Isolation and Characterization of Flavonoid Naringenin and Evaluation of Cytotoxic and Biological Efficacy of Water Lilly (Nymphaea mexicana Zucc.)
Abstract
:1. Introduction
2. Results
2.1. Isolated Compound Naringenin
2.2. FTIR Spectral Analysis
2.3. Biological Efficacy
2.3.1. Anti-Microbial Activity
2.3.2. Cytotoxic Evaluation
2.4. 2,2- Diphenyl-1-picryl-hydrazyl Evaluation
FRAP Assay
2.5. Isolated Compound
2.6. Biological Evaluation
2.6.1. Anti-Microbial Activity
2.6.2. Cytotoxic Assay
2.6.3. Antioxidant Activity
DPPH Assay
Reducing Power Assay
3. Discussions
4. Materials and Methods
4.1. Collection, Preparation of Plant Materials and Crude Extract
4.1.1. Plant Material
4.1.2. Preparation of Extracts
4.1.3. Fourier Transform Infrared Spectroscopic Analysis
4.2. Column Chromatography for Compound Separation
4.3. Biological Evaluation of Extract of N. mexicana Zucc
4.3.1. Antibacterial Activity
Evaluation of Minimum Inhibitory Concentration
4.3.2. Anticancer Activity
Cell Lines and Culture
LDH Assay
4.3.3. Antioxidant Activity
DPPH Assay
FRAP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pai, S.; Hebbar, A.; Selvaraj, S.A. Critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.P.; Häder, D.P. Introduction. In Natural Bioactive Compounds: Technological Advancements; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 1–17. [Google Scholar] [CrossRef]
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Silva, A.M.; Pinto, D.; Fernandes, I.; Albuquerque, T.G.; Costa, H.S.; Freitas, V.; Rodrigues, F.; Oliveira, M.B.P.P. Infusions and decoctions of dehydrated fruits of Actinidia arguta and Actinidia deliciosa: Bioactivity, radical scavenging activity and effects on cells viability. Food Chem. 2021, 289, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastran, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef][Green Version]
- Ramkissoon, A.; Seepersaud, M.; Maxwell, A.; Jayaraman, J.; Ramsubhag, A. Isolation and antibacterial activity of indole alkaloids from Pseudomonas aeruginosa UWI-1. Molecules 2020, 25, 3744. [Google Scholar] [CrossRef] [PubMed]
- Heleno, S.A.; Diz, P.; Prieto, M.A.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem. 2016, 197, 1054–1063. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Franco, D.; Munekata, P.; Agregan, R.; Bermudez, R.; Lopez-Pedrouso, M.; Pateiro, M.; Lorenzo, J.M. Application of pulsed electric fields for obtaining antioxidant extracts from fish residues. Antioxidants 2020, 9, 90. [Google Scholar] [CrossRef][Green Version]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants 2013, 18, 1818–1892. [Google Scholar] [CrossRef][Green Version]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Efferth, T.; Oesch, F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 143–163. [Google Scholar]
- Jayaweera, D.M.A. Medicinal Plants Used in Ceylon; The National Science Foundation: Colombo, Sri Lanka, 1982; pp. 50–55.
- Jaya, R.; Vani, B.S.; Santhi, G.; Lavanya, L.; Chandi, V.T. Evaluation of Antihyperlipidemic activity of Nymphaea alba. Int. J. Pharm. Sci. Res. 2016, 7, 3432–3435. [Google Scholar]
- Liu, R.N.; Wang, W.; Ding, Y.; Xie, W.D.; Ma, C.; Du, L.J. A new flavonol glycoside and activity of compounds from the flower of Nymphaea candida. J. Asian Nat. Prod. Res. 2007, 9, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Bhandarkar, M.R.; Khan, A. Antihepatotoxic effect of Nymphaea stellata wild against carbon tetrachloride-induced hepatic damage in albino rats. J. Ethnopharmacol. 2004, 91, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Sultana, S. Anticarcinogenic effect of Nymphaea alba against oxidative damage, hyperproliferative response and renal carcinogenesis in Wistar rats. Mol. Cell Biol. Chem. 2005, 271, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Maiti, K.; Mukherjee, K.; Murugan, V.; Saha, B.P.; Mukherjee, P.K. Enhancing bioavailability and hepatoprotective activity of andrographolide from Androgra phispaniculata, a well-known medicinal food, through its herbosome. J. Sci. Food Agric. 2010, 90, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Mukherjee, P.K.; Mukherjee, K.; Pal, M.; Mandal, S.C.; Saha, B.P. Evaluation of antipyretic potential of Nelumbo nucifera stalk extract. Phytother. Res. 2000, 14, 272–274. [Google Scholar] [CrossRef]
- Jung, H.A.; Kim, J.E.; Chung, H.Y.; Choi, J.S. Antioxidant principles of Nelumbo nucifera stamens. Arch. Pharmacal Res. 2003, 26, 279–285. [Google Scholar] [CrossRef]
- Wu, C.H.; Yang, M.Y.; Lee, Y.J.; Wang, C.J. Nelumbo nucifera leaf polyphenol extract inhibits breast cancer cells metastasis in vitro and in vivo through PKC α targeting. J. Funct. Foods 2017, 37, 480–490. [Google Scholar]
- Stabrauskiene, J.; Marksa, M.; Ivanauskas, L.; Bernatoniene, J. Optimization of Naringin and Naringenin Extraction from Citrus × paradisi L. Using Hydrolysis and Excipients as Adsorbent. Pharmaceutics 2022, 14, 890. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef][Green Version]
- Marc, M.; Litim, N.; Di Paolo, T. Natural Phytoestrogens: A Class of Promising Neuroprotective Agents for Parkinson Disease. In Natural Product Drug Discovery, Discovery and Development of Neuroprotective Agents from Natural Products; Brahmachari, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 9–61. ISBN 9780128095935. [Google Scholar]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Panda, B.N.; Raj, A.B.; Shrivastava, N.R.; Prathani, A.R. The evaluation of nitric oxide scavenging activity of Acalypha indica Linn Root. Asian J. Res. Chem. 2009, 2, 148–150. [Google Scholar]
- Akinjogunla, O.J.; Adegoke, A.A.; Udokang, I.P.; Adebayo-Tayo, B.C. Antimicrobial potential of Nymphaea lotus (Nymphaeaceae) against wound pathogens. J. Med. Plants Res. 2009, 3, 138–141. [Google Scholar]
- N’Guessan, B.B.; Asiamah, A.D.; Arthur, N.K.; Frimpong-Manso, S.; Amoateng, P.; Amponsah, S.K.; Kukuia, K.E.; Sarkodie, J.A.; Opuni, K.F.-M.; Asiedu-Gyekye, I.J.; et al. Ethanolic extract of Nymphaea lotus L. (Nymphaeaceae) leaves exhibits in vitro antioxidant, in vivo anti-inflammatory and cytotoxic activities on Jurkat and MCF-7 cancer cell lines. BMC Complement. Med. Ther. 2021, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Oladimeji, O.; Ubulom, H.M.; Akpabio, P.I.; Etim, E.E.; Nyong, E. Larvicidal and Anti Microbial Potentials of Nymphaeaodorata. J. Pharmacol. Toxicol. 2009, 8, 357–362. [Google Scholar]
- Abu-Zaida, M.E.; Mashaly, I.A.; AbdEl-Monem, M.; Torky, M. Economic potentials of some aquatic plants growing in North East Nile delta, Egypt. J. Appl. Sci. 2008, 8, 1395–1405. [Google Scholar] [CrossRef]
- Agnihotri, V.K.; Elsohly, H.N.; Khan, S.I.; Smillie, T.J.; Khan, I.A.; Walker, L.A. Antioxidant constituents of Nymphaea caerulea flowers. Phytochemistry 2008, 69, 2061–2066. [Google Scholar] [CrossRef]
- Dhanabal, S.P.; Raja, M.K.; Ramanathan, M.; Suresh, B. Hypoglycemic activity of Nymphaea stellata leaves ethanolic extract in alloxan induced diabetic rats. Fitoterapia 2007, 78, 288–291. [Google Scholar] [CrossRef]
- Fossen, T.; Larsen, A.; Kiremire, B.T.; Andersen, Q.M. Flavonoids from blue flower of Nymphaea caerulea. Phytochemistry 1999, 51, 1133–1137. [Google Scholar] [CrossRef]
- Sowemimo, A.A.; Fakoya, F.A.; Awopetu, I.; Omobuwajo, O.R.; Adesanya, S.A. Toxicity and mutagenicactivity of some selected Nigerian plants. J. Ethnopharmacol. 2007, 113, 427–432. [Google Scholar] [CrossRef]
- Parimala, M.S.; Gricilda, F. Evaluation of antidiabetic potential of Nymphaea nouchaliburm. f. seeds instinduced diabetic rats. Int. J. Pharm. Pharm. Sci. 2014, 6, 536–541. [Google Scholar]
- Lakhshmi, T.; Madhusudhanan, N.; Rajendran, R. Nymphaea alba Linn. an overview. Res. J. Pharm. Technol. 2013, 6, 974–977. [Google Scholar]
- Janssen, A.M.; Scheffer, J.C.C.; Baerheim, S.A. Antimicrobial activity of essential oils: A 1976–1986 literature review. Aspects of test methods. Planta Med. 1987, 53, 395–398. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pruden, D.; Perineau, F.; Bessiere, J.M.; Michel, G.M.; Baccou, J.C. Analysis of the essential oil of wild oregano from Martinique (Coleus aromaticus Benth.)—Evaluation of its bacteriostatic and fungistatic properties. J. Essent. Oil Res. 1985, 7, 165–173. [Google Scholar] [CrossRef]
- Alley, M.C.; Scudiere, D.A.; Monks, A.; Czerwinski, M.J.; Shoemaker, R.H.; Boyd, M.R. Validation of an automated micro culture tetrazolium assay (MTA) to assess growth and drug sensitivity of human tumor cell lines. Proc. Am. Assoc. Cancer Res. 1986, 27, 389. [Google Scholar]
- Alley, M.C.; Scudiere, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a micro culture tetrazolium assay. Cancer Res. 1988, 48, 589–601. [Google Scholar] [PubMed]
- Oyaizu, M. Studies on product of browning reaction prepared from glucose amine. Jpn. J. Nutr. 1986, 44, 307. [Google Scholar] [CrossRef][Green Version]
- Olsen, H.T.; Stafford, G.I.; van Staden, J.; Christensen, S.B.; Jäger, A.K. Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J. Ethnopharmacol. 2008, 117, 500–502. [Google Scholar] [CrossRef]
- Bhaskarachary, K.; Joshi, K.R.A. Natural Bioactive Molecules with Antidiabetic Attributes: Insights Into Structure–Activity Relationships. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 57, pp. 353–388. ISSN 1572-5995. [Google Scholar]
- Amin, I.; Majid, S.; Farooq, A.; Wani, H.A.; Noor, F.; Khan, R.; Shakeel, S.; Bhat, S.A.; Ahmad, A.; Madkhali, H.; et al. Chapter 8—Naringenin (4,5,7-trihydroxyflavanone) as a potent neuroprotective agent: From chemistry to medicine. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 65, pp. 271–300. ISSN 1572-5995. ISBN 9780128179055. [Google Scholar]
- Singhal, S.; Singh, M.; Singh, R.K.; Tiwari, V.K.; Bajpai, S. Chapter 11—Molecular Mechanisms Underlying Breast Cancer and Role of Plant Products in Targeted Therapy. In Natural Product Drug Discovery, Discovery and Development of Anti-Breast Cancer Agents from Natural Products; Brahmachari, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 295–351. ISBN 9780128212776. [Google Scholar]
- Bentrad, N.; Hamida-Ferhat, A. Analytical approaches used in the profiling of natural products with a therapeutic target: A global perspective on nutrition and health. In Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amstedam, The Netherlands, 2022; Volume 72, pp. 57–101. ISSN 1572-5995. ISBN 9780128239445. [Google Scholar]
- Abubaker, M.A.; Mohammed, A.A.; Farah, A.A.; Zhang, J. Phytochemical screening by using GC-MS and FTIR spectrum analysis of fixed oil from Sudanese Ziziphus spina christi seeds. Eurasian Chem. Commun. 2021, 3, 244–256. [Google Scholar]
- Bakr, R.O.; Wasfi, R.; Swilam, N.; Sellam, I. Characterization of the bioactive constituents of Nymphaea alba rhizomes and evaluation of anti-biofilm as well as antioxidant and cytotoxic properties. J. Med. Plants Res. 2016, 10, 390–401. [Google Scholar]
- Visveshwari, M.; Subbaiyan, B.; Thangapandian, V. Phytochemical analysis, antibacterial activity, FTIR AND GCMS analysis of Ceropegia juncea Roxb. Int. J. Pharmacogn. Phytochem. Res 2017, 9, 914–920. [Google Scholar]
- Parimala, M.; Shoba, F.G. Phytochemical analysis and in vitro antioxidant acitivity of hydroalcoholic seed extract of Nymphaea nouchali Burm. f. Asian Pac. J. Trop. Biomed. 2013, 3, 887–895. [Google Scholar] [CrossRef][Green Version]
- Ashidi, J.; Houghton, P.; Hylands, P.; Efferth, T. Ethnobotanical survey and cytotoxicity testing of plants of South-Western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. Leaves. J. Ethnopharmacol. 2010, 128, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Penland, R.L.; Wilhelmus, K.R. Stenotrophomonas maltophilia ocular infections. Arch. Ophthalmol. 1996, 114, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.D.; Louie, M.; Louie, L.; Goodfellow, J.; Simor, A.E. Comparison of E test and agar dilution for antimicrobial susceptibility testing of Stenotrophomonas (Xanthomonas) maltophilia. J. Clin. Microbiol. 1995, 33, 1428–1430. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dham, K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014, 1–19. [Google Scholar] [CrossRef] [PubMed]
Position | 13C | 1H |
---|---|---|
2 | 79.05 | 5.30 |
3a | 42.61 | 3.09 |
3b | 42.61 | 2.67 |
4 | 196.38 | - |
5 | 164.03 | - |
6 | 95.68 | 5.90 |
7 | 166.90 | - |
8 | 94.80 | 5.90 |
9 | 163.45 | - |
10 | 101.94 | - |
1′ | 129.68 | - |
2′ | 127.68 | 7.31 |
3′ | 114.93 | 6.83 |
4′ | 157.57 | - |
5′ | 114.93 | 6.83 |
6′ | 127.68 | 7.31 |
Microorganisms | Zone of HA Extract a | Inhibition DCM Extract b | (mm) MeOH Extract c | Antibiotic | MIC |
---|---|---|---|---|---|
Escherichia coli MTCC 443 | 19 ± 0.5 | 18 ± 0.45 | 17 ± 0.6 | 25 ± 0.45 | >3.2 |
Klebsiella pneumonia MTCC 19 | 24 ± 0.1 | 19 ± 0.6 | 20 ± 0.27 | 28 ± 0.4 | >1.6 |
Pseudomonas aeroginosa MTCC1688 | 19 ± 0.38 | 18 ± 0.45 | 20 ± 0.14 | 25 ± 0.42 | >3.2 |
Salmonella typhii MTCC 341 | Not active | 18 ± 0.6 | 10 ± 0.8 | 25 ± 0.6 | >25.6 |
Staphylococcus aureus MTCC 96 | 22 ± 0.28 | 23 ± 0.18 | 20 ± 0.8 | 25 ± 0.8 | >1.6 |
DCM Extract Concentration (μg/mL) | % Growth Inhibition of Lung Cancer Cell Line (A549) | IC50 (μg/mL) | % Growth Inhibition Breast Cancer Cell Line (MC-7) | IC50 (μg/mL) |
---|---|---|---|---|
20 | 18.4 | 15.5 | ||
40 | 32.7 | 30.4 | ||
60 | 51.1 | 59 | 52.1 | 60 |
80 | 63.6 | 65.6 | ||
100 | 75.4 | 77.3 | ||
200 | 79.0 | 82.8 | ||
Methanolic extract concentration (μg/mL) | % growth inhibition of lung cancer cell line (A549) | IC50 (μg/mL) | % growth inhibition breast cancer cell line (MC-7) | IC50 (μg/mL) |
20 | 21.8 | 26.6 | ||
40 | 43.0 | 43.3 | ||
60 | 52.5 | 46 | 55.0 | 48 |
80 | 64.5 | 67.8 | ||
100 | 77.1 | 80.8 | ||
200 | 81.4 | 88.2 |
Tissue Type Model Type | Lung A-549 | Breast MC7 | |
---|---|---|---|
DCM Extract Concentration (μg/mL) | 6 | 12 | 8 |
12 | 34 | 22 | |
25 | 46 | 41 | |
50 | 59 | 54 | |
100 | 68 | 64 | |
200 | 76 | 82 | |
MeOH Extract Concentration (μg/mL) | 6 | 14 | 7.3 |
12 | 30 | 26 | |
25 | 47 | 45 | |
50 | 62 | 58 | |
100 | 73 | 69 | |
200 | 80 | 88 |
Concentration (μg/mL) | HA a | DCM b | MeOH c | Ascorbic Acid d |
---|---|---|---|---|
10 | 3.64 | 8.54 | 15.90 | 46.4 |
20 | 8.21 | 24.01 | 36.90 | 52.3 |
30 | 12.01 | 28.53 | 46.56 | 60.8 |
50 | 13 | 47.71 | 58.12 | 65.6 |
70 | 17.40 | 54.33 | 69.07 | 75.4 |
100 | 28.35 | 61.74 | 72.77 | 80.7 |
Concentration (μg/mL) | HA a | DCM b | MeOH c | Ascorbic Acid d |
---|---|---|---|---|
10 | 7.82 | 19.6 | 34.7 | 46.4 |
20 | 12.5 | 23.3 | 39.3 | 52.3 |
30 | 17.1 | 27.4 | 48.5 | 60.8 |
50 | 20.0 | 33.8 | 54.1 | 65.6 |
70 | 22.4 | 41.6 | 63.7 | 75.4 |
100 | 25.2 | 48.60 | 68.4 | 80.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Din, S.; Hamid, S.; Yaseen, A.; Yatoo, A.M.; Ali, S.; Shamim, K.; Mahdi, W.A.; Alshehri, S.; Rehman, M.U.; Shah, W.A. Isolation and Characterization of Flavonoid Naringenin and Evaluation of Cytotoxic and Biological Efficacy of Water Lilly (Nymphaea mexicana Zucc.). Plants 2022, 11, 3588. https://doi.org/10.3390/plants11243588
Din S, Hamid S, Yaseen A, Yatoo AM, Ali S, Shamim K, Mahdi WA, Alshehri S, Rehman MU, Shah WA. Isolation and Characterization of Flavonoid Naringenin and Evaluation of Cytotoxic and Biological Efficacy of Water Lilly (Nymphaea mexicana Zucc.). Plants. 2022; 11(24):3588. https://doi.org/10.3390/plants11243588
Chicago/Turabian StyleDin, Shajrath, Saima Hamid, Aadil Yaseen, Ali Mohd Yatoo, Shafat Ali, Kashif Shamim, Wael A. Mahdi, Sultan Alshehri, Muneeb U. Rehman, and Wajaht A. Shah. 2022. "Isolation and Characterization of Flavonoid Naringenin and Evaluation of Cytotoxic and Biological Efficacy of Water Lilly (Nymphaea mexicana Zucc.)" Plants 11, no. 24: 3588. https://doi.org/10.3390/plants11243588