Next Article in Journal
Amino Acid Residues of the Metal Transporter OsNRAMP5 Responsible for Cadmium Absorption in Rice
Next Article in Special Issue
Phenotypic Variations and Bioactive Constituents among Selected Ocimum Species
Previous Article in Journal
Transcriptome-Based Identification of the Optimal Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Analyses of Lingonberry Fruits throughout the Growth Cycle
Previous Article in Special Issue
Sloanea chocoana and S. pittieriana (Elaeocarpaceae): Chemical and Biological Studies of Ethanolic Extracts and Skincare Properties
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity

1
University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
2
Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
3
University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia
4
Serbian Academy of Science and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
*
Authors to whom correspondence should be addressed.
Plants 2023, 12(24), 4181; https://doi.org/10.3390/plants12244181
Submission received: 27 October 2023 / Revised: 22 November 2023 / Accepted: 11 December 2023 / Published: 16 December 2023

Abstract

:
Euphorbia seguieriana ssp. seguieriana Necker (ES) and Euphorbia cyparissias (EC) with a habitat in the Deliblato Sands were the subject of this examination. The latexes of these so far insufficiently investigated species of the Euphorbia genus are used in traditional medicine for the treatment of wounds and warts on the skin. To determine their chemical composition, non-targeted screening of the latexes’ chloroform extracts was performed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (LC-ESI QTOF MS). The analysis of the obtained results showed that the latexes of ES and EC represent rich sources of diterpenes, tentatively identified as jatrophanes, ingenanes, tiglianes, myrsinanes, premyrsinanes, and others. Examination of the anticancer activity of the ES and EC latex extracts showed that both extracts significantly inhibited the growth of the non-small cell lung carcinoma NCI-H460 and glioblastoma U87 cell lines as well as of their corresponding multi-drug resistant (MDR) cell lines, NCI-H460/R and U87-TxR. The obtained results also revealed that the ES and EC extracts inhibited the function of P-glycoprotein (P-gp) in MDR cancer cells, whose overexpression is one of the main mechanisms underlying MDR.

1. Introduction

Cancer is the second leading cause of mortality in the world. Many natural compounds such as anthracyclines (e.g., doxorubicin, DOX), vinca alkaloids (e.g., vincristine), podophyllotoxins (e.g., etoposide), and taxanes (e.g., taxol) are used for cancer therapy [1]. However, the main cause of unsuccessful cancer treatment is the development of multi-drug resistance (MDR) [2]. MDR is a phenomenon that indicates that cancer cells exhibit resistance to a number of chemotherapeutic agents with different structure and mode of action. One of the most relevant mechanisms underlying MDR is a decrease in the intracellular drug concentration due to the over-expression of the membrane transporter P-glycoprotein (P-gp) [3]. Thus, P-gp has become a significant target for overcoming MDR [4]. Many natural compounds from various sources possess the potential to modulate MDR [5]. Different metabolites isolated from Euphorbia ssp., besides antiproliferative and cytotoxic effects, showed potential to overcome MDR by P-gp inhibition [6].
The Euphorbia genus consists of over 2000 species of annual, biennial, or perennial flowering herbaceous plants, shrubs, trees, as well as cactus-like plants. Members of the genus are spread throughout the terrestrial part of the globe and grow in almost all habitats, in very different climatic conditions and soils of different quality. As a result of their great diversity in morphology, geographical distribution and habitat, Euphorbia species synthesize the most diverse metabolites, many of which are found in their milky latex. Latex is produced by all Euphorbia species in specialized laticifer cells and has a defensive role—it protects the plant from both mechanical injuries and injuries caused by herbivores (insects and mammals) [7] and various microorganisms. Latex was found to contain a broad range of specialized metabolites, different from those found in the corresponding plants, such as terpenoids, cardenolides, cerebrosides, alkaloids, and phenolics [8,9,10], which are partly responsible for their antibacterial, antifungal, anthelmintic, cytotoxic, and insect-repellent activities [11]. Latexes have also been recognized as reservoirs of defense-related proteins [7,12].
Euphorbia seguieriana, with three subspecies being recognized so far, i.e., E. seguieriana ssp. hohenackeri (Boiss.) Rech. fil., E. seguieriana ssp. niciciana (Borbás ex Novák) Rech. fil., and E. seguieriana ssp. seguieriana Necker, is one of the most widespread Euphorbia species inhabiting zonal and extrazonal steppes from Iberia to Central Asia (probably reaching China and Pakistan) [13]. It is a perennial herb that has a self-supporting growth form and reaches a height of up to 60 cm. Previous investigations mostly focused on the metabolites of the whole plant, and some bioactive diterpenoids with diverse structures, including abietane, myrsinane, a tetracarbocyclic diterpene related to myrsinane [14], hydroxymyrsinane, cyclomyrsinane, and lathyrane [15], as well as triterpene glycosides [16], phenolic compounds [17,18], flavonoids [19,20,21], proanthocyanidins [22], flavonoids, tannins, hydroxycinnamic acids [23], and alkaloids [24], were isolated and/or identified. Only a few investigations conducted on latex showed it contains ingenanes [25,26] and hydrolytic active proteins [27]. Although it is an irritant and a cocarcinogenic [25,26], the latex of E. seguieriana is used to treat wounds and warts on the skin [28].
The cypress spurge E. cyparissias L. is a hardy perennial, herbaceous plant growing in a wide range of habitats, from lowland areas to alpine locations. It is widely distributed in Europe (including in the Balkan Peninsula and Serbia) and Asia Minor, but it also occurs as an introduced plant in North America, Australia, Japan, and Hawaii. When the plant is cut, it secretes a white, bitter, and very spicy milk that causes inflammation and blisters on the skin and ocular inflammation [29]. The seeds are also pungent and poisonous, as is the whole plant. The roots of the plant were once used as a purgative. In people, the plant is still used for external treatments—removal of warts—while it is rarely used for its internal effects (inducing vomiting and purging). In previous investigations, ingenanes [30] and jatrophanes [31] were isolated from the roots and whole plant, respectively. In plant material other than latex, triterpenes [32,33,34,35], glycolipids [36], and flavonoids [37,38] were identified. For latex, only the identification of serine proteases [39] and invertase [40] has been reported.
The aim of the present work was to examine the chemical profiles of chloroform extracts of the latexes of Euphorbia seguieriana ssp. segiueriana Necker (ES) and Euphorbia cyparissias L. (EC) as sources of bioactive chemicals and whether these extracts can inhibit cancer cell growth and modulate P-gp function.

2. Results

2.1. Non-Targeted Screening of the Latex Chloroform Extracts Using Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry Employing an Electrospray Ionization Source

During the search for new sources of bioactive compounds, the chemical profiles of chloroform extracts of the latexes of ES and EC were investigated. For that purpose, liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-ESI QToF MS) in positive ion mode was employed. The total ion chromatograms of the chloroform extracts of the ES and EC latexes, obtained as a result of the analysis, are shown in Figure 1 and Figure 2, respectively.
The non-targeted screening of the ES extract allowed the detection of a total of 31 components, while a total of 49 metabolites were detected in the EC extract (Table 1 and Table 2, respectively). The chemical formulas of these components were determined based on mass accuracy, the number of double bond equivalents, the valency based on the nitrogen rule, and the isotopic pattern match of the suggested formula with the observed mass spectrum, as well chemical expertise. For a tentative identification of the metabolites, an extensive online literature search was conducted using the terms “Euphorbia, Euphorbiaceae” on SciFinder, an online database, for each proposed chemical formula. Also, the characteristic fragmentation pattern observed in the mass spectra of some of the detected metabolites allowed their closer class determination (Figures S1–S79, Supplementary Materials).
Diterpenoids were found to represent the most predominant chemical class in the examined extracts, but a smaller number of triterpene derivatives (in the EC extract) were also identified. LC-ESI QToF MS is more suitable for the analysis of diterpenes and other highly oxygenated molecules than for that of triterpene derivatives, which contain a small number of centers that can be ionized under soft ionization conditions. The weak ionization of triterpene derivatives can lead to the wrong conclusion that the presence of these compounds in the tested sample is small or negligible; however, our experience has shown that triterpenes are generally more abundant than expected, especially in non-polar extracts.
In soft ionization conditions, such as those used for recording the mass spectra of the components of the examined extracts, without additional collision energy, some compounds generate only quasimolecular ions, while other compounds spontaneously fragment (Figures S1–S79, Supplementary Materials), which indicates differences in the stability of their skeletons. Some diterpene esters produce fragment ions resulting from the neutral loss of water or acyl chains, which are not informative on the diterpene skeleton, but others, due to the presence of a different number of oxygenated groups, produce different characteristic fragment ions that could provide indications about the diterpene skeleton.

2.2. Examination of the Anticancer Activity of the ES and EC Latex Extracts

To evaluate the impact of the EC and ES extracts on the growth of human cell lines, including both normal and cancerous ones, we conducted an MTT assay. Our study included five different human cell lines, comprising two pairs of sensitive and MDR cancer cell lines (non-small cell lung carcinoma NCI-H460 and NCI-H460/R and glioblastoma U87 and U87-TxR cell lines) and normal human embryonic pulmonary fibroblasts (MRC-5). The results of the assay, which are outlined in Table 3, revealed that both EC and ES extracts had a significant impact on cancer cell growth, with IC50 values below 40 μg mL−1. However, we also observed that the efficacy of the extracts was affected by the presence of the MDR phenotype in NCI-H460/R cells. This was evidenced by a significant increase in the IC50 values for the MDR cells compared to those determined for the corresponding, sensitive NCI-H460 cells. It was also noted that this resistant profile was more pronounced in the case of the EC extract. Interestingly, both extracts were found to be almost equally effective in the sensitive U87 and MDR U87-TxR glioblastoma cells. Our analysis also indicated that the extracts were not selective towards cancer cells, as the normal MRC-5 cells exhibited lower IC50 values compared to those obtained for the cancer cells.
To investigate whether the ES and EC extracts affect the function of the P-gp pump in MDR cancer cells, the intracellular accumulation of the P-gp substrate Rho 123 was analyzed by flow cytometry after a 30 min treatment (Figure 3). Both extracts were applied at 20 µg mL−1. As shown by a marked increase in Rho 123 intracellular accumulation, the ES and EC extracts significantly inhibited P-gp function in both MDR cancer cell lines.

3. Discussion

3.1. Non-Targeted Screening of the Latex Chloroform Extracts Using Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry Employing an Electrospray Ionization Source

The soft ionization conditions applied for the LC-ESI QToF MS analysis in positive ion mode allowed, based on the precisely measured mass of molecular ions, the determination of the molecular formula of the components present in the tested latex chloroform extracts of ES and EC, while an extensive online literature search using the terms “Euphorbia, Euphorbiaceae” in SciFinder, an online database, and the characteristic fragmentation pattern observed in the corresponding mass spectra enabled the tentative identification and chemical class determination of the majority of the components (Table 1 and Table 2, Figures S1–S79, Supplementary Materials). In total, twenty components could not be tentatively identified in this way, seven of which were in the ES extract (3: C40H47NO13, tR = 6.49 min, 5: C35H40O11, tR = 7.07 min, 6: C44H47NO12, tR = 7.11 min, 19: C40H47NO11, tR = 10.21 min, 21: C42H49NO11, tR = 10.57 min, 25: C40H46O11, tR = 11.95 min, and 27: C43H50O11, tR = 12.89 min) and thirteen in the EC extract (39: C40H48O13, tR = 5.97 min, 41: C36H48O12, tR = 6.42 min, 49: C45H46O13, tR = 9.36 min, 52: C47H50O14, tR = 9.70 min, 57: C42H46O12, tR = 10.43 min, 59: C36H46O10, tR = 10.49 min, 60: C40H48O11, tR = 10.54 min, 61: C45H46O12, tR = 11.33 min, 63: C31H52O5, tR = 11.64 min, 64: C45H46O13, tR = 12.51 min, 70: C40H58O8, tR = 14.59 min, 75: C39H72O7, tR = 17.25 min, and 79: C39H54O7, tR = 18.25 min), suggesting the presence of so far undescribed compounds in the Euphorbiacea family. In addition to these, also the compound with molecular formula C22H42O4 (31 or 78, tR = 17.78 min), detected in both extracts, could not be identified, although chemical expertise suggested it to be a diester of dicarboxylic acid.
Diterpenoids were found to represent the most predominant chemical class in the examined extracts, but triterpene derivatives (in the EC extract) were also identified.
The compound with molecular formula C39H45NO12 was detected in both extracts, but at different retention times in the chromatograms (1: tR = 5.26 min in the ES extract, and 43: tR = 7.76 min in the EC extract), indicating the existence of two different metabolites. Almost half of the detected metabolites in the ES extract appeared to contain nitrogen, while in the EC extract, only three metabolites, including amino acid 32 (C7H15NO2 at tR = 1.31 min), were shown to contain nitrogen, thus indicating the presence or absence of a nicotinoyl ester group in their structures. Only three metabolites detected in the ES extract showed the same molecular formulas as myrsinanes isolated and characterized in previous research on E. seguieriana [14]; those metabolites are 4: C39H43NO11, tR = 6.52 min, 9: C35H43NO11, tR = 7.28 min, and 17: C40H45NO11, tR = 9.36 min. Ingenanes contained in the latex of E. seguierina [25,26] were not detected in our study in the ES extract. In the EC extract, only four metabolites, i.e., three ingenanes (66: C38H58O10, tR = 12.96 min, 71: C36H56O8, tR = 14.98 min, and 77: C38H60O8, tR = 17.59 min) and one triterpene (74: C30H48O2, tR = 16.18 min), showed the same molecular formulas as those of compounds isolated and characterized in previous research on E. cyparissias [30,34]. However, two jatrophane diterpenes (cyparissins A and B) with molecular formula C38H42O12, previously isolated from E. cyparissias [31], were not detected in the examined EC extract. These findings indicate the ecological importance of the collection site.
A literature survey showed that compounds 15, 18, 20, 2224, and 26 are premirsinane-, lathyrane-, or jatrophane-type diterpene esters [48,52,53,59,61,62,63,64,65,66]. In the experimental mass spectra of all these components, the fragment ions 313, 295, and 267, characteristic of ingenane esters/deoxyphorbol esters (IEs/dPEs), could be observed, once more providing evidence that other types of diterpene esters can also produce IE/dPE-like fragmentation [160]. This ambiguity did not allow the identification of compound 62, for which the mass spectrum fragment ions 313, 295, and 267 were observed, and which could have an ingenane or lathyrane skeleton [122,123,124].
Fragment ions 311, 293, and 265, characteristic of phorbol esters (PEs) [160] and some ingenanes [161], could be observed in the mass spectrum of compound 28, while, according to the literature data, the only compound with molecular formula C38H50O9 so far identified in the genus Euphorbia belong to the dPE type of diterpenes [68,69]. Similarly, the same fragment ions occurred in the mass spectrum of compound 67, while the only compound with molecular formula C37H50O8 so far identified in the Euphorbiacea family belong to the daphnane type of diterpenes [129].
In the ES extract, four pairs of isobaric compounds were detected: two compounds with molecular formula C36H46O127 at tR = 7.12 and 13 at tR = 8.39 min—and two compounds with molecular formula C41H48O1218 at tR = 9.62 and 22 at tR = 10.69 min—while only one Euphorbia/Euphorbiaceae premyrsinane with a corresponding molecular formula has been identified from each pair so far [44,51,52,53,61], in addition to two compounds with molecular formula C36H48O1210 at tR = 7.33 and 14 at tR = 8.77 min—corresponding to two known premyrsinanes [46,47,57], and two compounds with molecular formula C36H50O829 at tR = 13.92 min and 30 at tR = 14.13 min—whose mass spectra showed fragment ions corresponding to the loss of a water molecule, as well as fragment ions 313, 295, and 267. The only compound with the same molecular formula so far identified in the genus Euphorbia belongs to the PE type of diterpene esters [70,71,72,73].
In the EC extract, five pairs of isobaric compounds were detected: two compounds with molecular formula C38H44O1238 at tR = 5.94 min and 40 at tR = 6.17 min—in whose mass spectra, fragment ions corresponding to the loss of a water molecule and a benzoic acid molecule could be observed, as occurs with four known jatrophans with the same formula [77,102,103]; two compounds with molecular formula C38H42O1144 at tR = 7.88 min and 47 at tR = 8.70 min—with the observation, in the mass spectrum of the latter, of a fragment ion characteristic of the loss of benzoic acid, which is a substituent in three ingols [88,101,105] and one jatrophane [86]; two compounds with molecular formula C40H44O1248 at tR = 9.26 min and 50 at tR = 9.47 min—in whose mass spectra, fragment ions corresponding to the loss of a benzoic acid molecule, present as a substituent in two known ingols [88] and one known jatrophane [86,93,107], could be observed; two compounds with molecular formula C38H48O1254 at tR = 10.19 min and 56 at tR = 10.33 min—corresponding to two known jatropahanes [114,115] and one known myrsinane [57]; and two compounds with molecular formula C39H54O869 at tR = 14.22 min and 72 at tR = 15.63 min—corresponding to two known ingenanes [138].
Fragment ions 313, 295, and 267 could be observed in the mass spectra of compounds 65 and 66, while fragment ions 311, 293, and 265 could be observed in the mass spectra of compounds 7173. All these compounds, according to the literature data, have an ingenane or tigliane skeleton [30,113,125,126,127,128,138,139,140,141].
Compounds 33 [76,77,78], 41, and 49 produce fragment ions corresponding to the loss of a water molecule, and compounds 35, 37, 47, 48, 50, and 51 produced fragment ions corresponding to the loss of benzoic acid, which agrees with the literature data [60,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,105,107,108,109], while in the mass spectra of compounds 38, 40, and 72, fragment ions corresponding to the loss of a water molecule and benzoic acid could be observed, which also agrees with the literature data [77,102,103,138]. In the mass spectrum of compound 77, fragment ions corresponding to the loss of CO, C5H11OH, and two molecules of water could be observed, in addition to fragment ions 311, 293, and 265, which agrees with the literature data [30,128,139,156,157,158].
Compounds 27 and 61, as well compounds 64 and 70, so far undescribed in the genus Euphorbia and Euphorbiaceae family, produced fragment ions 313, 295, and 267, characteristic of the IE/dPE type of diterpenes [160], and fragment ions 311, 293, and 265, characteristic of the PE type of diterpenes and of some ingenanes [160,161].
The incomplete identification of the components present in the investigated extracts is the main drawback of this study and reflects the limitations of LC-ESI QToF MS in the annotation of compounds such as diterpene esters. For the complete identification of the components present in the examined extracts, the isolation and characterization of the compounds are required.

3.2. Examination of the Anticancer Activity of the ES and EC Latex Extracts

As shown by the analysis of the data available in the literature on the biological activities of the classes of molecules detected in the ES and EC extracts by LC-ESI QToF MS, the results obtained in this research confirmed the literature data. Our research indicated that both extracts of EC and ES have the potential to inhibit the growth of cancer cells. However, their effectiveness may be reduced in the case of MDR cancer cells, especially that of the EC extract. We discovered that both extracts could increase the accumulation of the P-gp substrate Rho123, which suggests that some compounds present in the extracts may be P-gp substrates that can also competitively inhibit P-gp activity. This is likely the reason for the decreased efficacy of the extracts in MDR cancer cells, such as MDR non-small cell carcinoma cells. Additionally, some components of the extracts are toxic to normal cells, which raises concerns about their use as anticancer agents. Nevertheless, the presence of different bioactive compounds suggests that some of them may be selective against cancer cells, while others are not. Therefore, further testing of isolated compounds is necessary to identify the best candidates as anticancer agents and lead compounds.
The potential of ES and EC to inhibit P-gp could be attributed to jatrophane derivatives identified in both extracts. In fact, the largest number of identified metabolites in the EC extract belong to the jatrophane class, while in the ES extract, jatrophane derivatives appeared to be the second most abundant metabolites. Our previous study demonstrated that jatrophane diterpenoids isolated from the latex of Euphorbia dendroides were able to modify P-gp function in three different human MDR cancer cell lines, i.e., non-small cell lung carcinoma, colorectal carcinoma, and glioblastoma cell lines [162]. Further study also showed that jatrophane diterpenoids isolated from the latex of Euphorbia nicaeensis collected in Serbia possessed P-gp-inhibiting activity in two MDR cancer cells of different origin [58]. Also, other compounds detected in the EC and ES extracts, such as lathyranes, are known as potent P-glycoprotein inhibitors in the treatment of multidrug-resistant (MDR) cancers [88,163,164]. Jo et al. determined the anti-proliferative potential of daphnane derivatives in lung cancer cells, finding IC50 values in the nM range [165]. At the same time, the tested compounds showed selectivity towards carcinoma cells compared to MRC-5 cells [165]. The difference in the IC50 values of the examined extracts for the NCI-H640 cell line and the stronger anti-cancer activity of the EC extract compared to the ES extract can be explained by the potential presence of daphnane diterpenes in the EC extract. Strong inhibitory activity against the human glioblastoma cell line U87 was demonstrated for triterpene lanostane derivatives isolated from the fungus Naematoloma fasciculare [166]. Lanostane derivatives are frequent metabolites in the Euphorbia genus; so, additional experiments and compound isolation are necessary to determine whether lanostane derivatives are responsible for the inhibitory activity of the extracts in the U87 cell line [134,167].

4. Materials and Methods

4.1. Plant Materials

The latexes of ES (N 44°59′07.0″, E 21°01′20.4″) and EC (N 45°00′00.5″, E 21°01′11.5″) were collected from wild stock in Deliblato Sands (Serbia) in May 2022. The plants were identified by Professor Marjan Niketić, Serbian Academy of Sciences and Arts, Belgrade. Voucher specimens (BEOU17883 and BEOU17893, respectively) were deposited at the Herbarium of the Natural History Museum—Belgrade (Serbia).

4.2. Chemicals

Chloroform (for HPLC, >99.8%, amylene-stabilized, Sigma-Aldrich, Saint-Quentin-Fallavier, France), dichlorometane (for HPLC, isocratic grade, stabilized with ethanol, Carlo Erba, France), acetonitrile (LiChrosolv®, hypergrade for LC-MS, Merck, Darmstadt, Germany), and deionized water (18.2 MΩcm−1, Barnstead™ Smart2Pure™ Water Purification System, Thermo Scientific™, Waltham, MA, USA) were used for sample extraction, dissolution, and preparation of the mobile phases for the LC-ESI QTOF MS analysis. Ammonium formate (puriss. p.a., eluent additive for LC-MS, Fluka, Honeywell International, Inc., Charlotte, NC, USA) and formic acid (eluent additive for LC-MS, Fluka Analytical) were used for the preparation of eluent additives for LC-ESI QTOF MS.

4.3. Sample Preparation and Liquid Chromatography-Electrospray Quadrupole Time-of-Flight Mass Spectrometry (LC-ESI QTOF MS) Measurements

Two hundred microliters of each ES and EC latex were suspended in 700 µL of chloroform (to remove macromolecular substances such as proteins and polysaccharides), followed by 5 min of shaking and separation of the chloroform layer. After evaporation of the solvent under a mild nitrogen stream, the solid residue was dissolved in 1 mL of a mixture of dichloromethane and acetonitrile (1:5, v/v), filtered through Captiva RC 0.45 mm filters (Agilent Technologies, Waldbronn, Germany), and analyzed by liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry (LC-ESI QTOF MS), as described below. For the untargeted analysis, the prepared samples were injected into the analyzing system, including a liquid chromatograph (1290 Infinity LC system; Agilent Technologies, Waldbronn, Germany) with a quaternary pump, a column oven, and an autosampler, connected to a quadrupole time-of-flight mass detector (6550 iFunnel Q-TOF MS, Agilent Technologies; Santa Clara, CA, USA) equipped with a dual-spray Agilent Jet Stream (AJS) electrospray ion source [168,169]. In this case, the separation of the compounds was performed using a Zorbax Eclipse XDB-C18 RRHT column (100 × 4.6 mm, 1.8 μm, Agilent Technologies). The mobile phase was composed of solvents A (water containing both 0.1% formic acid and 5 mM ammonium formate) and B (ACN containing 0.1% formic acid). The following gradient program was used: 0–2 min 60% B, 2–12 min 60–95% B, 12–18 min 95% B, and 5 min 60% B. The mobile phase flow rate was 0.60 mL min−1, the column temperature was 50 °C, and the injection volume of the samples was 0.1 μL. After separation, the compounds were analyzed using a mass detector. Positive ion mode was used, and the instrument was operated in accurate TOF/MS scanning mode in the m/z range of 100–2000, under the following conditions: capillary voltage, 3500 V, fragmentor voltage, 70 V, nozzle voltage, 1000 V, skimmer 1, 65 V, octupole RF peak, 750 V, desolvation gas (nitrogen) temperature, 200 °C, desolvation gas (nitrogen) flow, 14 L min−1, nebulizer pressure, 35 psi, sheath gas (nitrogen) temperature, 350 °C, and sheath gas (nitrogen) flow, 11 L min−1. A calibrating solution containing internal reference masses at m/z 121.0508 and 922.0098 was used in conjunction with an automated calibration delivery system to obtain accurate mass measurements for each peak in the total ion chromatogram. A personal computer system running Agilent MassHunter software (revisions B.06.01 and B.07.00) was used for data acquisition and processing. Extraction of the raw data (d) using both the find-by-molecular-feature (MFE) and the find-by-formula algorithms (FBF) in Agilent MassHunter Qual. software (revision B.07.00) allowed the detection of compounds in the tested samples.

4.4. Drugs

The extracts of EC and ES were kept as 20 mg mL−1 stocks in 100% ethanol at −20 °C. Working solutions were prepared in deionized water.

4.5. Cells and Cell Culture

The NCI-H460 and U87 cell lines were bought from the American Type Culture Collection, Manassas, VA, USA, while the MRC-5 cell line was obtained from the European Collection of Authenticated Cell Cultures, Salisbury, UK. NCI-H460/R and U87-TxR cells were created by exposing NCI-H460 and U87 cells to increasing concentrations of doxorubicin and paclitaxel, respectively, in order to kill sensitive cells and obtain cells resistant to many structurally and functionally unrelated drugs [170,171]. NCI-H460 and NCI-H460/R cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum, L-glutamine, and an antibiotic–antimycotic mixture, U87 and U87-TxR cells were cultured in MEM medium supplemented with 10% fetal bovine serum, L-glutamine, antibiotics, and non-essential amino acids, and MRC-5 cells were cultured in DMEM supplemented with 10% fetal bovine serum, 4 g L−1 of glucose, L-glutamine, and an antibiotic–antimycotic mixture. The cells were sub-cultured twice a week and seeded into fresh medium at a density of 8000 cells cm−2 (NCI-H460 and NCI-H460/R cells) or 16,000 cells cm−2 (U87, U87-TxR, and MRC-5 cells).

4.6. Cell Viability Assay

To determine cell viability, we employed the MTT assay, which is based on the ability of active mitochondria in living cells to reduce 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide into a formazan dye [172]. We initially seeded the cells in 96-well tissue culture plates, seeding 2000 cells/well for NCI-H460 and NCI-H460/R cells and 4000 cells/well for U87, U87-TxR, and MRC-5 cells, and incubated them overnight in appropriate medium. We then treated the cells with varying concentrations of the EC and ES extracts—1, 5, 10, 25, and 50 µg mL−1—for 72 h.
Following the treatment, we added MTT to each well at a final concentration of 0.2 mg mL−1 and left it for 4 h. We subsequently dissolved the formazan product in dimethyl sulfoxide and measured the absorbance at 570 nm using an automatic microplate reader (Multiskan Sky from Thermo Scientific, Waltham, MA, USA). Using non-linear regression analysis in GraphPad Prism 8 software, San Diego, CA, USA, we calculated the IC50 values, which represent the concentration of each extract that inhibited cell growth by 50%.

4.7. Rhodamine 123 Accumulation Assay

We conducted an investigation using flow cytometry to examine the function of P-gp, a protein that transports substances out of cells. Specifically, we wanted to see how the EC and ES extracts affected the accumulation of the P-gp substrate rhodamine 123 (Rho123) [173] in two types of P-gp-overexpressing cells (NCI-H460/R and U87-TxR) and compared the results with those from control cells (NCI-H460 and U87). To carry out the experiment, we grew all cell lines to 80% confluence in 25 cm2 flasks, collected the cells, and put them in a solution containing Rho123 (2.5 µmol L1). We immediately treated the MDR cells with the EC and ES extracts (20 µg mL1, the average IC50 calculated for all tested cancer cell lines) and incubated them at 37 °C in 5% CO2 for 30 min. After the accumulation period, we washed the samples twice, collected the cells, and analyzed them using a CytoFLEX flow cytometer (Beckman Coulter, IN, USA). The orange fluorescence of Rho123 was measured on fluorescence channel 1 (FL1) at 525 nm. We tested at least 20,000 events for each sample, and the mean fluorescence intensities were analyzed using Summit v4.3 software (Dako Colorado Inc., Fort Collins, CO, USA). We analyzed the mean ± SEM values from three independent experiments using GraphPad Prism 8 (San Diego, CA, USA) and used Sidak’s multiple comparison test for two-way ANOVA for the statistical analysis.

5. Conclusions

The selected plant species proved to be a rich source of biologically active compounds, primarily from the class of diterpenes. The small number of references on the chemical composition of these plant species, as well as the very limited number of ambiguous literature data on the mass spectra of Euphorbia diterpenes indicate the necessity of a detailed examination of the numerous compounds of this class that we detected. From the available literature data, it is known that, from E. cyparissias, two jatrophane diterpenes (cyparissins A and B) with the molecular formula C38H42O12 were isolated, which were not detected in the examined extract, which further indicates the need to investigate this plant species in more detail because habitat conditions can also significantly affect the metabolites synthesized by the plant.
Another important result from this study is the finding that the extracts obtained from E. seguieriana and E. cyparissias showed the ability to inhibit P-gp function. The results of our study may contribute to the development of more effective cancer treatments in the future.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/plants12244181/s1. Figures S1–S31: ESI (+) mass spectra of components 131, with the corresponding retention times (Table 1), obtained from the chloroform extract of the latex of E. seguieriana ssp. seguieriana Necker (ES); Figures S32–S79: ESI (+) mass spectra of components 3380, with the corresponding retention times (Table 2), obtained from the chloroform extract of the latex of E. cyparissias (EC).

Author Contributions

Conceptualization, M.J., G.K., and M.P.; methodology, M.J., G.K., and M.P.; software, M.J.; validation, M.J., G.K., A.P.-R., and M.P.; formal analysis, M.J., D.S., and E.L.; investigation, M.J., G.K., and A.P.-R.; resources, V.T. and S.M.; data curation, D.S. and G.K.; writing—original draft preparation, M.J., G.K., and A.P.-R.; writing—review and editing, M.J., V.T., S.M., and M.P.; visualization, D.S. and E.L.; supervision, M.J. and G.K.; project administration, G.K.; funding acquisition, V.T. and S.M. All authors have read and agreed to the published version of the manuscript.

Funding

This work was financially supported by the Serbian Academy of Sciences and Arts, Grant No. 01-2022, and by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Contract Nos: 451-03-47/2023-01/200007, 451-03-47/2023-01/200026, and 451-03-47/2023-01/200168.

Data Availability Statement

The data is contained within the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. DeGorter, M.K.; Xia, C.Q.; Yang, J.J.; Kim, R.B. Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 249–273. [Google Scholar] [CrossRef] [PubMed]
  2. Bueschbell, B.; Caniceiro, A.B.; Suzano, P.M.S.; Machuqueiro, M.; Rosário-Ferreira, N.; Moreira, I.S. Network biology and artificial intelligence drive the understanding of the multidrug resistance phenotype in cancer. Drug Resist. Updates 2022, 60, 100811. [Google Scholar] [CrossRef] [PubMed]
  3. Valente, A.; Podolski-Renić, A.; Poetsch, I.; Filipović, N.; López, Ó.; Turel, I.; Heffeter, P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist. Updates 2021, 58, 100778. [Google Scholar] [CrossRef] [PubMed]
  4. Nobili, S.; Landini, I.; Giglioni, B.; Mini, E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets 2006, 7, 861–879. [Google Scholar] [CrossRef] [PubMed]
  5. Dinic, J.; Podolski-Renic, A.; Stankovic, T.; Bankovic, J.; Pesic, M. New Approaches with Natural Product Drugs for Overcoming Multidrug Resistance in Cancer. Curr. Pharm. Des. 2015, 21, 5589–5604. [Google Scholar] [CrossRef] [PubMed]
  6. Aljancić, I.S.; Pesić, M.; Milosavljević, S.M.; Todorović, N.M.; Jadranin, M.; Milosavljević, G.; Povrenović, D.; Banković, J.; Tanić, N.; Marković, I.D.; et al. Isolation and biological evaluation of jatrophane diterpenoids from Euphorbia dendroides. J. Nat. Prod. 2011, 74, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
  7. Konno, K. Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry 2011, 72, 1510–1530. [Google Scholar] [CrossRef] [PubMed]
  8. Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef]
  9. Vasas, A.; Hohmann, J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef]
  10. Xu, Y.; Tang, P.; Zhu, M.; Wang, Y.; Sun, D.; Li, H.; Chen, L. Diterpenoids from the genus Euphorbia: Structure and biological activity (2013–2019). Phytochemistry 2021, 190, 112846. [Google Scholar] [CrossRef]
  11. Salomé Abarca, L.F.; Klinkhamer, P.G.L.; Choi, Y.H. Plant Latex, from Ecological Interests to Bioactive Chemical Resources. Planta Med. 2019, 85, 856–868. [Google Scholar] [CrossRef] [PubMed]
  12. Pintus, F.; Medda, R.; Rinaldi, A.C.; Spanò, D.; Floris, G. Euphorbia latex biochemistry: Complex interactions in a complex environment. Plant Biosyst. 2010, 144, 381–391. [Google Scholar] [CrossRef]
  13. Frajman, B.; Záveská, E.; Gamisch, A.; Moser, T.; STEPPE Consortium; Schönswetter, P. Integrating phylogenomics, phylogenetics, morphometrics, relative genome size and ecological niche modelling disentangles the diversification of Eurasian Euphorbia seguieriana s. l. (Euphorbiaceae). Mol. Phylogenet Evol. 2019, 134, 238–252. [Google Scholar] [CrossRef] [PubMed]
  14. Jeske, F.; Jakupovic, J.; Berendsohn, W. Diterpenes from Euphorbia seguieriana. Phytochemistry 1995, 40, 1743–1750. [Google Scholar] [CrossRef]
  15. Oksuz, S.; Gurek, F.; Qiu, S.X.; Cordell, G.A. Diterpene polyesters from Euphorbia seguieriana. J. Nat. Prod. 1998, 61, 1198–1201. [Google Scholar] [CrossRef] [PubMed]
  16. Soboleva, V.A.; Boguslavskaya, L.I. Triterpene glycosides from Euphorbia seguieriana. Farm-Zh-Kiev 1987, 2, 76–77. (In Ukranian) [Google Scholar]
  17. Litvinenko, V.I.; Sabirov, R.S.; Nazirov, Z.N. Phenolic compounds of the spurge Euphorbia seguieriana from Ustyurt. OzSSR Ilim. Akad. Karakalp. Fil. Khabarshysy Vestn. Karakalp. Fil. AN UzSSR 1975, 2, 17–19. [Google Scholar]
  18. Yener, İ.; Ölmez, Ö.T.; Ertas, A.; Yilmaz, M.A.; Firat, M.; Kandemir, S.İ.; Öztürk, M.; Kolak, U.; Temel, H. A detailed study on chemical and biological profile of nine Euphorbia species from Turkey with chemometric approach: Remarkable cytotoxicity of E. fistulasa and promising tannic acid content of E. eriophora. Ind. Crops Prod. 2018, 123, 442–453. [Google Scholar] [CrossRef]
  19. Pohl, R.; Janistyn, B. Die Flavonolglycoside von Euphorbia sequieriana. 8. Mitteilung über die Flavonoide einheimischer Euphorbiaceen [Flavonol-glycosides from Euphorbia sequieriana (author’s transl.)]. Planta Med. 1974, 26, 190–192. [Google Scholar] [CrossRef]
  20. Noori, M.; Chehreghani, A.; Kaveh, M. Flavonoids of 17 species of Euphorbia (Euphorbiaceae) in Iran. Toxicol. Environ. Chem. 2009, 91, 631–641. [Google Scholar] [CrossRef]
  21. Soboleva, V.A. Flavonoids of some Euphorbia species. Khim. Prirod. Soedinen. 1979, 6, 855–856. (In Russian) [Google Scholar]
  22. Abdulladzhanova, N.G.; Mavlyanov, S.M.; Salikhov, S.I.; Kamaev, F.G. Oligomeric proanthocyanidins from Euphorbiaceae L. O’zbekiston Resp. Fanlar Akad. Ma’ruzalari 2010, 5, 65–68. (In Russian) [Google Scholar]
  23. Soboleva, V.A.; Chagovets, R.K.; Solon’ko, V.N. Comparative study of infusions from herbs of Euphorbia seguieriana, virgata, and semivillosa obtained by different methods. Farm-Zh-Kiev 1978, 2, 89–91. (In Ukranian) [Google Scholar]
  24. Stepanyan, M.S. Some alkaloid and poison containing plants of Dzheiranchel. Izv. Akad. Nauk. Arm. SSR. Biol. Nauk. 1963, 16, 77–83. (In Russian) [Google Scholar]
  25. Upadhyay, R.R.; Zarintan, M.H.; Ansarin, M. Isolation of ingenol from the irritant and cocarcinogenic latex of Euphorbia seguieriana. Planta Med. 1976, 30, 32–34. [Google Scholar] [CrossRef] [PubMed]
  26. Upadhyay, R.R.; Zarintan, M.H.; Ansarin, M. Irritant constituents of Iranian plants. Ingenol from Euphorbia seguieriana. Planta Med. 1976, 30, 196–197. [Google Scholar] [CrossRef] [PubMed]
  27. Sytwala, S.; Günther, F.; Melzig, M.F. Lysozyme- and chitinase activity in latex bearing plants of genus Euphorbia–A contribution to plant defense mechanism. Plant Physiol. Biochem. 2015, 95, 35–40. [Google Scholar] [CrossRef]
  28. Ozbilgin, S.; Süntar, I.; Tekin, M.; Çitoğlu, G. Wound-Healing Activity of Some Species of Euphorbia L. Rec. Nat. Prod. 2018, 13, 104–113. [Google Scholar] [CrossRef]
  29. Lisch, K. Die Wirkung des Milchsaftes von Euphorbiazeen auf das Auge [The effect of the sap of Euphorbiaceae on the eye]. Klin. Monatsblätter Augenheilkd. 1980, 176, 469–471. [Google Scholar] [CrossRef]
  30. Ott, H.H.; Hecker, E. Highly irritant ingenane type diterpene esters from Euphorbia cyparissias L. Experientia 1981, 37, 88–91. [Google Scholar] [CrossRef]
  31. Lanzotti, V.; Barile, E.; Scambia, G.; Ferlini, C. Cyparissins A and B, jatrophane diterpenes from Euphorbia cyparissias as Pgp inhibitors and cytotoxic agents against ovarian cancer cell lines. Fitoterapia 2015, 104, 75–79. [Google Scholar] [CrossRef] [PubMed]
  32. Starratt, A.N. Triterpenoid constituents of Euphorbia cyparissias. Phytochemistry 1966, 5, 1341–1344. [Google Scholar] [CrossRef]
  33. Starratt, A.N. Isolation of hopenone-B from Euphorbia cyparissias. Phytochemistry 1969, 8, 1831–1832. [Google Scholar] [CrossRef]
  34. Öksüz, S.; Gil, R.R.; Chai, H.; Pezzuto, J.M.; Cordell, G.A.; Ulubelen, A. Biologically active compounds from the Euphorbiaceae; 2. Two triterpenoids of Euphorbia cyparissias. Planta Med. 1994, 60, 594–596. [Google Scholar] [CrossRef] [PubMed]
  35. Hemmers, H.; Gülz, P.; Marner, F. Tetra-and Pentacyclic Triterpenoids from Epicuticular Wax of Euphorbia cyparissias L., Euphorbiaceae. Z. Naturforsch. C 1989, 44, 563–567. [Google Scholar] [CrossRef]
  36. Cateni, F.; Zilic, J.; Falsone, G.; Kralj, B.; Loggia, R.; Sosa, S. Biologically active compounds from Euphorbiaceae; three new glycolipids with anti-inflammatory activity from Euphorbia cyparissias L. Pharm. Pharmacol. Lett. 2001, 11, 53–57. [Google Scholar]
  37. Stadtmann, H.; Pohl, R. Quercetin-3-glucuronid und Kaempferol-3-glucuronid, Hauptflavonoide in Euphorbia cyparissias L. [Quercetin-3-glucuronide and camphorol-3-glucuronide, main flavonoids in Euphorbia cyparissias L.]. Sci. Nat. 1966, 53, 362. [Google Scholar] [CrossRef] [PubMed]
  38. Karpova, E.A.; Khramova, E.P. Flavonoids of some representatives of the family Euphorbiaceae juss. Khimiya Rastit. Syr. 2009, 4, 195–196. (In Russian) [Google Scholar]
  39. Lynn, K.R.; Clevette-Radford, N.A. Three serine proteases from the latex of Euphorbia cyparissias. Phytochemistry 1985, 24, 925–928. [Google Scholar] [CrossRef]
  40. Iuracec, L. Presence of invertase in the latex of Euphorbia cyparissias L. C. R. Seances Soc. 1935, 118, 611–612. [Google Scholar]
  41. Yuan, S.; Hua, P.; Zhao, C.; Zhou, H.; Xu, J.; Xu, J.; Gu, Q. Jatrophane Diterpenoids from Euphorbia esula as inhibitors of RANKL-induced Osteoclastogenesis. J. Nat. Prod. 2020, 83, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
  42. Corea, G.; Fattorusso, E.; Lanzotti, V.; Motti, R.; Simon, P.-N.; Dumontet, C.; Di Pietro, A. Structure-Activity relationships for Euphocharacins A-L, a new series of Jatrophane Diterpenes, as Inhibitors of Cancer Cell P-Glycoprotein. Planta Med. 2004, 70, 657–665. [Google Scholar] [CrossRef] [PubMed]
  43. Flores-Giubi, E.; Geribaldi-Doldán, N.; Murillo-Carretero, M.; Castro, C.; Durán-Patrón, R.; Macías-Sánchez, A.J.; Hernández-Galán, R. Lathyrane, Premyrsinane, and Related Diterpenes from Euphorbia boetica: Effect on in Vitro Neural Progenitor Cell Proliferation. J. Nat. Prod. 2019, 82, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
  44. Song, Q.-Q.; Rao, Y.; Tang, G.-H.; Sun, Z.-H.; Zhang, J.-S.; Huang, Z.-S.; Yin, S. Tigliane Diterpenoids as a New Type of Antiadipogenic Agents Inhibit GRα-Dexras1 Axis in Adipocytes. J. Med. Chem. 2019, 62, 2060–2075. [Google Scholar] [CrossRef] [PubMed]
  45. Zarei, S.M.; Ayatollahi, A.M.; Ghanadian, M.; Kobarfard, F.; Aghaei, M.; Choudhary, M.I.; Fallahian, F. Unusual Ingenoids from Euphorbia erythradenia Bioss. with pro-Apoptotic Effects. Fitoterapia 2013, 91, 87–94. [Google Scholar] [CrossRef] [PubMed]
  46. Xu, J.; Jin, D.; Guo, Y.; Xie, C.; Ma, Y.; Yamakuni, T.; Ohizumi, Y. New Myrsinol Diterpenes from Euphorbia prolifera and Their Inhibitory Activities on LPS-Induced NO Production. Bioorg Med. Chem. Lett. 2012, 22, 3612–3618. [Google Scholar] [CrossRef] [PubMed]
  47. Wang, L.; Zang, Z.; Zhang, J.; Wu, X.; Huang, S.; Cao, P.; Zhao, Y. A new premyrsinane-type diterpenoid polyester from Euphorbia dracunculoides Lam. Rec. Nat. Prod. 2015, 9, 374–378. Available online: https://acgpubs.org/doc/2018080720420547-RNP-1409-180.pdf (accessed on 25 September 2023).
  48. Esposito, M.; Nothias, L.-F.; Retailleau, P.; Costa, J.; Roussi, F.; Neyts, J.; Leyssen, P.; Touboul, D.; Litaudon, M.; Paolini, J. Isolation of Premyrsinane, Myrsinane, and Tigliane Diterpenoids from Euphorbia pithyusa Using a Chikungunya Virus Cell-Based Assay and Analogue Annotation by Molecular Networking. J. Nat. Prod. 2017, 80, 2051–2059. [Google Scholar] [CrossRef]
  49. Zolfaghari, B.; Yazdiniapour, Z.; Ghanadian, M.; Lanzotti, V. Cyclomyrsinane and Premyrsinane Diterpenes from Euphorbia sogdiana Popov. Tetrahedron 2016, 72, 5394–5401. [Google Scholar] [CrossRef]
  50. Chen, R.; You, C.-X.; Wang, Y.; Zhang, W.-J.; Yang, K.; Geng, Z.-F.; Liu, Z.-L.; Deng, Z.-W.; Wang, Y.-Y.; Du, S.-S. Chemical Constituents from the Roots of Euphorbia nematocypha Hand.-Mazz. Biochem. Syst. Ecol. 2014, 57, 1–5. [Google Scholar] [CrossRef]
  51. Appendino, G.; Belloro, E.; Tron, G.C.; Jakupovic, J.; Ballero, M. Diterpenoids from Euphorbia pithyusa subsp. cupanii. J. Nat. Prod. 1999, 62, 1399–1404. [Google Scholar] [CrossRef]
  52. Xu, J.; Guo, Y.; Xie, C.; Li, Y.; Gao, J.; Zhang, T.; Hou, W.; Fang, L.; Gui, L. Bioactive Myrsinol Diterpenoids from the Roots of Euphorbia prolifera. J. Nat. Prod. 2011, 74, 2224–2230. [Google Scholar] [CrossRef] [PubMed]
  53. Wang, L.; Ma, Y.-T.; Sun, Q.-Y.; Li, X.-N.; Yan, Y.; Yang, J.; Yang, F.-M.; Liu, F.-Y.; Zang, Z.; Wu, X.-H.; et al. Structurally Diversified Diterpenoids from Euphorbia dracunculoides. Tetrahedron 2015, 71, 5484–5493. [Google Scholar] [CrossRef]
  54. Li, J.; Zhao, W.; Deng, L.; Li, X.-R. Components of myrsinane-type diterpenes from Euphorbia prolifera. Zhejiang Da Xue Xue Bao Yi Xue Ban 2011, 40, 380–383. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
  55. Wang, L.; Yang, J.; Chi, Y.-Q.; Ouyang, W.-B.; Zang, Z.; Huang, S.-X.; Cao, P.; Zhao, Y. A New Myrsinol-Type Diterpene Polyester from Euphorbia dracunculoides Lam. Nat. Prod. Res. 2015, 29, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
  56. Xu, J.; Kang, J.; Cao, X.; Sun, X.; Yu, S.; Zhang, X.; Sun, H.; Guo, Y. Characterization of Diterpenes from Euphorbia prolifera and Their Antifungal Activities against Phytopathogenic Fungi. J. Agric. Food Chem. 2015, 63, 5902–5910. [Google Scholar] [CrossRef] [PubMed]
  57. Vasas, A.; Forgo, P.; Orvos, P.; Tálosi, L.; Csorba, A.; Pinke, G.; Hohmann, J. Myrsinane, Premyrsinane, and Cyclomyrsinane Diterpenes from Euphorbia falcata as Potassium Ion Channel Inhibitors with Selective G Protein-Activated Inwardly Rectifying Ion Channel (GIRK) Blocking Effects. J. Nat. Prod. 2016, 79, 1990–2004. [Google Scholar] [CrossRef] [PubMed]
  58. Krstić, G.; Jadranin, M.; Todorović, N.M.; Pešić, M.; Stanković, T.; Aljančić, I.S.; Tešević, V.V. Jatrophane Diterpenoids with Multidrug-Resistance Modulating Activity from the Latex of Euphorbia nicaeensis. Phytochemistry 2018, 148, 104–112. [Google Scholar] [CrossRef] [PubMed]
  59. Xu, J.; Yang, B.; Fang, L.; Wang, S.; Guo, Y.; Yamakuni, T.; Ohizumi, Y. Four New Myrsinol Diterpenes from Euphorbia prolifera. J. Nat. Med. 2013, 67, 333–338. [Google Scholar] [CrossRef]
  60. Nothias-Esposito, M.; Nothias, L.F.; Da Silva, R.R.; Retailleau, P.; Zhang, Z.; Leyssen, P.; Roussi, F.; Touboul, D.; Paolini, J.; Dorrestein, P.C.; et al. Investigation of Premyrsinane and Myrsinane Esters in Euphorbia cupanii and Euphobia pithyusa with MS2LDA and Combinatorial Molecular Network Annotation Propagation. J. Nat. Prod. 2019, 82, 1459–1470. [Google Scholar] [CrossRef]
  61. Hegazy, M.-E.; Hamed, A.; Ibrahim, M.; Talat, Z.; Reda, E.; Abdel-Azim, N.; Hammouda, F.; Nakamura, S.; Matsuda, H.; Haggag, E.; et al. Euphosantianane A–D: Antiproliferative Premyrsinane Diterpenoids from the Endemic Egyptian Plant Euphorbia sanctae-catharinae. Molecules 2018, 23, 2221. [Google Scholar] [CrossRef] [PubMed]
  62. Matos, A.M.; Reis, M.; Duarte, N.; Spengler, G.; Molnár, J.; Ferreira, M.-J.U. Epoxylathyrol Derivatives: Modulation of ABCB1-Mediated Multidrug Resistance in Human Colon Adenocarcinoma and Mouse T-Lymphoma Cells. J. Nat. Prod. 2015, 78, 2215–2228. [Google Scholar] [CrossRef] [PubMed]
  63. Reis, M.A.; Matos, A.M.; Duarte, N.; Ahmed, O.B.; Ferreira, R.J.; Lage, H.; Ferreira, M.-J.U. Epoxylathyrane Derivatives as MDR-Selective Compounds for Disabling Multidrug Resistance in Cancer. Front. Pharmacol. 2020, 11, 599. [Google Scholar] [CrossRef] [PubMed]
  64. Sulyok, E.; Vasas, A.; Rédei, D.; Forgo, P.; Kele, Z.; Pinke, G.; Hohmann, J. New Premyrsinane-Type Diterpene Polyesters from Euphorbia falcata. Tetrahedron 2011, 67, 7289–7293. [Google Scholar] [CrossRef]
  65. Vasas, A.; Sulyok, E.; Martins, A.; Rédei, D.; Forgo, P.; Kele, Z.; Zupkó, I.; Molnár, J.; Pinke, G.; Hohmann, J. Cyclomyrsinane and Premyrsinane Diterpenes from Euphorbia falcata Modulate Resistance of Cancer Cells to Doxorubicin. Tetrahedron 2012, 68, 1280–1285. [Google Scholar] [CrossRef]
  66. Yang, L.; Shi, Y.-P.; Jia, Z.-J.; Saleh, S.; Lahham, J. Four Esters of a New Pentacyclic Diterpenoid of the Myrsinol Type from Euphorbia aleppica. J. Nat. Prod. 1995, 58, 1883–1888. [Google Scholar] [CrossRef]
  67. Zhu, J.; Wang, R.; Lou, L.; Li, W.; Tang, G.; Bu, X.; Yin, S. Jatrophane Diterpenoids as Modulators of P-Glycoprotein-Dependent Multidrug Resistance (MDR): Advances of Structure–Activity Relationships and Discovery of Promising MDR Reversal Agents. J. Med. Chem. 2016, 59, 6353–6369. [Google Scholar] [CrossRef] [PubMed]
  68. Schmidt, R.J.; Evans, F.J. Skin Irritant Effects of Esters of Phorbol and Related Polyols. Arch. Toxicol. 1980, 44, 279–289. [Google Scholar] [CrossRef]
  69. Evans, F.J.; Schmidt, R.J. The Succulent Euphorbias of Nigeria. III. Structure and Potency of the Aromatic Ester Diterpenes of Euphorbia poissonii Pax. Acta Pharmacol. Toxicol. 2009, 45, 181–191. [Google Scholar] [CrossRef]
  70. Brune, K.; Kalin, H.; Schmidt, R.; Hecker, E. Inflammatory, Tumor Initiating and Promoting Activities of Polycyclic Aromatic Hydrocarbons and Diterpene Esters in Mouse Skin as Compared with Their Prostaglandin Releasing Potency in Vitro. Cancer Lett. 1978, 4, 333–342. [Google Scholar] [CrossRef]
  71. Adolf, W.; Hecker, E. On the Active Principles of the Spurge Family, X. Skin Irritants, Cocarcinogens, and Cryptic Cocarcinogens from the Latex of the Manchineel Tree. J. Nat. Prod. 1984, 47, 482–496. [Google Scholar] [CrossRef] [PubMed]
  72. Wiriyachitra, P.; Hajiwangoh, H.; Boonton, P.; Adolf, W.; Opferkuch, H.; Hecker, E. Investigations of Medicinal Plants of Euphorbiaceae and Thymelaeaceae Occurring and Used in Thailand; II. Cryptic Irritants of the Diterpene Ester Type from Three Excoecaria Species. Planta Med. 1985, 51, 368–371. [Google Scholar] [CrossRef] [PubMed]
  73. Karalai, C.; Wiriyachitra, P.; Opferkuch, H.; Hecker, E. Cryptic and Free Skin Irritants of the Daphnane and Tigliane Types in Latex of Excoecaria agallocha. Planta Med. 1994, 60, 351–355. [Google Scholar] [CrossRef] [PubMed]
  74. Zhang, J.; Okubo, A.; Yamazaki, S. Determination of betaines in plants by low-pH capillary electrophoresis as their phenacyl esters. Bunseki Kagaku 1997, 46, 275–279. [Google Scholar] [CrossRef]
  75. Dave, R.; Gajera, H.; Ukani, P.; Shihora, M.; Antala, T.; Golakiya, B. Evaluation of Antioxidant Activity, Untargeted Metabolite Profile and Elemental Analysis of Euphorbia hirta L. Int. J. Chem. Stud. 2018, 6, 1986–1998. [Google Scholar]
  76. Nothias-Scaglia, L.-F.; Gallard, J.-F.; Dumontet, V.; Roussi, F.; Costa, J.; Iorga, B.I.; Paolini, J.; Litaudon, M. Advanced Structural Determination of Diterpene Esters Using Molecular Modeling and NMR Spectroscopy. J. Nat. Prod. 2015, 78, 2423–2431. [Google Scholar] [CrossRef]
  77. Esposito, M.; Nim, S.; Nothias, L.-F.; Gallard, J.-F.; Rawal, M.K.; Costa, J.; Roussi, F.; Prasad, R.; Di Pietro, A.; Paolini, J.; et al. Evaluation of Jatrophane Esters from Euphorbia spp. as Modulators of Candida Albicans Multidrug Transporters. J. Nat. Prod. 2017, 80, 479–487. [Google Scholar] [CrossRef] [PubMed]
  78. Kuang, X.; Li, W.; Kanno, Y.; Yamashita, N.; Nemoto, K.; Asada, Y.; Koike, K. ent-Atisane Diterpenoids from Euphorbia fischeriana Inhibit Mammosphere Formation in MCF-7 Cells. J. Nat. Med. 2016, 70, 120–126. [Google Scholar] [CrossRef]
  79. Zhang, L.; Luo, R.-H.; Wang, F.; Dong, Z.-J.; Yang, L.-M.; Zheng, Y.-T.; Liu, J.-K. Daphnane Diterpenoids Isolated from Trigonostemon thyrsoideum as HIV-1 Antivirals. Phytochemistry 2010, 71, 1879–1883. [Google Scholar] [CrossRef]
  80. Li, S.-F.; Zhang, Y.; Huang, N.; Zheng, Y.-T.; Di, Y.-T.; Li, S.-L.; Cheng, Y.-Y.; He, H.-P.; Hao, X.-J. Daphnane Diterpenoids from the Stems of Trigonostemon lii and Their Anti-HIV-1 Activity. Phytochemistry 2013, 93, 216–221. [Google Scholar] [CrossRef]
  81. Liu, F.; Yang, X.; Ma, J.; Yang, Y.; Xie, C.; Tuerhong, M.; Jin, D.-Q.; Xu, J.; Lee, D.; Ohizumi, Y.; et al. Nitric Oxide Inhibitory Daphnane Diterpenoids as Potential Anti-Neuroinflammatory Agents for AD from the Twigs of Trigonostemon thyrsoideus. Bioorg. Chem. 2017, 75, 149–156. [Google Scholar] [CrossRef]
  82. Xu, J.; Peng, M.; Sun, X.; Liu, X.; Tong, L.; Su, G.; Ohizumi, Y.; Lee, D.; Guo, Y. Bioactive Diterpenoids from Trigonostemon chinensi: Structures, NO Inhibitory Activities, and Interactions with iNOS. Bioorganic Med. Chem. Lett. 2016, 26, 4785–4789. [Google Scholar] [CrossRef] [PubMed]
  83. Abbas, M.; Jassbi, A.R.; Zahid, M.; Ali, Z.; Alam, N.; Akhtar, F.; Choudhary, M.I.; Ahmad, V.U. Three new diterpenoids from Euphorbia cheiradenia. Helv. Chim. Acta 2000, 83, 2751–2755. [Google Scholar] [CrossRef]
  84. Kosemura, S.; Shizuri, Y.; Yamamura, S. Isolation and Structures of Euphohelins, New Toxic Diterpenes from Euphorbia helioscopia L. Bull. Chem. Soc. Jpn. 1985, 58, 3112–3117. [Google Scholar] [CrossRef]
  85. Yang, Y.; Zhou, M.; Wang, D.; Liu, X.; Ye, X.; Wang, G.; Lin, T.; Sun, C.; Ding, R.; Tian, W.; et al. Jatrophane Diterpenoids from Euphorbia peplus as Multidrug Resistance Modulators with Inhibitory Effects on the ATR-Chk-1 Pathway. J. Nat. Prod. 2021, 84, 339–351. [Google Scholar] [CrossRef] [PubMed]
  86. Hasan, A.; Liu, G.-Y.; Hu, R.; Aisa, H.A. Jatrophane Diterpenoids from Euphorbia glomerulans. J. Nat. Prod. 2019, 82, 724–734. [Google Scholar] [CrossRef]
  87. Zhou, B.; Wu, Y.; Dalal, S.; Cassera, M.B.; Yue, J.-M. Euphorbesulins A–P, Structurally Diverse Diterpenoids from Euphorbia esula. J. Nat. Prod. 2016, 79, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
  88. Zhang, Y.; Fan, R.-Z.; Sang, J.; Tian, Y.-J.; Chen, J.-Q.; Tang, G.-H.; Yin, S. Ingol Diterpenoids as P-Glycoprotein-Dependent Multidrug Resistance (MDR) Reversal Agents from Euphorbia marginata. Bioorg. Chem. 2020, 95, 10354. [Google Scholar] [CrossRef] [PubMed]
  89. Valente, C.; Pedro, M.; Ascenso, J.R.; Abreu, P.M.; Nascimento, M.S.J.; Ferreira, M.-J.U. Euphopubescenol and Euphopubescene, Two New Jatrophane Polyesters, and Lathyrane-Type Diterpenes from Euphorbia pubescens. Planta Med. 2004, 70, 244–249. [Google Scholar] [CrossRef]
  90. Ferreira, M.-J.U.; Gyémánt, N.; Madureira, A.M.; Tanaka, M.; Koós, K.; Didziapetris, R.; Molnár, J. The effects of jatrophane derivatives on the reversion of MDR1- and MRP-mediated multidrug resistance in the MDA-MB-231 (HTB-26) cell line. Anticancer Res. 2005, 25, 4173–4178. [Google Scholar]
  91. Valente, C.; Pedro, M.; Duarte, A.; Nascimento, M.S.J.; Abreu, P.M.; Ferreira, M.-J.U. Bioactive Diterpenoids, a New Jatrophane and Two ent-Abietanes, and Other Constituents from Euphorbia pubescens. J. Nat. Prod. 2004, 67, 902–904. [Google Scholar] [CrossRef] [PubMed]
  92. Hohmann, J.; Rédei, D.; Forgo, P.; Molnár, J.; Dombi, G.; Zorig, T. Jatrophane Diterpenoids from Euphorbia mongolica as Modulators of the Multidrug Resistance of L5128 Mouse Lymphoma Cells. J. Nat. Prod. 2003, 66, 976–979. [Google Scholar] [CrossRef] [PubMed]
  93. Rouzimaimaiti, R.; Maimaitijiang, A.; Yang, H.; Aisa, H.A. Jatrophane Diterpenoids from Euphorbia microcarpa (Prokh.) Krylov with Multidrug Resistance Modulating Activity. Phytochemistry 2022, 204, 113444. [Google Scholar] [CrossRef] [PubMed]
  94. Ahmad, V.; Jassbi, A. Three Tricyclic Diterpenoids from Euphorbia decipiens. Planta Med. 1998, 64, 732–735. [Google Scholar] [CrossRef] [PubMed]
  95. Zahid, M.; Husani, S.R.; Abbas, M.; Pan, Y.; Jassbi, A.R.; Asim, M.; Parvez, M.; Voelter, W.; Ahmad, V.U. Eight New Diterpenoids from Euphorbia decipiens. Helv. Chim. Acta 2001, 84, 1980–1988. [Google Scholar] [CrossRef]
  96. Ahmad, V.U.; Jassbi, A.R. Two Pentacyclic Diterpene Esters from Euphorbia decipiens. Phytochemistry 1998, 48, 1217–1220. [Google Scholar] [CrossRef]
  97. Ahmad, V.U.; Hussain, H.; Jassbi, A.R.; Zahid, M.; Hussain, J.; Bukhari, I.A.; Yasin, A.; Choudhary, M.I. Three new diterpenoids from Euphorbia decipiens. Pol. J. Chem. 2002, 76, 1699–1706. [Google Scholar] [CrossRef]
  98. Ahmad, V.U.; Hussain, H.; Jassbi, A.R.; Hussain, J.; Bukhari, I.A.; Yasin, A.; Aziz, N.; Choudhary, M.I. New Bioactive Diterpene Polyesters from Euphorbia decipiens. J. Nat. Prod. 2003, 66, 1221–1224. [Google Scholar] [CrossRef]
  99. Ahmad, V.U.; Hussain, J.; Hussain, H.; Jassbi, A.R.; Ullah, F.; Lodhi, M.A.; Yasin, A.; Choudhary, M.I. First Natural Urease Inhibitor from Euphorbia decipiens. Chem. Pharm. Bull. 2003, 51, 719–723. [Google Scholar] [CrossRef]
  100. Lin, L.-J.; Kinghorn, A.D. 8-Methoxyingol Esters from the Latex of Euphorbia hermentiana. Phytochemistry 1983, 22, 2795–2799. [Google Scholar] [CrossRef]
  101. Liu, W.-X.; Zhang, Y.-J.; Zhou, M.; Zhao, P. A New Ingol Diterpenoid from the Seeds of Euphorbia marginata Pursh. Nat. Prod. Res. 2023, 37, 63–67. [Google Scholar] [CrossRef] [PubMed]
  102. Manners, G.D.; Wong, R.Y. The Absolute Stereochemical Characterization of Two New Jatrophane Diterpenes from Euphorbia esula. J. Chem. Soc. Perkin Trans. 1 1985, 0, 2075–2081. [Google Scholar] [CrossRef]
  103. Esposito, M.; Nothias, L.-F.; Nedev, H.; Gallard, J.-F.; Leyssen, P.; Retailleau, P.; Costa, J.; Roussi, F.; Iorga, B.I.; Paolini, J.; et al. Euphorbia dendroides Latex as a Source of Jatrophane Esters: Isolation, Structural Analysis, Conformational Study, and Anti-CHIKV Activity. J. Nat. Prod. 2016, 79, 2873–2882. [Google Scholar] [CrossRef] [PubMed]
  104. Wang, W.; Wu, Y.; Li, C.; Yang, Y.; Li, X.; Li, H.; Chen, L. Synthesis of New Lathyrane Diterpenoid Derivatives from Euphorbia lathyris and Evaluation of Their Anti-Inflammatory Activities. Chem. Biodivers. 2020, 17, e1900531. [Google Scholar] [CrossRef] [PubMed]
  105. Huang, D.; Wang, R.-M.; Li, W.; Zhao, Y.-Y.; Yuan, F.-Y.; Yan, X.-L.; Chen, Y.; Tang, G.-H.; Bi, H.-C.; Yin, S. Lathyrane Diterpenoids as Novel hPXR Agonists: Isolation, Structural Modification, and Structure–Activity Relationships. ACS Med. Chem. Lett. 2021, 12, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
  106. Hasan, A.; Tang, D.; Nijat, D.; Yang, H.; Aisa, H.A. Diterpenoids from Euphorbia glomerulans with Potential Reversal Activities against P-Glycoprotein-Mediated Multidrug Resistance. Bioorg. Chem. 2021, 117, 105442. [Google Scholar] [CrossRef] [PubMed]
  107. Shokoohinia, Y.; Chianese, G.; Zolfaghari, B.; Sajjadi, S.-E.; Appendino, G.; Taglialatela-Scafati, O. Macrocyclic Diterpenoids from the Iranian Plant Euphorbia bungei Boiss. Fitoterapia 2011, 82, 317–322. [Google Scholar] [CrossRef] [PubMed]
  108. Lu, J.; Li, G.; Huang, J.; Zhang, C.; Zhang, L.; Zhang, K.; Li, P.; Lin, R.; Wang, J. Lathyrane-Type Diterpenoids from the Seeds of Euphorbia lathyris. Phytochemistry 2014, 104, 79–88. [Google Scholar] [CrossRef]
  109. Li, X.-L.; Li, Y.; Wang, S.-F.; Zhao, Y.-L.; Liu, K.-C.; Wang, X.-M.; Yang, Y.-P. Ingol and Ingenol Diterpenes from the Aerial Parts of Euphorbia royleana and Their Antiangiogenic Activities. J. Nat. Prod. 2009, 72, 1001–1005. [Google Scholar] [CrossRef]
  110. Kupchan, S.M.; Uchida, I.; Branfman, A.R.; Dailey, R.G.; Fei, B.Y. Antileukemic Principles Isolated from Euphorbiaceae Plants. Science 1976, 191, 571–572. [Google Scholar] [CrossRef]
  111. Gotta, H.; Adolf, W.; Opferkuch, H.J.; Hecker, E. On the Active Principles of the Euphorbiaceae, IX. Ingenane Type Diterpene Esters from Five Euphorbia Species. Z. Naturforsch. B 1984, 39, 683–694. [Google Scholar] [CrossRef]
  112. Morgenstern, T.; Bittner, M.; Silva, M.; Aqueveque, P.; Jakupovic, J. Diterpenes and Phloracetophenones from Euphorbia portulacoides. Phytochemistry 1996, 41, 1149–1153. [Google Scholar] [CrossRef]
  113. Zayed, S.; Sorg, B.; Hecker, E. Structure Activity Relations of Polyfunctional Diterpenes of the Tigliane Type, VL Irritant and tumor-promoting activities of semisynthetic mono and diesters of 12-deoxyphorbol. Planta Med. 1984, 50, 65–69. [Google Scholar] [CrossRef] [PubMed]
  114. Hohmann, J.; Rédei, D.; Evanics, F.; Kálmán, A.; Argay, G.; Bartók, T. Serrulatin A and B, New Diterpene Polyesters from Euphorbia serrulata. Tetrahedron 2000, 56, 3619–3623. [Google Scholar] [CrossRef]
  115. Rédei, D.; Hohmann, J.; Evanics, F.; Forgo, P.; Szabó, P.; Máthé, I. Isolation and Structural Characterization of New, Highly Functionalized Diterpenes from Euphorbia serrulata. Helv. Chim. Acta 2003, 86, 280–289. [Google Scholar] [CrossRef]
  116. Yamamura, S.; Kosemura, S.; Ohba, S.; Ito, M.; Saito, Y. The Isolation and Structures of Euphoscopins a and b. Tetrahedron Lett. 1981, 22, 5315–5318. [Google Scholar] [CrossRef]
  117. Yamamura, S.; Shizuri, Y.; Kosemura, S.; Ohtsuka, J.; Tayama, T.; Ohba, S.; Ito, M.; Saito, Y.; Terada, Y. Diterpenes from Euphorbia helioscopia. Phytochemistry 1989, 28, 3421–3436. [Google Scholar] [CrossRef]
  118. Appendino, G.; Spagliardi, P.; Ballero, M.; Seu, G. Macrocyclic Diterpenoids from Euphorbia hyberna L. subsp. insularis and Their Reaction with Oxyphilic Reagents. Fitoterapia 2002, 73, 576–582. [Google Scholar] [CrossRef]
  119. Liu, C.; Liao, Z.; Liu, S.; Qu, Y.; Wang, H. Two New Diterpene Derivatives from Euphorbia lunulata Bge and Their Anti-Proliferative Activities. Fitoterapia 2014, 96, 33–38. [Google Scholar] [CrossRef]
  120. Valente, C.; Ferreira, M.J.; Abreu, P.M.; Pedro, M.; Cerqueira, F.; Nascimento, M.S. Three New Jatrophane-Type Diterpenes from Euphorbia pubescens. Planta Med. 2003, 69, 361–366. [Google Scholar] [CrossRef]
  121. El-Bassuony, A. Antibacterial Activity of New Polyester Diterpenes from Euphorbia guyoniana. Asian J. Chem. 2007, 19, 4553–4562. [Google Scholar]
  122. Lu, Z.-Q.; Yang, M.; Zhang, J.-Q.; Chen, G.-T.; Huang, H.-L.; Guan, S.-H.; Ma, C.; Liu, X.; Guo, D.-A. Ingenane Diterpenoids from Euphorbia esula. Phytochemistry 2008, 69, 812–819. [Google Scholar] [CrossRef] [PubMed]
  123. Sobottka, A.M.; Görick, C.; Melzig, M.F. Analysis of Diterpenoid Compounds from the Latex of Two Euphorbiaceae by Liquid Chromatography–electrospray Ionisation Mass Spectrometry. Nat. Prod. Res. 2016, 30, 1941–1944. [Google Scholar] [CrossRef]
  124. Uemura, D.; Nobuhara, K.; Nakayama, Y.; Shizuri, Y.; Hirata, Y. The Structure of New Lathyrane Diterpenes, Jolkinols a, b, c, and d, from Euphorbia jolkini Boiss. Tetrahedron Lett. 1976, 17, 4593–4596. [Google Scholar] [CrossRef]
  125. Halaweish, F.T.; Kronberg, S.; Hubert, M.B.; Rice, J.A. Toxic and Aversive Diterpenes of Euphorbia esula. J. Chem. Ecol. 2002, 28, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
  126. Baloch, I.B.; Baloch, M.K.; Saqib, Q.N.U. Anti-Tumor 12-Deoxyphorbol Esters from Euphorbia cornigera. Eur. J. Med. Chem. 2008, 43, 274–281. [Google Scholar] [CrossRef] [PubMed]
  127. Fürstenberger, G.; Hecker, E. On the Active Principles of the Spurge Family (Euphorbiaceae) XI. [1] The Skin Irritant and Tumor Promoting Diterpene Esters of Euphorbia tirucalli L. Originating from South Africa. Z. Naturforschung C 1985, 40, 631–646. [Google Scholar] [CrossRef]
  128. Kim, D.; Jung, S.; Ryu, H.W.; Choi, M.; Kang, M.; Kang, H.; Yuk, H.J.; Jeong, H.; Baek, J.; Song, J.-H.; et al. Selective Oncolytic Effect in Epstein-Barr Virus (EBV)-Associated Gastric Carcinoma through Efficient Lytic Induction by Euphorbia Extracts. J. Funct. Foods 2018, 42, 146–158. [Google Scholar] [CrossRef]
  129. Dagang, W.; Sorg, B.; Adolf, W.; Opferkuch, H.J.; Seip, E.H.; Hecker, E. Oligo- and Macrocyclic Diterpenes in Thymelaeaceae and Euphorbiaceae Occurring and Utilized in Yunnan (Southwest China) 4. Tigliane Type Diterpene Esters (Phorbol–12,13-Diesters) from Wikstroemia canescens. Phytother. Res. 1993, 7, 194–196. [Google Scholar] [CrossRef]
  130. Tanaka, R.; Matsunaga, S. Supinenolones A, B and C, Fernane Type Triterpenoids from Euphorbia supina. Phytochemistry 1989, 28, 3149–3154. [Google Scholar] [CrossRef]
  131. Tanaka, R.; Matsunaga, S. Fernane and Unusually Migrated Fernane Triterpene-Triones from Euphorbia supina. Phytochemistry 1991, 30, 293–296. [Google Scholar] [CrossRef]
  132. Matsunaga, S.; Morita, R.; Ishida, T.; Inoue, M.; Shigi, M.; Miyamae, A. The Structure of Spirosupinanonediol, a Triterpenoid Bearing a Novel Skeletal System from Euphorbia supina. J. Chem. Soc. Chem. Commun. 1984, 16, 1128–1129. [Google Scholar] [CrossRef]
  133. Tanaka, R.; Kasubuchi, K.; Kita, S.; Matsunaga, S. Obtusifoliol and Related Steroids from the Whole Herb of Euphorbia chamaesyce. Phytochemistry 1999, 51, 457–463. [Google Scholar] [CrossRef]
  134. Lu, Z.-Q.; Chen, G.-T.; Zhang, J.-Q.; Huang, H.-L.; Guan, S.-H.; Guo, D.-A. Four New Lanostane Triterpenoids from Euphorbia humifusa. Helv. Chim. Acta 2007, 90, 2245–2250. [Google Scholar] [CrossRef]
  135. Li, J.; Wang, W.; Song, W.; Xuan, L. (19 α H)-Lupane and (9 β H)-Lanostane Triterpenes from Euphorbia helioscopia Trigger Apoptosis of Tumor Cell. Fitoterapia 2018, 125, 24–32. [Google Scholar] [CrossRef]
  136. Yuan, F.-Y.; Xu, F.; Fan, R.-Z.; Li, W.; Huang, D.; Tang, G.-H.; Yuan, T.; Gan, L.-S.; Yin, S. Structural Elucidation of Three 9,11-Seco Tetracyclic Triterpenoids Enables the Structural Revision of Euphorol J. J. Org. Chem. 2021, 86, 7588–7593. [Google Scholar] [CrossRef] [PubMed]
  137. Gao, J.; Aisa, H.A. Terpenoids from Euphorbia soongarica and Their Multidrug Resistance Reversal Activity. J. Nat. Prod. 2017, 80, 1767–1775. [Google Scholar] [CrossRef]
  138. Wang, L.-Y.; Wang, N.-L.; Yao, X.-S.; Miyata, S.; Kitanaka, S. Diterpenes from the Roots of Euphorbia kansui and Their in vitro Effects on the Cell Division of Xenopus (2). Chem. Pharm. Bull. 2003, 51, 935–941. [Google Scholar] [CrossRef]
  139. Baloch, I.B.; Baloch, M.K. Isolation and Characterization of Cytotoxic Compounds from Euphorbia cornigera Boiss. J. Asian Nat. Prod. Res. 2010, 12, 985–991. [Google Scholar] [CrossRef]
  140. Ito, Y.; Kawanishi, M.; Harayama, T.; Takabayashi, S. Combined Effect of the Extracts from Croton tiglium, Euphorbia lathyris or Euphorbia tirucalli and n-Butyrate on Epstein-Barr Virus Expression in Human Lymphoblastoid P3HR-1 and Raji Cells. Cancer Lett. 1981, 12, 175–180. [Google Scholar] [CrossRef]
  141. Fujiwara, M.; Ijichi, K.; Tokuhisa, K.; Katsuura, K.; Wang, G.-Y.-S.; Uemura, D.; Shigeta, S.; Konno, K.; Yokota, T.; Baba, M. Ingenol Derivatives Are Highly Potent and Selective Inhibitors of HIV Replication in vitro. Antivir. Chem. Chemother. 1996, 7, 230–236. [Google Scholar] [CrossRef]
  142. De Pascual, T.J.; Urones, J.G.; Marcos, I.S.; Basabe, P.; Sexmero Cuadrado, M.J.; Fernandez Moro, R. Triterpenes from Euphorbia broteri. Phytochemistry 1987, 26, 1767–1776. [Google Scholar] [CrossRef]
  143. Li, J.-C.; Li, S.-Y.; Tang, J.-X.; Liu, D.; Feng, X.-Y.; Rao, K.-R.; Zhao, X.-D.; Li, H.-M.; Li, R.-T. Triterpenoids, Steroids and Other Constituents from Euphorbia kansui and Their Anti-Inflammatory and Anti-Tumor Properties. Phytochemistry 2022, 204, 113449. [Google Scholar] [CrossRef] [PubMed]
  144. Fang, C.-H.; Li, Y.-P.; Li, Y.; Yue, J.-M.; Bao, J.; Yu, J.-H. Triterpenoids with Multi-Skeletons as 11 β -HSD1 Inhibitors from Euphorbia sikkimensis. Phytochemistry 2023, 211, 113684. [Google Scholar] [CrossRef] [PubMed]
  145. Yu, C.-X.; Wang, R.-Y.; Qi, F.-M.; Su, P.-J.; Yu, Y.-F.; Li, B.; Zhao, Y.; Zhi, D.-J.; Zhang, Z.-X.; Fei, D.-Q. Eupulcherol A, a Triterpenoid with a New Carbon Skeleton from Euphorbia pulcherrima, and Its Anti-Alzheimer’s Disease Bioactivity. Org. Biomol. Chem. 2020, 18, 76–80. [Google Scholar] [CrossRef] [PubMed]
  146. Wei, J.-C.; Huang, H.-H.; Zhong, N.-F.; Gao, Y.-N.; Liu, X.-L.; Long, G.-Q.; Hu, G.-S.; Wang, A.-H.; Jia, J.-M. Euphorfistrines A-G, Cytotoxic and AChE Inhibiting Triterpenoids from the Roots of Euphorbia fischeriana. Bioorg. Chem. 2021, 116, 105395. [Google Scholar] [CrossRef] [PubMed]
  147. Tanaka, R.; Matsunaga, S. Triterpene Constituents from Euphorbia supina. Phytochemistry 1988, 27, 3579–3584. [Google Scholar] [CrossRef]
  148. Guo, J.; He, H.-P.; Fang, X.; Di, Y.-T.; Li, S.-L.; Zhang, Z.; Leng, Y.; Hua, H.-M.; Hao, X.-J. Kansuinone, a Novel Euphane-Type Triterpene from Euphorbia kansui. Tetrahedron Lett. 2010, 51, 6286–6289. [Google Scholar] [CrossRef]
  149. Wang, L.-Y.; Wang, N.-L.; Yao, X.-S.; Miyata, S.; Kitanaka, S. Euphane and Tirucallane Triterpenes from the Roots of Euphorbia kansui and Their in Vitro Effects on the Cell Division of Xenopus. J. Nat. Prod. 2003, 66, 630–633. [Google Scholar] [CrossRef]
  150. Madureira, A.M.; Gyémánt, N.; Ascenso, J.R.; Abreu, P.M.; Molnár, J.; Ferreira, M.-J.U. Euphoportlandols A and B, Tetracylic Diterpene Polyesters from Euphorbia portlandica and Their Anti-MDR Effects in Cancer Cells. J. Nat. Prod. 2006, 69, 950–953. [Google Scholar] [CrossRef]
  151. Hu, R.; Sang, J.; Li, W.; Tian, Y.; Zou, M.-F.; Tang, G.-H.; Yin, S. Structurally Diverse Triterpenoids with Cytotoxicity from Euphorbia hypericifolia. Fitoterapia 2021, 151, 104888. [Google Scholar] [CrossRef] [PubMed]
  152. Ravikanth, V.; Niranjan Reddy, V.L.; Prabhakar Rao, T.; Diwan, P.V.; Ramakrishna, S.; Venkateswarlu, Y. Macrocyclic Diterpenes from Euphorbia nivulia. Phytochemistry 2002, 59, 331–335. [Google Scholar] [CrossRef] [PubMed]
  153. Aghaei, M.; Yazdiniapour, Z.; Ghanadian, M.; Zolfaghari, B.; Lanzotti, V.; Mirsafaee, V. Obtusifoliol Related Steroids from Euphorbia sogdiana with Cell Growth Inhibitory Activity and Apoptotic Effects on Breast Cancer Cells (MCF-7 and MDA-MB231). Steroids 2016, 115, 90–97. [Google Scholar] [CrossRef] [PubMed]
  154. Latansio De Oliveira, T.; Fontana, P.D.; Bavia, L.; Cruz, L.S.; Crisma, A.R.; Sassaki, G.L.; Alencar Menezes, L.R.; Wang, M.; Beltrame, F.L.; Messias-Reason, I.J. Effects of Euphorbia umbellata Extracts on Complement Activation and Chemotaxis of Neutrophils. J. Ethnopharmacol. 2021, 265, 113348. [Google Scholar] [CrossRef] [PubMed]
  155. Yang, D.-S.; Peng, W.-B.; Li, Z.-L.; Wang, X.; Wei, J.-G.; He, Q.-X.; Yang, Y.-P.; Liu, K.-C.; Li, X.-L. Chemical Constituents from Euphorbia stracheyi and Their Biological Activities. Fitoterapia 2014, 97, 211–218. [Google Scholar] [CrossRef] [PubMed]
  156. Uemura, D.; Hirata, Y.; Yuh-Pan, C.; Hong-Yen, H. 13-Oxygenol derivative, a new diterpene isolated from Euphorbia kansui. Tetrahedron Lett. 1974, 15, 2529–2532. [Google Scholar] [CrossRef]
  157. Wang, P.; Lu, P.; Qu, X.; Shen, Y.; Zeng, H.; Zhu, X.; Zhu, Y.; Li, X.; Wu, H.; Xu, J.; et al. Reactivation of HIV-1 from Latency by an Ingenol Derivative from Euphorbia kansui. Sci. Rep. 2017, 7, 9451. [Google Scholar] [CrossRef]
  158. Takeda, N.; Suzuki, M.; Tatematsu, A.; Ohigashi, H.; Koshimizu, K. Desorption Chemical Ionization Mass Spectrometry of Phorbol Esters. Biol. Mass. Spectrom. 1991, 20, 31–39. [Google Scholar] [CrossRef]
  159. Khiev, P.; Kim, J.W.; Sung, S.J.; Song, H.-H.; Choung, D.-H.; Chin, Y.-W.; Lee, H.-K.; Oh, S.-R. Ingenane-Type Diterpenes with a Modulatory Effect on IFN-γ Production from the Roots of Euphorbia kansui. Arch. Pharm. Res. 2012, 35, 1553–1558. [Google Scholar] [CrossRef]
  160. Nothias-Scaglia, L.-F.; Schmitz-Afonso, I.; Renucci, F.; Roussi, F.; Touboul, D.; Costa, J.; Litaudon, M.; Paolini, J. Insights on Profiling of Phorbol, Deoxyphorbol, Ingenol and Jatrophane Diterpene Esters by High Performance Liquid Chromatography Coupled to Multiple Stage Mass Spectrometry. J. Chromatogr. A 2015, 1422, 128–139. [Google Scholar] [CrossRef]
  161. Yang, M.; Lu, Z.; Yu, K.; Wang, Q.; Chen, X.; Li, Y.; Liu, X.; Wu, W.; Guo, D. Studies on the Fragmentation Pathways of Ingenol Esters Isolated from Euphorbia esula Using IT-MSn and Q-TOF-MS/MS Methods in Electrospray Ionization Mode. Int. J. Mass. Spectrom. 2012, 323–324, 55–62. [Google Scholar] [CrossRef]
  162. Jadranin, M.; Pešić, M.; Aljančić, I.S.; Milosavljević, S.M.; Todorović, N.M.; Podolski-Renić, A.; Banković, J.; Tanić, N.; Marković, I.; Vajs, V.E.; et al. Jatrophane diterpenoids from the latex of Euphorbia dendroides and their anti-P-glycoprotein activity in human multi-drug resistant cancer cell lines. Phytochemistry 2013, 86, 208–217. [Google Scholar] [CrossRef] [PubMed]
  163. Reis, M.; Ferreira, R.J.; Santos, M.M.; dos Santos, D.J.; Molnár, J.; Ferreira, M.J. Enhancing macrocyclic diterpenes as multidrug-resistance reversers: Structure-activity studies on jolkinol D derivatives. J. Med. Chem. 2013, 56, 748–760. [Google Scholar] [CrossRef] [PubMed]
  164. Jiao, W.; Wan, Z.; Chen, S.; Lu, R.; Chen, X.; Fang, D.; Wang, J.; Pu, S.; Huang, X.; Gao, H.; et al. Lathyrol diterpenes as modulators of P-glycoprotein dependent multidrug resistance: Structure-activity relationship studies on Euphorbia factor L3 derivatives. J. Med. Chem. 2015, 58, 3720–3738. [Google Scholar] [CrossRef] [PubMed]
  165. Jo, S.-K.; Hong, J.-Y.; Park, H.J.; Lee, S.K. Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells. Biomol. Ther. 2012, 20, 513–519. [Google Scholar] [CrossRef] [PubMed]
  166. Shi, X.-W.; Li, X.-J.; Gao, J.-M.; Zhang, X.-C. Fasciculols H and I, two lanostane derivatives from Chinese mushroom Naematoloma fasciculare. Chem. Biodivers. 2011, 8, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
  167. Li, M.-M.; Qi, Y.-R.; Feng, Y.-P.; Liu, W.; Yuan, T. Four new lanostane triterpenoids from latex of Euphorbia resinifera. Zhongguo Zhong Yao Za Zhi 2021, 46, 4744–4748. (In Chinese) [Google Scholar] [CrossRef]
  168. Jadranin, M.; Cvetković, M.; Đorđević, I.; Krstić, G.; Tešević, V.; Milosavljević, S. New insights into sesquiterpene lactones composition of Western Balkan’s genus Amphoricarpos revealed by rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Maced. Pharm. Bull. 2022, 68, 71–72. [Google Scholar] [CrossRef]
  169. Janjić, G.V.; Marinović, S.R.; Jadranin, M.B.; Ajduković, M.J.; Đorđević, I.S.; Petković-Benazzouz, M.M.; Milutinović-Nikolić, A.D. Degradation of tartrazine by Oxone® in the presence of cobalt based catalyst supported on pillared montmorillonite—Efficient technology even in extreme conditions. Environ. Pollut. 2023, 331, 121863. [Google Scholar] [CrossRef]
  170. Pesic, M.; Markovic, J.Z.; Jankovic, D.; Kanazir, S.; Markovic, I.D.; Rakic, L.; Ruzdijic, S. Induced resistance in the human non small cell lung carcinoma (NCI-H460) cell line in vitro by anticancer drugs. J. Chemother. 2006, 18, 66–73. [Google Scholar] [CrossRef]
  171. Podolski-Renić, A.; Andelković, T.; Banković, J.; Tanić, N.; Ruždijić, S.; Pešić, M. The role of paclitaxel in the development and treatment of multidrug resistant cancer cell lines. Biomed. Pharmacother. 2011, 65, 345–353. [Google Scholar] [CrossRef]
  172. Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef]
  173. Jouan, E.; Le Vée, M.; Mayati, A.; Denizot, C.; Parmentier, Y.; Fardel, O. Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay. Pharmaceutics 2016, 8, 12. [Google Scholar] [CrossRef]
Figure 1. Total ion chromatogram of the chloroform extract of the latex of E. seguieriana ssp. seguieriana Necker (ES).
Figure 1. Total ion chromatogram of the chloroform extract of the latex of E. seguieriana ssp. seguieriana Necker (ES).
Plants 12 04181 g001
Figure 2. Total ion chromatogram of the chloroform extract of the latex of E. cyparissias (EC).
Figure 2. Total ion chromatogram of the chloroform extract of the latex of E. cyparissias (EC).
Plants 12 04181 g002
Figure 3. Flow cytometric profiles of Rho123 accumulation in NCI-H460/R (a) and U87-TxR (b) cells untreated and treated with 20 µg mL−1 of the ES and EC extracts. Sensitive NCI-H460 and U87 cells were used as a positive control for Rho 123 accumulation. Two independent experiments were performed (a minimum of 10,000 events were collected for each experimental sample).
Figure 3. Flow cytometric profiles of Rho123 accumulation in NCI-H460/R (a) and U87-TxR (b) cells untreated and treated with 20 µg mL−1 of the ES and EC extracts. Sensitive NCI-H460 and U87 cells were used as a positive control for Rho 123 accumulation. Two independent experiments were performed (a minimum of 10,000 events were collected for each experimental sample).
Plants 12 04181 g003
Table 1. Tentative identification of the components of the chloroform extract of the latex of E. seguieriana ssp. seguieriana Necker (ES) by LC-QToF MS according to the literature data available in SciFinder, an online database.
Table 1. Tentative identification of the components of the chloroform extract of the latex of E. seguieriana ssp. seguieriana Necker (ES) by LC-QToF MS according to the literature data available in SciFinder, an online database.
No.RT (min)Ion Speciesm/z
Measured
Molecular Mass MeasuredProposed FormulaMolecular Mass CalculatedDiff. (ppm)Compound (CAS No.) [Ref.]Class
15.26[M+H]+
[M+Na]+
[M+K]+
720.3018
742.2834
758.2570
719.2944C39H45NO12719.29420.292595240-63-2 [41]
2595235-60-0 [41]
2595235-05-3 [41]
2595233-36-4 [41]
777896-12-5 [42]
2408424-43-9 [43]
2342577-75-5 [44]
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Premyrsinane
Premyrsinane
26.27[M+H]+
[M+Na]+
[M+K]+
734.3173
756.2992
772.2729
733.3155C40H47NO12733.30982.281615711-25-5 [45]
1380589-96-7 [44,46,47]
2112824-86-7 [48]
1980015-12-0 [49]
1778734-87-4 [50]
Tetrahydroingenoid
Premyrsinane
Premyrsinane
Premyrsinane
Premyrsinane
3 *6.49[M+H]+
[M+Na]+
[M+K]+
750.3124
772.2927
788.2673
749.3039C40H47NO13749.3047−1.11//
46.52[M+H]+
[M+NH4]+
[M+Na]+
717.3019
734.3173
739.2826
716.2928C39H44N2O11716.2945−2.35171864-09-8 [14,46]Myrsinane
5 *7.07[M+H]+
[M+NH4]+
637.2615
654.2910
636.2570C35H40O11636.2571−0.04//
6 *7.11[M+H]+
[M+Na]+
[M+K]+
782.3168
804.2986
820.2721
781.3094C44H47NO12781.3098−0.54//
7 *7.12[M+H]+
[M+Na]+
[M+K]+
671.3060
693.2894
709.2617
670.2991C36H46O12670.29890.26247099-10-1 [44,51,52,53]Premyrsinane
8 *7.24[M+H]+
[M+Na]+
[M+K]+
790.3072
812.2888
828.2625
789.2997C42H47NO14789.29970.121380590-01-1 [46]Cyclomyrsinane
9 *7.28[M+H]+
[M+NH4]+
654.2911
671.3058
653.2837C35H43NO11653.28360.14171864-14-5 [14,54,55]
1799735-20-8 [56]
Myrsinane
Myrsinane
107.33[M+H]+
[M+Na]+
[M+K]+
748.3331
770.3146
786.2883
747.3256C41H49NO12747.32550.171928726-37-7 [47,57]
1380589-97-8 [46,47]
Premyrsinane
Premyrsinane
117.67[M+H]+
[M+Na]+
[M+K]+
734.3175
756.2991
772.2719
733.3101C40H47NO12733.30980.401615711-25-5 [45]
1380589-96-7 [44,46,47]
2112824-86-7 [48]
1980015-12-0 [49]
1778734-87-4 [50]
Ingenoid
Premyrsinane
Premyrsinane
Premyrsinane
Premyrsinane
128.12[M+H]+
[M+Na]+
656.3064
678.2878
655.2991C35H45NO11655.2993−0.322222920-06-9 [58]Jatrophane
138.39[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
671.3063
688.3329
693.2884
709.2621
1363.5871
670.2990C36H46O12670.29890.15247099-10-1 [44,51,52,53]Premyrsinane
14 *8.77[M+H]+
[M+Na]+
[M+K]+
748.3332
770.3149
786.2886
747.3257C41H49NO12747.32550.371928726-37-7 [47,57]
1380589-97-8 [46,47]
Premyrsinane
Premyrsinane
159.08[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
[2M+K]+
629.2948
646.3220
651.2777
667.2511
1279.5629
1295.5367
628.2882C34H44O11628.2884−0.232112824-87-8 [48]
1801541-77-4 [53]
Premyrsinane
Premyrsinane
16 *9.34[M+H]+
[M+Na]+
[M+K]+
704.3074
726.2892
742.2619
703.2999C39H45NO11703.29930.871529776-07-5 [59]
777896-21-6 [42]
Premyrsinane
Jatrophane
179.36[M+H]+
[M+NH4]+
[M+Na]+
716.3066
733.3201
738.2873
715.2993C40H45NO11715.29930.07171864-12-3 [14,46,52,60]Myrsinane
189.62[M+H]+
[M+Na]+
[M+K]+
733.3221
755.3040
771.2779
732.3147C41H48O12732.31460.152674753-70-7 [61]Premyrsinane
1910.21[M+H]+
[M+Na]+
[M+K]+
[2M+Na]+
718.3225
740.3040
756.2777
1457.6217
717.3151C40H47NO11717.31490.31//
2010.43[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
591.2949
608.3219
613.2775
629.2511
1203.5657
590.2881C35H42O8590.28800.301809418-89-0 [62,63]Lathyrane
2110.57[M+H]+
[M+Na]+
[M+K]+
744.3382
766.3201
782.2932
743.3308C42H49NO11743.33060.29//
2210.69[M+H]+ [M+NH4]+
[M+Na]+
[M+K]+
733.3217
750.3487
755.3042
771.2778
732.3148C41H48O12732.31460.352674753-70-7 [61]Premyrsinane
2310.73[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
672.3380
677.2964
693.2670
1331.5980
654.3057C36H46O11654.30402.641335200-98-0 [52]
1333481-71-2 [64,65]
173967-58-3 [66]
Premyrsinane
Premyrsinane
Premyrsinane
24 *11.06[M+NH4]+
[M+Na]+
[M+K]+
698.3534
703.3089
719.2825
680.3197C38H48O11680.31970.091946844-21-8 [67]Jatrophane
25 *11.95[M+NH4]+
[M+Na]+
[M+K]+
720.3378
725.2934
741.2664
702.3040C40H46O11702.30400.00//
2612.70[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
734.3536
739.3092
755.2826
1455.6305
716.3199C41H48O11716.31970.291529776-06-4 [59]Premyrsinane
27 *12.89[M+NH4]+
[M+Na]+
[M+K]+
760.3690
765.3247
781.2977
742.3353C43H50O11742.3353−0.05//
28 *13.01[M+NH4]+
[M+Na]+
[M+K]+
668.3791
673.3347
689.3083
650.3454C38H50O9650.3455−0.1472826-62-1 [68,69]Tigliane
2913.92[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+NH4]+
[2M+Na]+
611.3574
628.3842
633.3397
649.3132
1238.7358
1243.6920
610.3505C36H50O8610.3506-0.1057672-63-6 [70,71,72,73]Tigliane
3014.13[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
611.3575
628.3843
633.3399
649.3134
1243.6861
610.3508C36H50O8610.35060.3657672-63-6 [70,71,72,73]Tigliane
3117.78[M+H]+
[M+Na]+
[M+K]+
[2M+Na]+
371.3156
393.2977
409.2714
763.6054
370.3085C22H42O4370.30830.38//
* Components identified and confirmed using the molecular feature extraction (MFE) and find by formula algorithms of the MassHunter software (revision B.07.00), respectively. / Components that could not be tentatively identified by online literature search using the terms “Euphorbia, Euphorbiaceae” in SciFinder, an online database.
Table 2. Tentative identification of the components of the chloroform extract of the latex of E. cyparissias (EC) by LC-QToF MS according to the literature data available in SciFinder, an online database.
Table 2. Tentative identification of the components of the chloroform extract of the latex of E. cyparissias (EC) by LC-QToF MS according to the literature data available in SciFinder, an online database.
No.RT (min)Ion Speciesm/z
Measured
Molecular Mass MeasuredProposed FormulaMolecular Mass CalculatedDiff. (ppm)Compound (CAS No.) [Ref.]Class
321.31[M+H]+146.1177145.1104C7H15NO2145.11030.77407-64-7 [74]
1115-90-8 [75]
Amino acid
Amino acid
333.33[M+NH4]+
[M+Na]+
[M+K]+
648.3012
653.2569
669.2304
630.2676C33H42O12630.2676−0.091811547-09-7 [76,77]
2049749-80-4 [78]
Jatrophane
ent-Atisane
34 *4.03[M+NH4]+
[M+Na]+
[M+K]+
668.3059
673.2617
689.2357
650.2725C36H42O11650.2777−0.321254956-17-6 [79,80,81]
1210299-33-4 [81]
2002494-82-6 [82]
Daphnane
Daphnane
Daphnane
35 *4.15[M+NH4]+
[M+Na]+
[M+K]+
588.2799
593.2356
609.2093
570.2463C31H38O10570.2465−0.36313486-57-6 [83]
313486-56-5 [83]
100288-19-5 [84]
2758418-28-7 [85]
2347529-35-3 [86]
1974283-21-0 [87]
Myrsinane
Myrsinane
Jatrophane
Jatrophane
Jatrophane
Paraliane
36 *5.27[M+H]+
[M+Na]+
[M+K]+
676.2749
698.2570
714.2307
675.2676C37H41NO11675.2680−0.502685765-74-4 [88]
2685765-73-3 [88]
2685762-55-2 [88]
Ingol
Ingol
Ingol
375.51[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
630.2909
635.2462
651.2199
1247.5024
612.2570C33H40O11612.2571−0.18780755-68-2 [89,90]
709002-56-2 [90,91]
566189-66-0 [86,92]
2347529-24-0 [86,93]
2347529-23-9 [86]
220705-94-2 [94,95]
371974-77-5 [95]
313486-55-4 [83]
212842-87-0 [96]
557104-67-3 [97]
608525-82-2 [98]
616217-04-0 [99]
89984-07-6 [100]
2803346-38-3 [101]
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Lathyrane
Lathyrane
Lathyrane
Lathyrane
Myrsinol
Myrsinane
Myrsinane
Ingol
Ingol
385.94[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
710.3168
715.2726
731.2464
1407.5551
692.2832C38H44O12692.2833−0.11100198-29-6 [102]
100198-28-5 [102]
2051585-34-1 [77,103]
2051585-29-4 [103]
Jatrophane
Jatrophane
Jatrophane
Jatrophane
395.97[M+NH4]+
[M+Na]+
[M+K]+
754.3429
759.2986
775.2723
736.3093C40H48O13736.7395−0.26//
406.17[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
710.3168
715.2722
731.2462
1407.5558
692.2830C38H44O12692.2833−0.44100198-29-6 [102]
100198-28-5 [102]
2051585-34-1 [77,103]
2051585-29-4 [103]
Jatrophane
Jatrophane
Jatrophane
Jatrophane
416.42[M+NH4]+
[M+Na]+
[M+K]+
690.3483
695.3040
711.2775
672.3147C36H48O12672.31460.14//
426.95[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
650.2952
655.2513
671.2250
1287.5141
632.2620C36H40O10632.2621−0.202561483-25-6 [104]Lathyrane
43 *7.76[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
720.3016
737.3355
742.2842
758.2579
719.2942C39H45NO12719.29420.372595240-63-2 [41]
2595235-60-0 [41]
2595235-05-3 [41]
2595233-36-4 [41]
777896-12-5 [42]
2408424-43-9 [43]
2342577-75-5 [44]
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Premyrsinane
Premyrsinane
44 *7.88[M+NH4]+
[M+Na]+
[M+K]+
692.3067
697.2621
713.2401
674.2734C38H42O11674.27270.972685775-35-1 [88,101]
2685775-67-9 [88]
2750352-31-7 [105]
2347529-31-9 [86]
Ingol
Ingol
Ingol
Jatrophane
45 *8.37[M+NH4]+
[M+Na]+
[M+K]+
752.3276
757.2829
773.2562
734.2937C40H46O13734.2938−0.232051585-33-0 [77,103]
2891708-35-1 [106]
Jatrophane
Jatrophane
46 *8.60[M+NH4]+
[M+Na]+
[M+K]+
844.3174
849.2731
865.2466
826.2837C45H46O15826.2837−0.012595253-64-6 [41]Jatrophane
478.70[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
[2M+K]+
675.2774
692.3069
697.2625
713.2437
1371.5372
1387.5098
674.2747C38H42O11674.27272.972685775-35-1 [88,101]
2685775-67-9 [88]
2750352-31-7 [105]
2347529-31-9 [86]
Ingol
Ingol
Ingol
Jatrophane
489.26[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
717.2887
734.3177
739.2728
755.2465
716.2837C40H44O12716.28330.532685775-23-7 [88]
2685765-76-6 [88]
2347529-37-5 [86]
2347529-36-4 [86]
1342887-24-4 [93,107]
Ingol
Ingol
Jatrophane
Jatrophane
Jatrophane
49 *9.36[M+NH4]+
[M+Na]+
[M+K]+
812.3277
817.2833
833.2617
794.2944C45H46O13794.29380.71//
509.47[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
734.3173
739.2728
755.2576
1455.5590
716.2843C40H44O12716.28331.362685775-23-7 [88]
2685765-76-6 [88]
2347529-37-5 [86]
2347529-36-4 [86]
1342887-24-4 [93,107]
Ingol
Ingol
Jatrophane
Jatrophane
Jatrophane
519.66[M+NH4]+
[M+Na]+
[M+K]+
[2M+Na]+
676.3117
681.2672
697.2416
1339.5422
658.2779C38H42O10658.27780.192366129-51-1 [60]
2366129-44-2 [60]
2750352-32-8 [105]
1613699-93-6 [108]
1151831-79-6 [109]
Myrsinane
Myrsinane
Ingol
Ingol
Ingol
529.70[M+NH4]+
[M+Na]+
[M+K]+
856.3539
861.3090
877.2825
838.3198C47H50O14838.3201−0.29//
5310.02[M+Na]+
[M+K]+
[2M+Na]+
579.2356
595.2091
1135.4805
556.2463C34H36O7556.24610.3259086-90-7 [110]
91413-70-6 [111]
91413-69-3 [111]
174389-91-4 [112]
92118-01-9 [113]
Ingenane
Ingenane
Ingenane
Ingenane
Tigliane
5410.19[M+NH4]+
[M+Na]+
[M+K]+
714.3484
719.3038
735.2776
696.3145C38H48O12696.3146−0.07284666-41-7 [114]
606136-90-7 [115]
1977558-48-7 [57]
Jatrophane
Jatrophane
Myrsinane
55 *10.30[M+NH4]+
[M+Na]+
[M+K]+
772.3330
777.2879
793.2610
754.2985C43H46O12754.2989−0.031449465-16-0 [80]Daphnane
5610.33[M+NH4]+
[M+Na]+
[M+K]+
714.3486
719.3039
735.2774
696.3147C38H48O12696.31460.14284666-41-7 [114]
606136-90-7 [115]
1977558-48-7 [57]
Jatrophane
Jatrophane
Myrsinane
5710.43[M+NH4]+
[M+Na]+
[M+K]+
760.3326
765.2876
781.2606
742.2985C42H46O12742.2989−0.52//
5810.47[M+NH4]+
[M+Na]+
[M+K]+
600.3164
605.2721
621.2459
582.2828C33H42O9582.2829−0.1381557-52-0 [116]
126372-45-0 [117]
126372-52-9 [117]
126372-50-7 [117]
515854-87-2 [118]
515854-85-0 [118]
515854-83-8 [118]
1253641-57-4 [119]
586971-22-4 [90,120]
1010414-43-3 [121]
944799-48-8 [122]
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Jatrophane
Lathyrane
5910.49[M+NH4]+
[M+Na]+
656.3428
661.2979
638.3087C36H46O10638.3091−0.66//
60 *10.54[M+NH4]+
[M+Na]+
[M+K]+
720.3378
725.2933
741.2679
702.3040C40H46O11702.3040−0.06//
6111.33[M+NH4]+
[M+Na]+
[M+K]+
796.3330
801.2882
817.2620
778.2991C45H46O12778.29890.22//
6211.41[M+H]+
[M+Na]+
[M+K]+
[2M+Na]+
551.2998
573.2823
589.2584
1123.5752
550.2931C33H42O7550.29310.111010806-00-4 [122]
1811530-78-5 [123]
62820-23-9 [124]
Ingenane
Ingenane
Lathyrane
63 *11.64[M+Na]+
[M+K]+
527.3705
543.3547
504.3819C31H52O5504.38150.85//
64 *12.51[M+NH4]+
[M+Na]+
812.3276
817.2827
794.2936C45H46O13794.2938−0.27//
6512.81[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+NH4]+
[2M+Na]+
545.3471
562.3685
567.3292
583.3033
1106.7130
1111.6693
544.3400C32H48O7544.3400-0.08478243-87-7 [125]
92117-95-8 [113]
1020102-66-2 [126]
100217-91-2 [127]
Ingenane
Tigliane
Tigliane
Tigliane
6612.96[M+H]+
[M+NH4]+
[M+Na]+
675.4103
692.4372
697.3922
674.4034C38H58O10674.40300.6176663-59-7 [30]
76663-58-6 [30]
76663-57-5 [30]
1362115-49-8 [128]
Ingenane
Ingenane
Ingenane
Tigliane
6713.66[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+NH4]+
[2M+Na]+
623.3578
640.3875
645.3431
661.3140
1262.7365
1267.6896
622.3507C37H50O8622.35060.20149725-35-9 [129]Daphnane
68 *14.03[M+Na]+
[M+K]+
455.3518
471.3101
454.3453C30H46O3454.34471.31125456-55-5 [130,131]
125456-62-4 [130]
132831-05-1 [131]
94530-05-9 [132]
242814-44-4 [133]
1000000-03-2 [134]
1000000-04-3 [134]
2411214-36-1 [135]
2727156-37-6 [136]
2101307-34-8 [137]
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
69 *14.22[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
651.4051
668.4155
673.3711
689.3442
650.3821C39H54O8650.38190.30184221-48-5 [138]
184221-44-1 [138]
Ingenane
Ingenane
70 *14.59[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
667.4206
684.4463
689.4023
705.3752
666.4132C40H58O8666.4132−0.02//
7114.98[M+H]+
[M+Na]+
[M+K]+
617.4034
639.3868
655.3600
616.3975C36H56O8616.3975−0.1176663-56-4 [30]
1333380-60-1 [139]
Ingenane
Ingenane
7215.63[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
[2M+NH4]+
[2M+Na]+
651.3885
668.4215
673.3714
689.3450
1318.8020
1323.7525
650.3826C39H54O8650.38191.14184221-48-5 [138]
184221-44-1 [138]
Ingenane
Ingenane
73 *15.84[M+H]+
[M+Na]+
[M+K]+
631.4203
653.4026
669.3765
630.4133C37H58O8630.41320.2357716-89-9 [140]
182997-47-3 [141]
Ingenane
Tigliane
74 *16.18[M+H]+441.3727440.3655C30H48O2440.36540.06142449-67-0 [131]
242814-43-3 [133]
242814-43-3 [133]
2067-65-4 [142]
110011-56-8 [34,142]
112406-53-8 [142]
122272-22-4 [143]
1650569-06-4 [144]
2413472-28-1 [145]
38242-02-3 [146]
6060-07-7 [146]
2852676-92-5 [146]
3866-77-1 [146,147]
543691-16-3 [148]
543691-17-4 [149]
543691-19-6 [149]
22478-71-3 [150]
1384465-02-4 [151]
138994-69-1 [152]
2004651-44-7 [153]
13159-28-9 [154]
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
Triterpene
7517.25[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
653.5347
670.5604
675.5170
691.4930
652.5276C39H72O7652.5278−0.34//
7617.28[M+Na]+
[M+K]+
623.3920
639.3661
600.4028C36H56O7600.40260.331020102-70-8 [126]
349152-28-9 [155]
Tigliane
Tigliane
7717.59[M+H]+
[M+Na]+
[M+K]+
[2M+NH4]+
[2M+Na]+
645.4368
667.4182
683.3931
1306.8935
1311.8487
644.4290C38H60O8644.42880.2776663-53-1 [30]
76663-55-3 [30]
76663-54-2 [30]
54706-69-3 [139,156]
2254317-50-3 [157]
20839-12-7 [128,158]
67492-54-0 [158]
73089-77-7 [158]
Ingenane
Ingenane
Ingenane
Ingenane
Ingenane
Tigliane
Tigliane
Tigliane
78 *17.78[M+H]+
[M+NH4]+
[M+Na]+
[M+K]+
371.3155
388.3419
393.2975
409.2714
370.3083C22H42O4370.3083−0.08//
79 *18.25[M+NH4]+
[M+Na]+
[M+K]+
652.4261
657.3764
673.3503
634.3871C39H54O7634.38700.26//
8021.18[M+H]+
[M+Na]+
[M+K]+
629.4391
651.4233
667.3972
628.4340C38H60O7628.43390.21672945-80-1 [128,138]
1407160-19-3 [159]
1020102-72-0 [126]
Ingenane
Ingenane
Tigliane
* Components identified using the molecular feature extraction (MFE) and find by formula algorithms of the MassHunter software (revision B.07.00), respectively. / Components that could not be tentatively identified by online literature search using the terms “Euphorbia, Euphorbiaceae” in SciFinder, an online database.
Table 3. Cell growth inhibition induced by the EC and ES extracts.
Table 3. Cell growth inhibition induced by the EC and ES extracts.
ExtractIC50, μg mL−1
NCI-H460NCI-H460/RU87U87-TxRMRC-5
EC8.89 ± 2.5533.48 ± 8.9012.96 ± 4.1412.22 ± 4.236.55 ± 2.64
ES20.11 ± 6.3837.99 ± 18.7215.71 ± 4.5717.26 ± 4.105.89 ± 2.21
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Jadranin, M.; Savić, D.; Lupšić, E.; Podolski-Renić, A.; Pešić, M.; Tešević, V.; Milosavljević, S.; Krstić, G. LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity. Plants 2023, 12, 4181. https://doi.org/10.3390/plants12244181

AMA Style

Jadranin M, Savić D, Lupšić E, Podolski-Renić A, Pešić M, Tešević V, Milosavljević S, Krstić G. LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity. Plants. 2023; 12(24):4181. https://doi.org/10.3390/plants12244181

Chicago/Turabian Style

Jadranin, Milka, Danica Savić, Ema Lupšić, Ana Podolski-Renić, Milica Pešić, Vele Tešević, Slobodan Milosavljević, and Gordana Krstić. 2023. "LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity" Plants 12, no. 24: 4181. https://doi.org/10.3390/plants12244181

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop