and eliminates phytotoxic symptoms of aphid feeding. J. Pest Sci. 2022, 539–553. [Google Scholar] [CrossRef]
  250. Tripathi, K.; Gore, P.G.; Ahlawat, S.P.; Tyagi, V.; Semwal, D.P.; Gautam, N.K.; Rana, J.C.; Kumar, A. Cowpea genetic resources and its utilization: Indian perspective–A review. Legum. Res. 2019, 42, 437–446. [Google Scholar] [CrossRef]
  251. Machacha, M.; Obopile, M.; Tshegofatso, A.B.N.; Tiroesele, B.; Gwefila, C.; Ramokapane, M. Demographic parameters of cowpea aphid Aphis craccivora (Homoptera: Aphididae) on different Botswana cowpea landrace. Int. J. Trop. Insect. Sci. 2012, 32, 189–193. [Google Scholar] [CrossRef]
  252. De Lima Fereira, A.D.C.; Nere, D.R.; da Silva, A.C.; Bleicher, E.; de Magalhães Bertini, A.H.C. Screening of cowpea accessions for cowpea aphid resistance. Pesq. Agropec. Trop. Goiânia 2020, 50, e57878. [Google Scholar] [CrossRef]
  253. Jayappa, B.G.; Lingappa, S. Screening of cowpea germplasm for resistance to Aphis craccivora Koch. in India. Trop. Pest Manag. 2008, 34, 1988. [Google Scholar] [CrossRef]
  254. Boukar, O.; Bhattacharjee, R.; Fatokun, C.; Kumar, L.P.; Gueye, B. Cowpea. In Genetic and Genomic Resources of Grain Legume Improvement; Singh, M., Upadhyaya, H.D., Bisht, I.S., Eds.; Elsevier Inc.: London, UK, 2013; pp. 137–157. [Google Scholar]
  255. Togola, A.; Boukar, O.; Chamarthi, S.; Belko, N.; Tamò, M.; Oigiangbe, N.; Ojo, J.; Ibikunle, M. Evaluation of cowpea mini core accessions for resistance to flower bud thrips Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). J. Appl. Ent. 2019, 2019, 683–692. [Google Scholar] [CrossRef] [Green Version]
  256. Dareus, R.; Porto, A.C.M.; Bogale, M.; DiGennaro, P.; Chase, C.A.; Rios, E.F. Resistance to Meloidogyne enterolobii and Meloidogyne incognita in Cultivated and Wild Cowpea. Hort. Sci. 2021, 56, 46–468. [Google Scholar] [CrossRef]
  257. Ndeve, A.D.; Matthews, W.C.; Santos, J.R.P.; Huynh, B.L.; Roberts, P.A. Broad-based root-knot nematode resistance identified in cowpea gene-pool two. J. Nematol. 2018, 4, 545–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  258. Shiny, A.A.; Mathew, D.; Nazeem, P.A.; Abida, P.S.; Mathew, S.K.; Valsala, P.A. Identification and confirmation of trailing type vegetable cowpea resistance to anthracnose. Trop. Plant Pathol. 2015, 40, 169–175. [Google Scholar] [CrossRef]
  259. Merin, E.G.; Sarada, S.; Joy, M. Screening of yard long bean (Vigna unguiculata subsp. sesquipedalis (L.) Verdcourt) geno types for resistance to Colletotrichum Gloeosporoides. J. Hortl. Sci. 2022, 17, 293–297. [Google Scholar]
  260. Namasaka, R.W.; Tusiime, G.; Orawu, M.; Gibson, P.; Nyiramugisha, J.; Edema, R. Evaluation of Cowpea Genotypes for Resistance to Fusarium redolens in Uganda. Am. J. Plant Sci. 2017, 8, 2296–2314. Available online: http://www.scirp.org/journal/ajps (accessed on 24 May 2022). [CrossRef] [Green Version]
  261. Durojaye, H.A.; Moukoumbi, Y.D.; Dania, V.O.; Boukar, O.; Bandyopadhyay, R.; Ortega-Beltran, A. Evaluation of cowpea (Vigna unguiculata (L.) Walp.) landraces to bacterial blight caused by Xanthomonas axonopodis pv. vignicola. Crop Prot. 2019, 116, 77–81. [Google Scholar] [CrossRef]
  262. Okechukwu, R.U.; Ekpo, E.J.A. Sources of resistance to cowpea bacterial blight disease in Nigeria. J. Phytopathol. 2004, 152, 345–351. [Google Scholar] [CrossRef]
  263. Wu, X.; Wang, B.; Lu, Z.; Wu, X.; Li, G.; Xu, P. Identification and mapping of a powdery mildew resistance gene Vu-Pm1 in the Chinese asparagus bean landrace ZN016. Legum. Res. 2014, 37, 32. [Google Scholar] [CrossRef]
  264. Mbeyagala, E.K.; Mukasa, B.S.; Tukamuhabwa, P.; Bisikwa, J. Evaluation of Cowpea Genotypes for Virus Resistance Under Natural Conditions in Uganda. J. Agric. Sci. 2014, 6, 176–187. [Google Scholar] [CrossRef] [Green Version]
  265. Milosevic, D. Characterization of Vigna Unguiculata (L.) Collected from Southern Thailand and its Tolerance to Blackeye Mosaic Virus. Master’s Thesis, Prince of Songkla University, Songkla, Thailland, 2013. [Google Scholar]
  266. Sofi, P.A.; Mir, R.R.; Gull, M.; Shafi, S.; Zaffar, A.; Gani, S.; Tripathi, K. Characterization of cowpea landrace diversity of Kashmir: Pattern of variation for morphological and yield traits and resistance to mosaic virus. Range Mgmt. Agrofor. 2022, 43, 25–32. [Google Scholar]
  267. Jackai, L.E.N.; Asante, S.K. A case for the standardization of protocols used in screening cowpea, Vigna unguiculata for resistance to Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2003, 39, 251–263. [Google Scholar] [CrossRef]
  268. Cruz, L.P.; de Sá, L.F.R.; Santos, L.A.; Gravina, G.A.; Carvalho, A.O.; Fernandes, K.V.S.; Filho, F.A.F.; Gomes, V.M.; Oliveira, A.E.A. Evaluation of resistance in different cowpea cultivars to Callosobruchus maculatus infestation. J. Pest. Sci. 2016, 89, 117–128. [Google Scholar] [CrossRef]
  269. Kalpna Hajam, Y.A.; Kumar, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon 2022, 8, e08703. [Google Scholar] [CrossRef]
  270. Tripathi, K.; Bhalla, S.; Prasad, T.V.; Srinivasan, K. Differential Reaction of Cowpea (Vigna unguiculata) Genotypes to pulse-beetle (Callosobruchus maculatus). Int. J. Plant Res. 2012, 25, 367–374. [Google Scholar]
  271. De Castro, M.J.-P.; Baldin, E.L.L.; Cruz, P.L.; de Souza, C.M.; da Silva, P.H.S. Characterization of cowpea genotype resistance to Callosobruchus maculatus. Pesqui. Agropecu. Bras. 2013, 48, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
  272. Miesho, W.B.; Gebremedhin, H.M.; Msiska, U.M.; Mohammed, K.E.; Malinga, G.M.; Sadik, K.; Odong, T.L.; Rubaihayo, P.; Kyamanywa, S. New sources of cowpea genotype resistance to cowpea bruchid Callosobruchus maculatus (F.) in Uganda. IJAAR 2018, 12, 39–52. [Google Scholar]
  273. Singh, S.R.; Jackai, L.E.N.; Thottappilly, G.; Cardwell, K.F.; Myers, G.O. Status of research on constraints to cowpea production, in Biotechnology. In Enhancing Research on Tropical Crops in Africa; Thottappilly, G., Monti, L.M., Mohan Raj, D.R., Moore, A.W., Eds.; CTA/IITA: Ibadan, Nigeria, 1992; pp. 21–26. [Google Scholar]
  274. Huynh, B.L.; Matthews, W.C.; Ehlers, J.D.; Lucas, M.R.; Santos, J.R.P.; Ndeve, A.; Close, T.J.; Roberts, P.A. A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.). Theor. Appl. Genet. 2016, 129, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  275. Ehlers, J.D.; Matthews, W.C.; Hall, A.E., Jr.; Roberts, P.A. Inheritance of a Broad-Based Form of Root-Knot Nematode Resistance in Cowpea. Crop. Sci. 2000, 40, 611–618. [Google Scholar] [CrossRef]
  276. Ehlers, J.D.; Matthews, W.C.; Hall, A.E.; Roberts, P.A. Breeding and evaluation of cowpeas with high levels of broad-based resistance to root-knot nematodes. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production; Fatokun, C., Tarawali, S.A., Singh, B., Kormawa, P., Tamò, M., Eds.; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2002; pp. 41–51. [Google Scholar]
  277. Ehlers, J.D.; Sanden, B.L.; Frate, C.A.; Hall, A.E.; Roberts, P.A. Registration of ‘California Blackeye 50’ Cowpea. J. Plant Regist. 2009, 3, 236–240. [Google Scholar] [CrossRef]
  278. Roberts, P.A.W.; Matthews, W.C.; Ehlers, J.D. New resistance to virulent rootknot nematodes linked to the Rk locus of cowpea. Crop Sci. 1996, 36, 889–894. [Google Scholar] [CrossRef]
  279. Rodriguez, I.; Rodriguez, M.G.; Sanchez, L.; Iglesias, A. Expression of resistance to Meloidogyne incognita in cowpea (Vigna unguiculata) cultivars. Rev. De Protección Veg. 1996, 11, 63–65. [Google Scholar]
  280. Hampton, R.O.; Thottappilly, G.; Rossel, H.W. Viral diseases of cowpea and their control by resistance-conferring genes. Advances in Cowpea Research. In Diseases and Parasitic Weeds; IITA: Ibadan, Nigeria, 1997; pp. 159–175. [Google Scholar]
  281. Lima, J.A.A.; Sittolin, I.M.; Lima, R.C.A. Diagnose e estratégias de controle de doenças ocasionadas por vírus. In Feijão Caupi: Avanços Tecnológicos; Freire-Filho, F.R., Lima, J.A.d.A., Ribeiro, V.Q., Eds.; Embrapa Informação Tecnológica; Cidade Universitária: Campinas, Brazil, 2005; pp. 404–459. [Google Scholar]
  282. Chatzivassiliou, E.K. An Annotated List of Legume-Infecting Viruses in the Light of Metagenomics. Plants 2021, 10, 1413. [Google Scholar] [CrossRef] [PubMed]
  283. Aliyu, T.H.; Balogun, O.S.; Kumar, L. Survey of the symptoms and viruses associated with cowpea (Vigna unguiculata (L.)) in the agroecological zones of Kwara State, Nigeria. EJESM 2012, 5, 613–619. [Google Scholar] [CrossRef] [Green Version]
  284. Fatokun, C.A.; Trawali, S.A.; Singh, B.B.; Kormawa, P.M.; Tamò, M. Challenges and Opportunities for Enhancing Sustainable Cowpea Production. In Proceedings of the World Cowpea Conference III, IITA, Ibadan, Nigeria, 4–8 September 2000. [Google Scholar]
  285. Lima, L.R.L.; Damasceno-Silva, K.J.; Noronha, M.A.; Schurt, D.A.; Rocha, M.M. Diallel crosses for resistance to Macrophomina phaseolina and Thanatephorus cucumeris on cowpea. GMR 2017, 16, gmr16039804. [Google Scholar] [CrossRef]
  286. Lamini, S.; Kusi, F.; Cornelius, E.W.; Danquah, A.; Attamah, P.; Mukhtaru, Z.; Awuku, F.J.; Owusu, E.Y.; Acheampong, M.; Mensah, G. Identification of sources of resistance in cowpea lines to Macrophomina root rot disease in Northern Ghana. Heliyon 2022, 8, e12217. [Google Scholar] [CrossRef]
  287. Williams, R.J. Identification of multiple disease resistance in cowpea. Trop. Agric. 1977, 54, 53–59. [Google Scholar]
  288. Price, M.; Cishahayo, D. Breeding Cowpea varieties for multiple disease resistance in Rwanda. New Zealand J. Agric. Res. 1986, 5, 232–235. [Google Scholar]
  289. Ganesh, S.K.; Packiaraj, D.; Geetha, S.; Gnanamalar, R.P.; Manivannan, N.; Mahalingam, A.; Narayanan, S.L.; Satya, V.K.; Kavitha, Z.; Ganesamurthy, K.; et al. VBN 3: A new high yielding multiple disease resistant cowpea variety. Electron. J. Plant Breed. 2021, 12, 1375–1379. [Google Scholar] [CrossRef]
  290. Dinesh, H.B.; Lohithaswa, H.C.; Viswanatha, K.P.; Singh, P.; Rao, A.M. Identification and marker-assisted introgression of QTL conferring resistance to bacterial leaf blight in cowpea (Vigna unguiculata (L.) Walp.). Plant Breed. 2016, 135, 506–512. [Google Scholar] [CrossRef]
  291. Ohlson, E.W.; Thio, G.I.; Sawadogo, M.; Sérémé, P.; Timko, M.P. Quantitative trait loci analysis of brown blotch resistance in cowpea variety KN1. Mol Breed. 2018, 38, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  292. Thio, I.G.; Tinegre, J.B.; Drabo, I.; Batieno, J.T.B.; Zida, E.P.; Sawadogo, M.; Sereme, P.; Ohlson, E.W.; Timko, M.P. Inheritance and detection of QTL in cowpea resistance to brown blotch disease. J. Plant Breed. Crop Sci. 2021, 13, 123–135. [Google Scholar] [CrossRef]
  293. Van Boxtel, J.V.; Singh, B.; Thottappilly, G.; Maule, A.J. Resistance of cowpea (Vigna unguiculata (L. ) Walp.) breeding lines to Blackeye cowpea mosaic and Cowpea aphid-borne mosaic potyvirus isolates under experimental conditions. JPDP 2000, 107, 197–204. [Google Scholar]
  294. Tettey, C.K.; Asare-Bediako, E.; Asare, T.A.; Amoatey, H. Phenotypic screening of cowpea (Vigna unguiculata (L.) Walp) genotypes for resistance to cowpea viral diseases. AJFAND 2018, 18, 13502–13520. [Google Scholar] [CrossRef]
  295. Ogunsola, K.E.; Ilori, C.; Fatokun, C.A.; Boukar, O.; Ogunsanya, P.; Kumar, P.L. Disease incidence and severity in cowpea lines evaluated for resistance to single and multiple infections of endemic viruses in Nigeria. J. Crop Improv. 2021, 35, 427–452. [Google Scholar] [CrossRef]
  296. de Freitas, T.G.G.; Silva, P.S.L.; Dovale, J.C.; Silva, I.N.; da Silva, E.M. Grain yield and path analysis in the evaluation of cowpea landraces. Rev. Caatinga, Mossoró. 2019, 32, 302–311. [Google Scholar] [CrossRef] [Green Version]
  297. Mbuma, N.W.; Gerrano, A.S.; Lebaka, N.; Mofokeng, A.; Labuschagne, M. The evaluation of a southern African cowpea germplasm collection for seed yield and yield components. Crop Sci. 2020, 61, 466–489. [Google Scholar] [CrossRef]
  298. Nassir, A.L.; Olayiwola, M.O.; Olangunju, S.O.; Adewusi, K.M.; Jinabu, S.S. Genotype × environment analysis of cowpea grain production in the forest and derived savannah cultivation ecologies. Agro-Sci. 2021, 20, 20–24. [Google Scholar] [CrossRef]
  299. Goa, Y.; Mohhammed, H.; Worku, W.; Urage, E. Genotype by environment interaction and yield stability of cowpea (Vigna unguiculata (L.) Walp.) genotypes in moisture limited areas of Southern Ethiopia. Heliyon 2022, 8, e09013. [Google Scholar] [CrossRef]
  300. Gumede, M.T.; Gerrano, A.S.; Modi, A.T.; Thungo, Z. Influence of genotype and environment on grain yield among cowpea (Vigna unguiculata (L.) Walp) genotypes under dry land farming system. Acta Agric. Scand. B Soil Plant Sci. 2022, 72, 709–719. [Google Scholar] [CrossRef]
  301. Yan, W.K.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
  302. Monteagudo, A.; Casas, A.M.; Cantalapiedra, C.P.; Contreras-Moreira, B.; Gracia, M.P.; Igartua, E. Harnessing Novel Diversity From Landraces to Improve an Elite Barley Variety. Front. Plant Sci. 2019, 10, 434. [Google Scholar] [CrossRef]
  303. Abiriga, F.; Ongom, P.O.; Rubaihayo, P.R.; Edema, R.; Gibson, P.T.; Dramadri, I.; Orawu, M. Harnessing genotype-by-environment interaction to determine adaptability of advanced cowpea lines to multiple environments in Uganda. J. Plant Breed. Crop Sci. 2020, 12, 131–145. [Google Scholar] [CrossRef]
  304. Adewale, B.D.; Okonji, C.; Oyekanmi, A.A.; Akintobi, D.A.C.; Aremu, C.O. Genotypic variability and stability of some grain yield components of Cowpea. Afr. J. Agric. Res. 2010, 5, 874–880. [Google Scholar]
  305. Ajayi, A.T.; Gbadamosi, A.E. Genetic variability, character association and yield potentials of twenty five accessions of cowpea (Vigna unguiculata L. Walp.). J. Pure Appl. Agric. 2020, 5, 1–16. [Google Scholar] [CrossRef]
  306. Aliyu, O.M.; Makinde, B.O. Phenotypic Analysis of Seed Yield and Yield Components in Cowpea (Vigna unguiculata L., Walp). Plant Breed. Biotech. 2016, 4, 252–261. [Google Scholar] [CrossRef] [Green Version]
  307. Aliyu, O.M.; Lawal, O.O.; Wadab, A.A.; Ibrahim, U.Y. Evaluation of Advanced Breeding Lines of Cowpea (Vigna unguiculata L. Walp) for High Seed Yield under Farmers’ Field Conditions. Plant Breed. Biotech. 2019, 7, 12–23. [Google Scholar] [CrossRef]
  308. Ddamulira, G.; Santos, C.A.F.; Obuo, P.; Alanyo, M.; Lwanga, C.K. Grain Yield and Protein Content of Brazilian Cowpea Genotypes under Diverse Ugandan Environments. Am. J. Plant Sci. 2015, 6, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
  309. de Souza Tomaz, F.L.; Araújo, L.B.R.; de Megalhães, C.H.C.; DoVale, J.C.; Mano, A.R.O.; Rocha, M.M. Indication of cowpea cultivars for the production of dry grain in the state of Ceará. Rev. Cienc. Agron. 2022, 53, e20207802. [Google Scholar] [CrossRef]
  310. Gerrano, A.S.; van Rensburg, W.S.J.; Mathew, I.; Shayanowako, A.I.T.; Bairu, M.W.; Venter, S.L.; Swart, W.; Mofokeng, A.; Mellem, J.; Labuschange, M. Genotype and genotype 3 environment interaction effects on the grain yield performance of cowpea genotypes in dryland farming system in South Africa. Euphytica 2020, 216, 80. [Google Scholar] [CrossRef]
  311. Horn, L.; Shimelis, H.; Mwadzingeni, L.; Laing, M.D. Genotype-by-environment interaction for grain yield among novel cowpea (Vigna unguiculata L.) selections derived by gamma irradiation. Crop J. 2018, 6, 306–313. [Google Scholar] [CrossRef]
  312. Kuruma, R.W.; Sheunda, P.; Kahwaga, C.M. Yield stability and farmer preference of cowpea (Vigna unguiculata) lines in semi-arid eastern Kenya. Afr. Focus 2019, 32, 65–82. [Google Scholar] [CrossRef]
  313. Mukendi, B.T.; Kayenga, A.L.; Baboy, L.L.; Bugeme, D.M.; Kalonji, A.M.; Munyuli, T.M. Genotype-environment interactions and yield stability of cowpea (Vigna unguiculata L. Walp.) in Lomami province, central part of Demcratic Republic of Congo. Int. J. Sustain. Agric. 2019, 6, 33–46. [Google Scholar] [CrossRef]
  314. Nunes, H.F.; Filho, F.R.F.; Ribeiro, V.Q.; Gomes, R.L.F. Grain yield adaptability and stability of blackeyed cowpea genotypes under rainfed agriculture in Brazil. Afr. J. Agric. Res. 2014, 9, 255–261. [Google Scholar] [CrossRef] [Green Version]
  315. Olayemi Odeseye, A.; Amusa, N.A.; Ijagbone, I.F.; Aladele, S.E.; Ogunkanmi, L.A. Genotype by environment interactions of twenty accessions of cowpea [Vigna unguiculata (L.) Walp.] across two locations in Nigeria. Ann. Agrar. Sci. 2018, 16, 481–489. [Google Scholar] [CrossRef]
  316. Owusu, E.Y.; Amegbor, I.K.; Mohammed, H.; Kusi, F.; Atopkie, I.; Sie, E.K.; Ishahku, M.; Zakaria, M.; Iddrisu, S.; Kendey, H.A.; et al. Genotype × environment interactions of yield of cowpea (Vigna unguiculata (L.) Walp) inbred lines in the Guinea and Sudan Savanna ecologies of Ghana. JCSB 2020, 23, 453–460. [Google Scholar] [CrossRef]
  317. Santos, A.; Ceccon, G.; Rodrigues, E.V.; Teodoro, P.E.; Makimo, P.A.; Alves, V.B.; Silva, J.F.; Corrêa, A.M.; Alvares, R.C.F.; Torres, F.E. Adaptability and stability of cowpea genotypes to Brazilian Midwest. Afr. J. Agric. Res. 2015, 10, 3901–3908. [Google Scholar] [CrossRef] [Green Version]
  318. Hadjichristodoulou, A. Evaluation of vegetable cowpea (Vigna unguiculata (L.) Walp.) varieties. In Agricultural Research Institute Ministry of Agriculture and Natural Resources: Technical Bulletin 128; Press and Information Office: Nicosia, Cyprus, 1991. [Google Scholar]
  319. Pekşen, A. Fresh pod yield and some pod characteristics of cowpea (Vigna unguiculata (L.) Walp.) genotypes from Turkey. Asian J. Plant Sci. 2004, 3, 269–273. [Google Scholar] [CrossRef] [Green Version]
  320. Pekşen, E.; Pekşen, A. Evaluation of Vegetable Cowpea (Vigna unguiculata (L.) Walp.) Breeding Lines for Cultivar Development. Iğdır Univ. J. Sci. Technol. 2012, 2, 9–18. [Google Scholar]
  321. Dipikaben, M.P.; Varma, L.R.; Kumari, S. Varietal Evaluation of Vegetable Cowpea [Vigna unguiculata (L.) Walp] with Respect to Plant Growth, Flowering and Fruiting Behavior Under North Gujarat Condition. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3913–3920. [Google Scholar] [CrossRef]
  322. Ishikawa, H.; Ikazaki, K.; Iseki, K. Visual observation of cowpea pod elongation to predict nitrogen accumulation in immature seeds. Plant Prod. Sci. 2021, 24, 224–229. [Google Scholar] [CrossRef]
  323. Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
  324. Ferrero, R.; Lima, M.; Gonzalez-Andujar, J.L. Crop production structure and stability under climate change in South America. Ann. Appl. Biol. 2017, 172, 65–73. [Google Scholar] [CrossRef]
  325. Warsame, A.A.; Sheik-Ali, I.A.; Jama, O.M.; Hassan, A.A.; Barre, G.M. Assessing the effects of climate change and political instability on sorghum production: Empirical evidence from Somalia. J. Clean. Prod. 2022, 360, 131893. [Google Scholar] [CrossRef]
  326. Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
  327. Bocci, R.; Bussi, B.; Petitti, M.; Franciolini, R.; Altavilla, V.; Galluzzi, G.; Di Luzio, P.; Migliorini, P.; Spagnolo, S.; Floriddia, R.; et al. Yield, yield stability and farmers’ preferences of evolutionary populations of bread wheat: A dynamic solution to climate change. Eur. J. Agron. 2020, 121, 126156. [Google Scholar] [CrossRef]
  328. Hadou el hadj, D.; Tellah, S.; Goumeida, K.; Aitouakli, S.; Tifest, C.; Ammi, N.; Ratet, P.; Pulvento, C.; Sellami, M.H. Evaluation of Adaptability of Different Faba Bean Landraces under Mediterranean Field Conditions of Central-Northern Algeria. Agronomy 2022, 12, 1660. [Google Scholar] [CrossRef]
  329. Martey, E.; Etwire, P.M.; Adogoba, D.S.; Tengey, T.K. Farmers’ preferences for climate-smart cowpea varieties: Implications for crop breeding programmes. Clim. Dev. 2022, 14, 105–120. [Google Scholar] [CrossRef]
  330. Ghalmi, N.; Malice, M.; Jacquemin, J.M.; Ourane, S.M.; Mekliche, L.; Baudoin, J.P. Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genet. Resour. Crop Evol. 2010, 57, 371–386. [Google Scholar] [CrossRef] [Green Version]
  331. Shiringani, R.P.; Shimelis, H.A. Yield response and stability among cowpea genotypes at three planting dates and test environments. Afr. J. Agr. Res. 2011, 6, 3259–3263. [Google Scholar] [CrossRef]
  332. Lazaridi, E.; Ntatsi, G.; Fernández, J.A.; Karapanos, I.; Carnide, V.; Savvas, D.; Bebeli, P.J. Phenotypic diversity and evaluation of fresh pods of cowpea landraces from Southern Europe. J. Sci. Food Agric. 2017, 97, 4326–4333. [Google Scholar] [CrossRef]
  333. Kouam, E.B.; Ngompe-Deffo, T.; Anoumma, M.; Pasquet, R.S. Preliminary study on character associations, phenotypic and genotypic divergence for yield and related quantitative traits among cowpea landraces (Vigna unguiculata) from the Western Highland Region of Cameroon. Open Agric. 2018, 3, 84–97. [Google Scholar] [CrossRef]
  334. Ndenkyanti, S.N.; Agbo, C.U.; Ogbonna, P.E. Evaluation of seventeen cowpea genotypes across years for grain yield, yield components and yield stability in Nsukka, South-east Nigeria. Afr. J. Agr. Res. 2022, 18, 967–976. [Google Scholar] [CrossRef]
  335. Nkhoma, N.; Shimelis, H.; Laing, M.D.; Shayanowako, A.; Mathew, I. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. BMC Genet. 2020, 21, 110. [Google Scholar] [CrossRef] [PubMed]
  336. Araújo, L.B.R.; Fiege, L.B.C.; Silva, A.V.A.; Bertini, C.H.C.M. Genetic diversity in cowpea landraces analyzed by ISSR markers. Genet. Mol. Res. 2019, 18, GMR18082. [Google Scholar] [CrossRef]
  337. Kindie, Y.; Tesso, B.; Amsalu, B. Genotype X Environment Interaction and Yield Stability in Early- Maturing Cowpea (Vigna unguiculata (L. ) Walp.) Landraces in Ethiopia. Hindawi, Adv. Agric. 2021, 3786945. [Google Scholar] [CrossRef]
  338. Stoilova, T.; Pereira, G. Assessment of the genetic diversity in a germplasm collection of cowpea (Vigna unguiculata (L.) Walp.) using morphological traits. Afr. J. Biotechnol. 2013, 8, 208–215. [Google Scholar]
  339. Omirou, M.; Ioannides, I.M.; Fasoula, D.A. Optimizing Resource Allocation in a Cowpea (Vigna unguiculata L. Walp.) Landrace Through Whole-Plant Field Phenotyping and Non-stop Selection to Sustain Increased Genetic Gain Across a Decade. Front. Plant Sci. 2019, 10, 949. [Google Scholar] [CrossRef] [Green Version]
  340. Quamruzzaman, A.; Islam, F.; Akter, L.; Khatun, A.; Mallick, S.R.; Gaber, A.; Laing, A.; Brestic, M.; Hossain, A. Evaluation of the Quality of Yard-Long Bean (Vigna unguiculata sub sp. sesquipedalis L.) Cultivars to Meet the Nutritional Security of Increasing Population. Agronomy 2022, 12, 2195. [Google Scholar] [CrossRef]
  341. Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef]
  342. Madodé, Y.E.; Houssou, P.A.; Linnemann, A.R.; Hounhouigan, D.J.; Nout, M.J.R.; Van Boekel, M.A.J.S. Preparation, Consumption, and Nutritional Composition of West African Cowpea Dishes. Ecol. Food Nutr. 2011, 50, 115–136. [Google Scholar] [CrossRef]
  343. Afiukwa, C.E.; Benjamin, U.E.; Karl, K.J.; Titus, E.F.; Josephine, A.O. Seed protein content variation in cowpea genotypes. World J. Agric. Sci. 2013, 1, 94–99. [Google Scholar]
  344. Antova, G.A.; Stoilova, T.D.; Ivanova, M.M. Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. J. Food Compost. Anal. 2014, 33, 146–152. [Google Scholar] [CrossRef]
  345. Padhi, S.R.; Bartwal, A.; John, R.; Tripathi, K.; Gupta, K.; Wankhede, D.P.; Mishra, G.P.; Kumar, S.; Archak, S.; Bhardwaj, R. Evaluation and Multivariate Analysis of Cowpea [Vigna unguiculata (L.) Walp] Germplasm for Selected Nutrients—Mining for Nutri-Dense Accessions. Front. Sustain. Food Syst. 2022, 6, 888041. [Google Scholar] [CrossRef]
  346. Gerrano, A.S.; van Rensburg, W.S.J.; Adebola, P.O. Nutritional composition of immature pods in selected cowpea [Vigna unguiculata (L.) Walp.] genotypes in South Africa. AJCS 2017, 11, 134–141. [Google Scholar] [CrossRef]
  347. Biama, P.K.; Faraj, A.K.; Mutungi, C.M.; Osuga, I.N.; Kuruma, R.W. Nutritional and Technological Characteristics of New Cowpea (Vigna unguiculata) Lines and Varieties Grown in Eastern Kenya. Food Sci. Nutr. 2020, 11, 416–430. [Google Scholar] [CrossRef]
  348. Freitas, T.K.T.; Gomes, F.O.; Araújo, M.S.; Silva, I.C.V.; Silva, D.J.S.; Damasceno-Silva, K.J.; Rocha, M.M. Potential of cowpea genotypes for nutrient biofortification and cooking quality. Rev. Cienc. Agron. 2022, 53, e20218048. [Google Scholar] [CrossRef]
  349. Weng, Y.; Qin, J.; Eaton, S.; Yang, Y.; Ravelombola, W.R.; Shi, A. Evaluation of Seed Protein Content in USDA Cowpea Germplasm. Hort. Sci. 2019, 54, 814–817. [Google Scholar] [CrossRef] [Green Version]
  350. Pereira, E.J.; Carvalho, L.M.J.; Dellamora-Ortiz, G.M.; Cardoso, F.S.N.; Carvalho, J.L.V.; Viana, D.S.; Freitas, S.C.; Rocha, M.M. Effects of cooking methods on the iron and zinc contents in cowpea (Vigna unguiculata) to combat nutritional deficiencies in Brazil. Food Nutr. Res. 2014, 58, 20694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  351. Kapravelou, G.; Martinez, R.; Andrade, A.M.; Chaves, C.L.; Lopez-Jurado, M.; Aranda, P.; Arrebola, F.; Cañizares, F.J.; Galisteo, M.; Porres, J.M. Improvement of the antioxidant and hypolipidaemic effects of cowpea flours (Vigna unguiculata) by fermentation: Results of in vitro and in vivo experiments. J. Sci. Food Agric. 2015, 95, 1207–1216. [Google Scholar] [CrossRef]
  352. López-Morales, D.; de la Cruz-Lázaro, E.; Sánchez-Chávez, E.; Preciado-Rangel, P.; Márquez-Quiroz, C.; Osorio-Osorio, R. Impact of Agronomic Biofortification with Zinc on the Nutrient Content, Bioactive Compounds, and Antioxidant Capacity of Cowpea Bean (Vigna unguiculata L. Walpers). Agronomy 2020, 10, 1460. [Google Scholar] [CrossRef]
  353. Dhanasekar, P.; Souframanien, J.; Suprasanna, P. Breeding cowpea for quality traits: A genetic biofortification perspective. In Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes.; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2021; pp. 157–179. [Google Scholar]
  354. Muranaka, S.; Shono, M.; Myoda, T.; Takeuchi, J.; Franco, J.; Nakazawa, Y.; Boukar, O.; Takagi, H. Genetic diversity of physical, nutritional and functional properties of cowpea grain and relationships among the traits. Plant Genet. Res. Char. Util. 2016, 14, 67–76. [Google Scholar] [CrossRef] [Green Version]
  355. Enyiukwu, D.N.; Chukwu, L.A.; Bassey, I.N. Nutrient and anti-nutrient compositions of cowpea (Vigna unguiculata L.) and mung bean (Vigna radiata) seeds grown in humid Southeast Nigeria: A comparison. Trop. Drylands 2020, 4, 41–45. [Google Scholar] [CrossRef]
  356. Owade, J.O.; Abong, G.O.; Okoth, M.W.; Mwangómbe, A.W. Trends and constraints in the production and utilization of cowpea leaves in the arid and semi-arid lands of Kenya. Open Agric. 2020, 5, 325–334. [Google Scholar] [CrossRef]
  357. Vasconcelos, I.M.; Maia, F.M.M.; Farias, D.F.; Campello, C.C.; Carvalho, A.F.U.; Moreira, R.A.; Oliveira, J.T.A. Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. J. Food Compos. Anal. 2010, 23, 54–60. [Google Scholar] [CrossRef]
  358. Silva, V.M.; Nardeli, A.J.; Mendes, N.A.C.; Rocha, M.M.; Wilson, L.; Young, S.D.; Broadley, M.R.; White, P.J.; Reis, A.R. Agronomic biofortification of cowpea with zinc: Variation in primary metabolism responses and grain nutritional quality among 29 diverse genotypes. Plant Physiol. Biochem. 2021, 162, 378–387. [Google Scholar] [CrossRef]
  359. Verma, A.; Kushwaha, A.; Kumar, A.; Baghel, S.S. Physico-chemical properties and nutritional composition of improved varieties of grain cowpea grown in Pantnagar. J. Pharmacogn. Phytochem. 2019, 5, 334–338. [Google Scholar]
  360. Gondwe, T.M.; Alamu, E.O.; Mdziniso, P.; Maziya-Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 2019, 9, 15991. [Google Scholar] [CrossRef] [Green Version]
  361. Karuwal, R.L.; Suharsono; Tjahjoleksono, A.; Hanif, N. Short Communication: Characterization and nutrient analysis of seed of local cowpea (Vigna unguiculata) varieties from Southwest Maluku, Indonesia. Biodiversitas 2021, 22, 85–91. [Google Scholar] [CrossRef]
  362. Asare, A.T.; Agbemafle, R.; Adukpo, G.E.; Diabor, E.; Adamtey, K.A. Assessment of functional properties and nutritional composition of some cowpea (Vigna unguiculata L.) genotypes in Ghana. ARPN J. Agric. Biol. Sci. 2013, 8, 465–469. [Google Scholar]
Table 1. Heritability in the broad and narrow sense, and genetic advance of cowpea (Vigna unguiculata cv-gr unguiculata) traits.
Table 1. Heritability in the broad and narrow sense, and genetic advance of cowpea (Vigna unguiculata cv-gr unguiculata) traits.
TraitBroad Sense Heritability (H) (%)Narrow Sense Heritability (h2) (%)Genetic AdvanceReferences
Days to flowering83.22 4.48Araméndiz-Tatis et al. [74]
97.17 18.34Belay and Fisseha [75]
61.323.81Devi and Jayamani [76]
71.25 9.45Diriba et al. [77]
63.7750.11 dos Santos et al. [78]
89.93 6.74Jonah and Fakuta [79]
41.92 Inuwa et al. [80]
63.20–86.00 Ishiyaku et al. [81]
96.74 Manggoel et al. [82]
91.93 Mofokeng et al. [83]
84.78 Omoigui et al. [84]
57.8442.16 Owusu et al. [85]
77.72 5.56Owusu et al. [86]
62.00–85.0018.00–85.001.32–7.53Owusu et al. [87]
37.46–86.434.26–82.348.91–33.51Pathak et al. [88]
50.00 Shimelis and Shiringani [89]
86.00 Singh et al. [90]
87.72 11.60Vavilapalli et al. [91]
Days to maturity85.57 11.37Belay and Fisseha [75]
73.547.50Devi and Jayamani [76]
75.40 13.04Diriba et al. [77]
71.8553.97 dos Santos et al. [78]
30.45 Inuwa et al. [80]
79.98 Omoigui et al. [84]
73.0326.97 Owusu et al. [85]
89.58 6.58Owusu et al. [86]
72.00–84.008.00–62.000.89–8.93Owusu et al. [87]
34.52–95.834.79–93.73 Pathak et al. [88]
66.00 Shimelis and Shiringani [89]
82.00 Singh et al. [90]
92.58 8.68Vavilapalli et al. [91]
Plant height98.78 28.10Belay and Fisseha [75]
60.5413.19Devi and Jayamani [76]
88.58 Omoigui et al. [84]
78.51 14.27Owusu et al. [86]
97.42 64.32Vavilapalli et al. [91]
Pod length85.11 4.25Belay and Fisseha [75]
75.863.34Devi and Jayamani [76]
80.64 4.32Diriba et al. [77]
41.63 5.35Jonah and Fakuta [79]
63.16 Manggoel et al. [82]
42.94 Omoigui et al. [84]
98.38 48.70Vavilapalli et al. [91]
94.865.14 Ayo-Vaughan et al. [92]
Number of seeds per pod68.01 2.20Belay and Fisseha [75]
48.511.63Devi and Jayamani [76]
55.97 2.28Diriba et al. [77]
90.29 11.29Jonah and Fakuta [79]
21.15 Inuwa et al. [80]
73.40 Manggoel et al. [82]
96.21 Mofokeng et al. [83]
75.82 Omoigui et al. [84]
55.03 2.11Owusu et al. [86]
75.00 Singh et al. [90]
98.961.04 Ayo-Vaughan et al. [92]
20.80–81.50 Drabo et al. [93]
Number of pods per plant54.92 2.77Araméndiz-Tatis et al. [74]
80.345.35Devi and Jayamani [76]
35.09 4.52Diriba et al. [77]
51.70 15.37Jonah and Fakuta [79]
89.23 Manggoel et al. [82]
91.46 Mofokeng et al. [83]
19.25 Omoigui et al. [84]
23.00 Shimelis and Shiringani [89]
85.00 Singh et al. [90]
Hundred/thousand seed weight97.99 8.89Araméndiz-Tatis et al. [74]
94.304.43Devi and Jayamani [76]
84.41 5.19Diriba et al. [77]
91.48 15.21Jonah and Fakuta [79]
86.84 Manggoel et al. [82]
97.15 Mofokeng et al. [83]
96.19 Omoigui et al. [84]
91.52 4.40Owusu et al. [86]
11.00 Shimelis and Shiringani [89]
91.00 Singh et al. [90]
98.991.01 Ayo-Vaughan et al. [92]
Seed size48.00–90.20 Drabo et al. [93]
Seed yield65.32 8.25Araméndiz-Tatis et al. [74]
67.784.55Devi and Jayamani [76]
62.39 21.27Jonah and Fakuta [79]
90.91 Manggoel et al. [82]
38.36 Mofokeng et al. [83]
51.68 Omoigui et al. [84]
55.00 Shimelis and Shiringani [89]
83.00 Singh et al. [90]
Table 2. Heritability in the broad sense and genetic advance of cowpea (Vigna unguiculata cv-gr sesquipedalis) traits.
Table 2. Heritability in the broad sense and genetic advance of cowpea (Vigna unguiculata cv-gr sesquipedalis) traits.
TraitBroad Sense Heritability (H) (%)Genetic AdvanceReferences
Days to flowering83.003.89Rambabu et al. [94]
41.001.60Bhagavati et al. [95]
96.1317.75Haque et al. [96]
29.50 Kongjaimun et al. [97]
71.7317.17Lovely and Radahavedi [98]
55.332.72Sharma et al. [99]
76.882.62Sultana et al. [100]
80.4012.36Vinay et al. [101]
Days to maturity24.001.89Rambabu et al. [94]
44.002.04Bhagavati et al. [95]
47.20 Kongjaimun et al. [97]
43.385.35Lovely and Radahavedi [98]
88.902.45Sharma et al. [99]
73.006.70Vinay et al. [101]
Plant height79.0087.73Rambabu et al. [94]
84.00100.7Bhagavati et al. [95]
91.1319.73Haque et al. [96]
82.3039.89Lovely and Radahavedi [98]
99.5365.40Sharma et al. [99]
93.3044.18Vinay et al. [101]
Pod dehiscence99.90 Kongjaimun et al. [97]
Pod length99.0025.39Rambabu et al. [94]
95.0023.44Bhagavati et al. [95]
90.8318.04Haque et al. [96]
98.2166.76Lovely and Radahavedi [98]
57.109.00Sultana et al. [100]
85.3030.88Vinay et al. [101]
75.00 Amusa et al. [102]
47.70 Kusmiyati et al. [103]
85.81 Ramkumar and Anuja [104]
Number of seeds per pod62.002.21Rambabu et al. [94]
26.000.92Bhagavati et al. [95]
81.505.73Haque et al. [96]
69.70–95.70 Kongjaimun et al. [97]
42.201.04Sultana et al. [100]
73.5031.16Vinay et al. [101]
Hundred/thousand seed weight96.005.38Rambabu et al. [94]
93.006.91Bhagavati et al. [95]
97.675.86Haque et al. [96]
91.212.83Sultana et al. [100]
85.1051.8Vinay et al. [101]
96.00 Amusa et al. [102]
Number of seeds per plant23.00 Kusmiyati et al. [103]
Number of pods per plant83.0053.11Rambabu et al. [94]
66.0049.42Bhagavati et al. [95]
85.60 Kongjaimun et al. [97]
76.3180.88Lovely and Radahavedi [98]
85.904.84Sharma et al. [99]
96.784.12Sultana et al. [100]
43.10 Kusmiyati et al. [103]
30.04 Ramkumar and Anuja [104]
64.00 Umaharan et al. [105]
Fresh pod yield75.00509.60Rambabu et al. [94]
91.004.27Bhagavati et al. [95]
98.76136.99Haque et al. [96]
77.0076.44Lovely and Radahavedi [98]
94.6032.60Sharma et al. [99]
90.0158.95Sultana et al. [100]
96.18 Ramkumar and Anuja [104]
Seed yield27.80–81.80 Kongjaimun et al. [97]
Table 3. Indicative Quantitative trait loci (QTLs) associated with cowpea (Vigna unguiculata (L.) Walp.) yield and linkage groups to which they belong.
Table 3. Indicative Quantitative trait loci (QTLs) associated with cowpea (Vigna unguiculata (L.) Walp.) yield and linkage groups to which they belong.
TraitLinkage GroupsNumber of QTLsQTLsReferences
Days to floweringVu05, Vu092CFt5, CFt9Lo et al. [115]
Vu01, Vu02, Vu073qdf1, qdf2, qdf7Andargie et al. [126]
LG1, LG2, LG4, LG5, LG6, LG7, LG8, LG9, LG10, LG1110Fld1.1, Fld2.1, Fld4.1, Fld5.1, Fld6.1, Fld7.1, Fld8.1, Fld9.1, Fld10.1, Fld11.1Kongjaimun et al. [127]
Chr2, Chr92qdtf2.1, qdtf9.1Angira et al. [128]
Peduncle lengthVu051CPedl5Lo et al. [129]
LG1, LG7, LG103qPeL1, qPeL8, qPeL10Garcia-Oliveira et al. [130]
Number of inflorescences per plantLG2,LG93qPeN2.1, qPeN2.2, qPeN9Garcia-Oliveira et al. [130]
Days to maturityLG1, LG2, LG3, LG4, LG6, LG76Pddm1.1, Pddm2.1, Pddm3.1, Pddm4.1, Pddm6.1, Pddm7.1Kongjaimun et al. [127]
Growth habitVu011qgh (in the same position with qsw1)Andargie et al. [126]
Plant heightChr4, Chr93qPH4.1,qPH4.2, qPH9.1Angira et al. [128]
Pod dehiscenceVu051qps5 (in the same position with qpft5)Andargie et al. [126]
LG1, LG4, LG7, LG94Pdt1.1, Pdt4.1, Pdt7.1, Pdt9.1Kongjaimun et al. [127]
Vu03, Vu052CPshat3, CPshat5Lo et al. [129]
Vu071Shat7.1.1Watcharatpong et al. [131]
Pod lengthLG1, LG2, LG3, LG4, LG5, LG7, LG8, LG98Pdl1.1, Pdl2.1, Pdl3.1, Pdl4.1, Pdl5.1, Pdl7.1, Pdl8.1, Pdl9.1Kongjaimun et al. [127]
Vu03, Vu082CPodl3, CPodl8Lo et al. [129]
LG3, LG4, LG5, LG7, LG8, LG106qPoL3, qPoL4, qPoL5, qPoL7, qPoL8, qPoL10Garcia-Oliveira et al. [130]
LG4, LG6, LG9, LG114Qcpl-1, Qcpl-2, Qcpl-3, Qcpl-4Pan et al. [132]
LG3, LG52Qpl.zaas-3, Qpl.zaas-5Xu et al. [133]
Number of pods per plantLG81qPoN8Garcia-Oliveira et al. [130]
Number of seeds per podLG7, LG112Sdnppd7.1, Sdnppd11.1Kongjaimun et al. [127]
Vu05, Vu092CSp5, CSp9Lo et al. [129]
LG8, LG9, LG114qSN8, qSN9.1, qSN9.2, qSN911Garcia-Oliveira et al. [130]
LG5, LG112Qcgn-1, Qcgn-2Pan et al. [132]
Hundred seed weightLG1, LG3, LG4, LG5, LG6, LG7, LG8, LG108Sd100wt1.1, Sd100wt1.2, Sd100wt3.1, Sd100wt4.1, Sd100wt5.1, Sd100wt6.1, Sd100wt7.1, Sd100wt8.1, Sd100wt10.1, Sd100wt11.1Kongjaimun et al. [127]
Vu01, Vu06, Vu083CSw1, CSw6, CSw8Lo et al. [129]
LG7, LG8, LG93qSW7, qSW8, qSW9Garcia-Oliveira et al. [130]
LG4, LG7, LG10, LG114Qctgw-1, Qctgw-2, Qctgw-3, Qctgw-4Pan et al. [132]
Seed weight per plantVu01, Vu02, Vu03, Vu07, Vu107qsw1, qsw2.1, qsw2.2, qsw3.1, qsw3.2,qsw7, qsw10Andargie et al. [126]
LG2, LG4, LG5, LG6, LG7, LG106Sdtwt2.1, Sdtwt4.1, Sdtwt5.1, Sdtwt6.1, Sdtwt7.1, Sdtwt10.1Kongjaimun et al. [127]
Vu01, Vu02, Vu03, Vu106qsw1, qsw2.1, qsw2.2, qsw3.1, qsw3.2, qsw10Andargie et al. [133]
Seed yieldLG1, LG3, LG4, LG7, G8, LG116Dro-1, Dro-3, Dro-4, Dro-7, Dro-8, Dro-10Muchero et al. [123]
Table 4. Cowpea landraces with potential to tolerate drought and salinity stress.
Table 4. Cowpea landraces with potential to tolerate drought and salinity stress.
Abiotic StressesLandracesDevelopmental Stage That Stress Was StudiedReferences
Drought stressNLLP-CPC-07-145-21,
NLLP-CPC-103-B, NLLP_CPC-07-54
Throughout life cycle, yieldMekonnen et al. [5]
L1, L3Early reproductive stage, yieldNunes et al. [180]
Gorom localVegetative stageHamidou et al. [194]
DWDCC001, DWDCC006, DWDCC015Throughout life cycle, yieldHedge and Mishra [205]
KM7Throughout life cycleKaruwal et al. [219]
C1, C18, C44, C47, C50, C54Germination stageCarvalho et al. [220]
Kanannado, Aloka localSeedling stageNkomo et al. [221]
A116Vegetative stageGomes et al. [222]
Timbawene moteadoVegetative stageMartins et al. [223]
AUALIMNO133Throughout life cycle, yieldAndreopoulou [224]
C11, C47, C56Throughout life cycle, yieldSantos et al. [225]
MeniaVegetative stageZegaoui et al. [226]
C13, C25Trifoliate stage till pod formation stage, yieldGull et al. [227]
KpodjiguegueVegetative and reproductive stagesEzin et al. [228]
TVu-4886Flowering stageAjayi et al. [229]
PI 527263, PI 5272302Throughout life cycle, yieldYahaya et al. [230]
Zhemchyuzhina Kaspiya, Astrakhanskaya krasavitsa, Kaspiyskaya zaryaThroughout life cycle, yieldBurlyaeva et al. [231]
Salinity stressZhemchyuzhina Kaspiya, Astrakhanskaya krasavitsa, Kaspiyskaya zaryaThroughout life cycle, yieldBurlyaeva et al. [231]
SesenteñoVegetative stageMurillo-Amador et al. [232]
EK1, TZ7, B23Germination stageNabi et al. [233]
PI 582570Germination stageRavelombola et al. [234]
58–78, 58–191Germination stageThiam et al. [235]
Siyah Sürmeli, Serodor Cambados, AcebekEarly vegetative stageDaşgan et al. [236]
Table 5. Wild Vigna material and cowpea landraces with resistance or immunity to main pests and diseases/pathogens prevailing in Europe.
Table 5. Wild Vigna material and cowpea landraces with resistance or immunity to main pests and diseases/pathogens prevailing in Europe.
PestsWild Vigna/Cowpea LandracesReferences
AphidsUCR779 (PI 583014)Muchero et al. [123]
TVNu 1158Souleymane et al. [245]
Golam WhiteOmoigui et al. [246]
B261-B, B383Machacha et al. [251]
Enrica Pobre (CE-36), Das Almas
(CE-07), CE-51 (selected within CE-13), Ritinha (CE-08)
De Lima Fereira et al. [252]
Mandya localJayappa and Lingappa [253]
ThripsSanzisabinliBoukar et al.; Togola et al. [254,255]
WeevilAdom, BengplaNyarko et al. [239]
NematodesTVu-12897, TVu-16220Dareus et al. [256]
Gile-K-localNdeve et al. [257]
Diseases/Pathogens
AnthracnoseArimbra Local
Kanakamony, Anaswara, Bagyalakshmi, Arka Samradhi
Shiny et al. [258]
Merin et al. [259]
Fusarium redolensWC67A, WC27Namasaka et al. [260]
Bacterial blightTVu58, TVu64, TVu102, TVu41, TVu87, TVu52Durojaye et al. [261]
TVu-5549, TVu-12349Okechukwu and Ekpo [262]
Eryshiphe polygoniZN016Wu et al. [263]
VirusesWC32, WC18, NE43, NE15, WC35BMbeyagala et al. [264]
Trang 1, TaitarMilosevic [265]
C14, C24, C36Sofi et al. [266]
Table 6. Significance of genotypic effect (G), environmental effect (E) and genotype x environment interaction (G × E) while evaluating cowpea genetic material.
Table 6. Significance of genotypic effect (G), environmental effect (E) and genotype x environment interaction (G × E) while evaluating cowpea genetic material.
Number of
Genotypes Evaluated
Number of
Cultivation Years/Seasons
Number of LocationsGEG × EReferences
10011p ≤ 0.001p ≤ 0.001n.s.Mofokeng et al. [83]
1731p ≤ 0.001p ≤ 0.001p ≤ 0.001Owusu et al. [86]
1223p ≤ 0.001p ≤ 0.001p ≤ 0.001Martos-Fuentes et al. [193]
7523p ≤ 0.001p ≤ 0.001p ≤ 0.001Mbuma et al. [297]
2023p ≤ 0.01p ≤ 0.01p ≤ 0.01Goa et al. [299]
5025p ≤ 0.01p ≤ 0.01p ≤ 0.01Gumede et al. [300]
3633p ≤ 0.001p ≤ 0.001p ≤ 0.001Abiriga et al. [303]
1121p ≤ 0.05p ≤ 0.001n.s.Adewale et al. [304]
2521p ≤ 0.01p ≤ 0.01p ≤ 0.01Ajayi and Gbadamosi [305]
2121p ≤ 0.001p ≤ 0.001p ≤ 0.01Aliyu and Makinde [306]
1113p ≤ 0.01p ≤ 0.05p ≤ 0.01Aliyu et al. [307]
2823p ≤ 0.05p ≤ 0.05p ≤ 0.05Ddamulira et al. [308]
1224p ≤ 0.01p ≤ 0.01p ≤ 0.01de Souza Tomaz et al. [309]
1523p ≤ 0.01p ≤ 0.001p ≤ 0.05Gerrano et al. [310]
3723p ≤ 0.001p ≤ 0.001p ≤ 0.001Horn et al. [311]
1223p ≤ 0.001p ≤ 0.001p ≤ 0.001Kuruma et al. [312]
1213p ≤ 0.001p ≤ 0.001p ≤ 0.05Mukendi et al. [313]
2023p ≤ 0.01p ≤ 0.01p ≤ 0.01Nunes et al. [314]
2022p ≤ 0.01n.s.*p ≤ 0.01Olayemi Odeseye et al. [315]
825p ≤ 0.01p ≤ 0.01p ≤ 0.01Owusu et al. [316]
2024p ≤ 0.01p ≤ 0.01p ≤ 0.01Santos et al. [317]
* n.s.: non-significant.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Lazaridi, E.; Bebeli, P.J. Cowpea Constraints and Breeding in Europe. Plants 2023, 12, 1339. https://doi.org/10.3390/plants12061339

AMA Style

Lazaridi E, Bebeli PJ. Cowpea Constraints and Breeding in Europe. Plants. 2023; 12(6):1339. https://doi.org/10.3390/plants12061339

Chicago/Turabian Style

Lazaridi, Efstathia, and Penelope J. Bebeli. 2023. "Cowpea Constraints and Breeding in Europe" Plants 12, no. 6: 1339. https://doi.org/10.3390/plants12061339

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop