Next Issue
Volume 8, September
Previous Issue
Volume 8, March
 
 

J. Dev. Biol., Volume 8, Issue 2 (June 2020) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 532 KiB  
Review
Role of Tafazzin in Mitochondrial Function, Development and Disease
by Michael T. Chin and Simon J. Conway
J. Dev. Biol. 2020, 8(2), 10; https://doi.org/10.3390/jdb8020010 - 23 May 2020
Cited by 9 | Viewed by 4898
Abstract
Tafazzin, an enzyme associated with the rare inherited x-linked disorder Barth Syndrome, is a nuclear encoded mitochondrial transacylase that is highly conserved across multiple species and plays an important role in mitochondrial function. Numerous studies have elucidated the mechanisms by which Tafazzin [...] Read more.
Tafazzin, an enzyme associated with the rare inherited x-linked disorder Barth Syndrome, is a nuclear encoded mitochondrial transacylase that is highly conserved across multiple species and plays an important role in mitochondrial function. Numerous studies have elucidated the mechanisms by which Tafazzin affects mitochondrial function, but its effects on development and susceptibility to adult disease are incompletely understood. The purpose of this review is to highlight previous functional studies across a variety of model organisms, introduce recent studies that show an important role in development, and also to provide an update on the role of Tafazzin in human disease. The profound effects of Tafazzin on cardiac development and adult cardiac homeostasis will be emphasized. These studies underscore the importance of mitochondrial function in cardiac development and disease, and also introduce the concept of Tafazzin as a potential therapeutic modality. Full article
(This article belongs to the Special Issue 2020 Feature Papers by JDB’s Editorial Board Members)
Show Figures

Figure 1

17 pages, 3656 KiB  
Article
Gbx1 and Gbx2 Are Essential for Normal Patterning and Development of Interneurons and Motor Neurons in the Embryonic Spinal Cord
by Desirè M. Buckley, Jessica Burroughs-Garcia, Sonja Kriks, Mark Lewandoski and Samuel T. Waters
J. Dev. Biol. 2020, 8(2), 9; https://doi.org/10.3390/jdb8020009 - 01 Apr 2020
Cited by 4 | Viewed by 3759
Abstract
The molecular mechanisms regulating neurogenesis involve the control of gene expression by transcription factors. Gbx1 and Gbx2, two members of the Gbx family of homeodomain-containing transcription factors, are known for their essential roles in central nervous system development. The expression domains of [...] Read more.
The molecular mechanisms regulating neurogenesis involve the control of gene expression by transcription factors. Gbx1 and Gbx2, two members of the Gbx family of homeodomain-containing transcription factors, are known for their essential roles in central nervous system development. The expression domains of mouse Gbx1 and Gbx2 include regions of the forebrain, anterior hindbrain, and spinal cord. In the spinal cord, Gbx1 and Gbx2 are expressed in PAX2+ interneurons of the dorsal horn and ventral motor neuron progenitors. Based on their shared domains of expression and instances of overlap, we investigated the functional relationship between Gbx family members in the developing spinal cord using Gbx1−/−, Gbx2−/−, and Gbx1−/−/Gbx2−/− embryos. In situ hybridization analyses of embryonic spinal cords show upregulation of Gbx2 expression in Gbx1−/− embryos and upregulation of Gbx1 expression in Gbx2−/− embryos. Additionally, our data demonstrate that Gbx genes regulate development of a subset of PAX2+ dorsal inhibitory interneurons. While we observe no difference in overall proliferative status of the developing ependymal layer, expansion of proliferative cells into the anatomically defined mantle zone occurs in Gbx mutants. Lastly, our data shows a marked increase in apoptotic cell death in the ventral spinal cord of Gbx mutants during mid-embryonic stages. While our studies reveal that both members of the Gbx gene family are involved in development of subsets of PAX2+ dorsal interneurons and survival of ventral motor neurons, Gbx1 and Gbx2 are not sufficient to genetically compensate for the loss of one another. Thus, our studies provide novel insight to the relationship harbored between Gbx1 and Gbx2 in spinal cord development. Full article
Show Figures

Figure 1

10 pages, 920 KiB  
Review
Delta-Notch Signaling: The Long and the Short of a Neuron’s Influence on Progenitor Fates
by Rachel Moore and Paula Alexandre
J. Dev. Biol. 2020, 8(2), 8; https://doi.org/10.3390/jdb8020008 - 26 Mar 2020
Cited by 15 | Viewed by 4912
Abstract
Maintenance of the neural progenitor pool during embryonic development is essential to promote growth of the central nervous system (CNS). The CNS is initially formed by tightly compacted proliferative neuroepithelial cells that later acquire radial glial characteristics and continue to divide at the [...] Read more.
Maintenance of the neural progenitor pool during embryonic development is essential to promote growth of the central nervous system (CNS). The CNS is initially formed by tightly compacted proliferative neuroepithelial cells that later acquire radial glial characteristics and continue to divide at the ventricular (apical) and pial (basal) surface of the neuroepithelium to generate neurons. While neural progenitors such as neuroepithelial cells and apical radial glia form strong connections with their neighbours at the apical and basal surfaces of the neuroepithelium, neurons usually form the mantle layer at the basal surface. This review will discuss the existing evidence that supports a role for neurons, from early stages of differentiation, in promoting progenitor cell fates in the vertebrates CNS, maintaining tissue homeostasis and regulating spatiotemporal patterning of neuronal differentiation through Delta-Notch signalling. Full article
(This article belongs to the Special Issue Women in Developmental Biology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop