# Indoor Floor Localization Based on Multi-Intelligent Sensors

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. The Algorithm of MIS-IFL

#### 3.1. The Construction Phase of Fingerprint Database

#### 3.2. Floor Localization Phase

#### 3.2.1. The Recognition of Activity Pattern

#### 3.2.2. The Localization of Floor

Algorithm 1: The algorithm of floor localization. |

Input: M,O |

1: For $\mathit{i}=1\phantom{\rule{1.em}{0ex}}to\phantom{\rule{1.em}{0ex}}5$ |

2: ${T}_{m}$ ← mapMagData(${O}_{i},{M}_{i}$); |

3: For $\mathit{j}\leftarrow {N}_{a}$ |

4: ${P}_{j}\leftarrow match({T}_{m},D{B}_{aj}))$; |

5: ${E}_{d}$ ← EucDistance(${P}_{j}$); |

6: End for |

7: ${F}_{c}$ ← $argmin\left({E}_{d}\right)$; |

8: End for |

9: ${F}_{d}$ ← Delete-Outliers (${F}_{c}$); |

Output: ${F}_{d}$ |

#### 3.2.3. Detection of Inter-Floor

## 4. Simulation Results and Analysis

#### 4.1. The Assessment of User’s Activity Pattern

#### 4.2. The Assessment of Floor Localization

#### 4.3. The Assessment of Inter-Floor Detection

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

IFL | Indoor floor localization |

MIS-IFL | IFL based on magnetic signal using multiple intelligent sensors |

AP | Access point |

K-NN | K nearest neighbor |

DT | Decision tree |

SVM | Support vector machine |

RFE | Recursive feature elimination |

RBP | Reference barometric pressure |

## References

- Shi, Q.F.; Ye, Z.A. Research on Standardization of Terms Related to Beidou Satellite Navigation System. J. Navig. Position.
**2018**, 6, 72–77. [Google Scholar] - Lu, Z.Z. Base station location verification based on user location. Inf. Commun.
**2018**, 185, 93–95. [Google Scholar] - Liu, B.; Zhou, W.; Zhu, T.; Gao, L.; Luan, T.H.; Zhou, H. Silence is golden: Enhancing privacy of location-based services by content broadcasting and active caching in wireless vehicular networks. IEEE Trans. Veh. Technol.
**2016**, 65, 9942–9953. [Google Scholar] [CrossRef] - Teng, W.; Jingbin, L.; Zheng, L.; Liu, K.; Xu, B. Accurate Smartphone Indoor Visual Positioning Based on a High-Precision 3D Photorealistic Map. Sensors
**2018**, 18, 1974–1994. [Google Scholar] - Gao, R.; Fan, Y.; Wang, T. Smartphone indoor localization by photo-taking of the environment. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Australia, Sydney, 10–14 June 2014; pp. 2599–2604. [Google Scholar]
- Ma, W.; Wu, J.; Long, C.; Zhu, Y. HiHeading: Smartphone-Based Indoor Map Construction System with High Accuracy Heading Inference. In Proceedings of the International Conference on Moile Ad-hoc and Sensor Networks, Shenzhen, China, 16–18 December 2015; pp. 172–177. [Google Scholar]
- Salamah, A.H.; Tamazin, M.; Sharkas, M.A.; Khedr, M.; Mahmoud, M. Comprehensive Investigation on Principle Component Large-Scale Wi-Fi Indoor Localization. Sensors
**2019**, 19, 1678. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Shen, X.; Chen, Y.; Zhang, J.; Wang, L.; Dai, G.; He, T. BarFi: Barometer-Aided Wi-Fi Floor Localization Using Crowdsourcing. In Proceedings of the 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, Dallas, TX, USA, 19–22 October 2015; pp. 416–424. [Google Scholar]
- Shen, W.B. Research on Multi-information Fusion Indoor Positioning Technology Based on Geomagnetic Fingerprint and Inertial Sensor; South China University of Technology: Guangzhou, China, 2017. (In Chinese) [Google Scholar]
- Sun, L.; Zheng, Z.W.; He, T.; Li, F. Multi-floor Wi-Fi Localization System with Floor Identification. Int. J. Distrib. Sens. Netw.
**2015**, 2015, 1–8. [Google Scholar] [CrossRef] - Liu, H.H.; Yang, Y.N. WiFi-based indoor positioning for multi-floor Environment. In Proceedings of the TENCON IEEE Region 10 Conference, Bali, Indonesia, 21–24 November 2011; pp. 597–601. [Google Scholar]
- Hou, E.Z. Understanding occupancy pattern and improving building energy efficiency through Wi-Fi based indoor positioning. Build. Energy Sav.
**2017**, 2017, 53–64. [Google Scholar] - Ye, H.; Gu, T.; Tao, X.; Lu, J. Scalable floor localization using barometer on smartphone. Wirel. Commun. Mob. Comput.
**2016**, 16, 2557–2571. [Google Scholar] [CrossRef] [Green Version] - Xia, H.; Wang, X.; Qiao, Y.; Jian, J.; Chang, Y. Using Multiple Barometers to Detect the Floor Location of Smart Phones with Built-in Barometric Sensors for Indoor Positioning. Sensors
**2015**, 15, 7857–7877. [Google Scholar] [CrossRef] [PubMed] - Muralidharan, K.; Khan, A.J.; Misra, A.; Balan, R.K.; Agarwal, S. Barometric phone sensors-More hype than hope. In Proceedings of the 15th Workshop on Mobile Computing Systems and Applications, Santa Barbara, CA, USA, 26–27 February 2020; ACM: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Zhao, F.; Luo, H.; Zhao, X.; Pang, Z.; Park, H. HYFI: Hybrid Floor Identification Based on Wireless Fingerprinting and Barometric Pressure. IEEE Trans. Ind. Informatics
**2015**, 13, 330–341. [Google Scholar] [CrossRef] [Green Version] - Shu, Y.; Bo, C.; Shen, G.; Zhao, C.; Li, L.; Zhao, F. Magicol: Indoor Localization Using Pervasive Magnetic Field and Opportunistic Wi-Fi Sensing. IEEE J. Sel. Areas Commun.
**2015**, 33, 1443–1457. [Google Scholar] [CrossRef] - Liu, K.; Motta, G.; Ma, T.; Guo, T. Multi-floor Indoor Navigation with Geomagnetic Field Positioning and Ant Colony Optimization Algorithm. In Proceedings of the 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), Oxford, UK, 29 March–2 April 2016; pp. 314–323. [Google Scholar]
- Ayanoglu, A.; Schneider, D.M.; Eitel, B. Crowdsourcing-Based Magnetic Map Generation for Indoor Localization. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8. [Google Scholar]
- Luo, H.Y.; Zhao, F.; Jiang, M.L.; Ma, H. Constructing an Indoor Floor Plan Using Crowdsourcing Based on Magnetic Fingerprinting. Sensors
**2017**, 17, 2678. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to Data Mining: Pearson New International Edition PDF eBook; Pearson Schweiz Ag: London, UK, 2013; Volume 14, pp. 279–288. [Google Scholar]
- Speybroeck, N. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
**2012**, 57, 243–246. [Google Scholar] [CrossRef] [PubMed] - Holzinger, A. Data Mining with Decision Trees: Theory and Applications. Online Inf. Rev.
**2015**, 39, 437–438. [Google Scholar] - Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN Classification With Different Numbers of Nearest Neighbors. IEEE Trans. Neural Networks Learn. Syst.
**2018**, 29, 1774–1785. [Google Scholar] [CrossRef] [PubMed] - Wu, J.; Yang, H. Linear Regression-Based Efficient SVM Learning for Large-Scale Classification. IEEE Trans. Neural Networks Learn. Syst.
**2017**, 26, 2357–2369. [Google Scholar] [CrossRef] [PubMed] - Zhao, H.; Guo, L. Space coordinate transformation algorithm for built-in accelerometer data of smartphone. J. Comput. Appl.
**2016**, 36, 301–306. [Google Scholar]

**Figure 11.**(

**a**) Physical and Electronics Laboratory Building (

**above**). (

**b**) Huiwen Building (

**middle**). (

**c**) Harbin Clothing Market (

**below**).

Symbol | Explanation |
---|---|

${\overline{a}}_{x}$ | Average acceleration in x direction per frame |

${\overline{a}}_{y}$ | Average acceleration in y direction per frame |

$\overline{a}$ | Average total acceleration per frame |

${W}_{a}$ | Peak of total acceleration per frame |

${W}_{\u25b3a}$ | Maximum change in total acceleration per frame |

${W}_{\u25b3Mf}$ | Maximum change in total magnetic density per frame |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhao, M.; Qin, D.; Guo, R.; Wang, X.
Indoor Floor Localization Based on Multi-Intelligent Sensors. *ISPRS Int. J. Geo-Inf.* **2021**, *10*, 6.
https://doi.org/10.3390/ijgi10010006

**AMA Style**

Zhao M, Qin D, Guo R, Wang X.
Indoor Floor Localization Based on Multi-Intelligent Sensors. *ISPRS International Journal of Geo-Information*. 2021; 10(1):6.
https://doi.org/10.3390/ijgi10010006

**Chicago/Turabian Style**

Zhao, Min, Danyang Qin, Ruolin Guo, and Xinxin Wang.
2021. "Indoor Floor Localization Based on Multi-Intelligent Sensors" *ISPRS International Journal of Geo-Information* 10, no. 1: 6.
https://doi.org/10.3390/ijgi10010006