# Loop Quantum Cosmology, Modified Gravity and Extra Dimensions

## Abstract

**:**

## 1. Introduction

## 2. $\mathit{k}=\mathbf{0}$ Loop Quantum Cosmology

#### 2.1. Classical Connection Dynamics

#### 2.2. Quantum Theory

## 3. Loop Quantum Cosmology of Modified Gravity

#### 3.1. Classical Theory

#### 3.2. Effective Equation

## 4. Loop Quantum Cosmology in Higher Dimensions

## 5. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A status report. Class. Quantum Gravity
**2004**, 21, R53. [Google Scholar] [CrossRef] - Han, M.; Huang, W.; Ma, Y. Fundamental structure of loop quantum gravity. Int. J. Mod. Phys. D
**2007**, 16, 1397–1474. [Google Scholar] [CrossRef] - Ashtekar, A.; Bojowald, M.; Lewandowski, J. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys.
**2003**, 7, 233–268. [Google Scholar] [CrossRef] - Bojowald, M. Loop quantum cosmology. Living Rev. Relat.
**2005**, 8, 11. [Google Scholar] [CrossRef] - Ashtekar, A. Loop quantum cosmology: An overview. Gen. Relat. Gravity
**2009**, 41, 707–741. [Google Scholar] [CrossRef] - Ashtekar, A.; Singh, P. Loop quantum cosmology: A status report. Class. Quantum Gravity
**2011**, 28, 213001. [Google Scholar] [CrossRef] - Banerjee, K.; Calcagni, G.; Martin-Benito, M. Introduction to loop quantum cosmology. Symmetry Integr. Geom. Methods Appl.
**2012**, 8, 016. [Google Scholar] [CrossRef] - Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the big bang: Improved dynamics. Phys. Rev. D
**2006**, 74, 084003. [Google Scholar] [CrossRef] - Ashtekar, A.; Corichi, A.; Singh, P. Robustness of key features of loop quantum cosmology. Phys. Rev. D
**2008**, 77, 024046. [Google Scholar] [CrossRef] - Zhang, X.; Ma, Y. Extension of loop quantum gravity to f(R) theories. Phys. Rev. Lett.
**2011**, 106, 171301. [Google Scholar] [CrossRef] [PubMed] - Zhang, X.; Ma, Y. Loop quantum f(R) theories. Phys. Rev. D
**2011**, 84, 064040. [Google Scholar] [CrossRef] - Zhang, X.; Ma, Y. Loop quantum Brans-Dicke theory. J. Phys. Conf. Ser.
**2012**, 360, 012055. [Google Scholar] [CrossRef] - Zhang, X.; Ma, Y. Nonperturbative loop quantization of scalar-tensor theories of gravity. Phys. Rev. D
**2011**, 84, 104045. [Google Scholar] [CrossRef] - Ma, Y. Extension of loop quantum gravity to metric theories beyond general relativity. J. Phys. Conf. Ser.
**2012**, 360, 012006. [Google Scholar] [CrossRef] - Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev.
**1961**, 124, 925. [Google Scholar] [CrossRef] - Greenstein, G.S. Brans–Dicke cosmology, I. Astrophys. Lett.
**1968**, 1, 139–141. [Google Scholar] [CrossRef] - Greenstein, G.S. Brans–Dicke cosmology, II. Astrophys. Space Sci.
**1968**, 2, 155–165. [Google Scholar] [CrossRef] - Anderson, J.D.; Morris, J.R. Brans–Dicke theory and the Pioneer anomaly. Phys. Rev. D
**2012**, 86, 064023. [Google Scholar] [CrossRef] - Benerjee, N.; Pavon, D. Cosmic acceleration without quintessence. Phys. Rev. D
**2001**, 63, 043504. [Google Scholar] [CrossRef] - Sen, S.; Sen, A.A. Late time acceleration in Brans–Dicke cosmology. Phys. Rev. D
**2001**, 63, 124006. [Google Scholar] [CrossRef] - Qiang, L.; Ma, Y.; Han, M.; Yu, D. 5-dimensional Brans–Dicke theory and cosmic acceleration. Phys. Rev. D
**2005**, 71, 061501. [Google Scholar] [CrossRef] - Das, S.; Banerjee, N. Brans–Dicke scalar field as a chameleon. Phys. Rev. D
**2008**, 78, 043512. [Google Scholar] [CrossRef] - Felice, A.D.; Tsujikawa, S. Generalized Brans–Dicke theories. J. Cosmol. Astropart. Phys.
**2010**, 2010, 024. [Google Scholar] [CrossRef] - Bisabr, Y. Cosmic acceleration in Brans–Dicke cosmology. Gen. Relat. Gravity
**2012**, 44, 427–435. [Google Scholar] [CrossRef] - Friemann, J.; Turner, M.; Huterer, D. Dark energy and the accelerating Universe. Ann. Rev. Astron. Astrophys.
**2008**, 46, 385–432. [Google Scholar] [CrossRef] - Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ.
**2006**, 9, 3. [Google Scholar] [CrossRef] - Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Zhang, X.; Ma, Y. Loop quantum Brans–Dicke cosmology. Phys. Rev. D
**2013**, 87, 084024. [Google Scholar] [CrossRef] - Appelquist, T.; Chodos, A.; Freund, P.G.O. Modern Kaluza-Klein Theories (Frontiers in Physics); Addison-Wesley: Reading, MA, USA, 1986. [Google Scholar]
- Polchinski, J. String Theory; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Maldacena, J.M. TASI 2003 Lectures on AdS/CFT. In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, Boulder, CO, USA, 1–27 June 2003.
- Randall, L.; Sundrum, R. A Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett.
**1999**, 83, 3370–3373. [Google Scholar] [CrossRef] - Randall, L.; Sundrum, R. An Alternative to Compactification. Phys. Rev. Lett.
**1999**, 83, 4690–4693. [Google Scholar] [CrossRef] - Mohammedi, N. Dynamical compactification, standard cosmology, and the accelerating universe. Phys. Rev. D
**2002**, 65, 104018. [Google Scholar] [CrossRef] - Zhang, X. Loop quantum cosmology in 2 + 1 dimension. Phys. Rev. D
**2014**, 90, 124018. [Google Scholar] [CrossRef] - Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis. Class. Quantum Gravity
**2013**, 30, 045001. [Google Scholar] [CrossRef] - Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis. Class. Quantum Gravity
**2013**, 30, 045002. [Google Scholar] [CrossRef] - Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions III. Quantum theory. Class. Quantum Gravity
**2013**, 30, 045003. [Google Scholar] [CrossRef] - Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions IV. Matter Coupling. Class. Quantum Gravity
**2013**, 30, 045004. [Google Scholar] [CrossRef] - Zhang, X. Higher dimensional loop quantum cosmology. Eur. Phys. J. C
**2016**, 76, 395. [Google Scholar] [CrossRef] - Taveras, V. Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar field. Phys. Rev. D
**2008**, 78, 064072. [Google Scholar] [CrossRef] - Ding, Y.; Ma, Y.; Yang, J. Effective scenario of loop quantum cosmology. Phys. Rev. Lett.
**2009**, 102, 051301. [Google Scholar] [CrossRef] [PubMed] - Yang, J.; Ding, Y.; Ma, Y. Alternative quantization of the Hamiltonian in loop quantum cosmology. Phys. Lett. B
**2009**, 682, 1–7. [Google Scholar] [CrossRef] - Bojowald, M.; Brizuela, D.; Hernandez, H.H.; Koop, M.J.; Morales-Tecotl, H.A. High-order quantum back-reaction and quantum cosmology with a positive cosmological constant. Phys. Rev. D
**2011**, 84, 043514. [Google Scholar] [CrossRef] - Ashtekar, A.; Campiglia, M.; Henderson, A. Loop quantum cosmology and spin foams. Phys. Lett. B
**2009**, 681, 347. [Google Scholar] [CrossRef] - Ashtekar, A.; Campiglia, M.; Henderson, A. Casting loop quantum cosmology in the spin foam paradigm. Class. Quantum Gravity
**2010**, 27, 135020. [Google Scholar] [CrossRef] - Ashtekar, A.; Campiglia, M.; Henderson, A. Path integrals and the WKB approximation in loop quantum cosmolog. Phys. Rev. D
**2010**, 82, 124043. [Google Scholar] [CrossRef] - Qin, L.; Huang, H.; Ma, Y. Path integral and effective Hamiltonian in loop quantum cosmology. Gen. Relativ. Gravit.
**2013**, 45, 1191–1210. [Google Scholar] [CrossRef] - Qin, L.; Deng, G.; Ma, Y. Path Integrals and Alternative Effective Dynamics in Loop Quantum Cosmology. Commun. Theor. Phys.
**2012**, 57, 326–332. [Google Scholar] [CrossRef] - Qin, L.; Ma, Y. Coherent state functional integrals in quantum cosmology. Phys. Rev. D
**2012**, 85, 063515. [Google Scholar] [CrossRef] - Qin, L.; Ma, Y. Coherent state functional integral in loop quantum cosmology: Alternative dynamics. Mod. Phys. Lett.
**2012**, 27, 1250078. [Google Scholar] [CrossRef] - Singh, P. Are loop quantum cosmos never singular? Class. Quantum Gravity
**2009**, 26, 125005. [Google Scholar] [CrossRef] - Gomar, L.; Martin-Benito, M.; Marugan, G. Quantum corrections to the Mukhanov-Sasaki equations. Phys. Rev. D.
**2016**, 93, 104025. [Google Scholar] [CrossRef] [Green Version] - Cai, Y.; Wilson-Ewing, E. A ΛCDM bounce scenario. J. Cosmol. Astropart. Phys.
**2015**, 2015, 006. [Google Scholar] [CrossRef] [PubMed] - Agullo, I.; Ashtekar, A.; Nelson, W. A quantum gravity extension of the inflationary scenario. Phys. Rev. Lett.
**2012**, 109, 251301. [Google Scholar] [CrossRef] [PubMed] - Amorós, J.; Haro, J.; Odintsov, S.D. R + αR
^{2}loop quantum cosmology. Phys. Rev. D**2014**, 89, 104010. [Google Scholar] [CrossRef] - Bonga, B.; Gupt, B. Phenomenological investigation of a quantum gravity extension of inflation with the Starobinsky potential. Phys. Rev. D
**2016**, 93, 063513. [Google Scholar] [CrossRef] - Zhang, X. Immirzi parameter and quasinormal modes in four and higher spacetime dimensions. Front. Phys.
**2016**, 11, 110401. [Google Scholar] [CrossRef] - Alesci, E.; Cianfrani, F. A new perspective on cosmology in Loop Quantum Gravity. Europhys. Lett.
**2013**, 104, 10001. [Google Scholar] [CrossRef] - Alesci, E.; Cianfrani, F. Quantum-reduced loop gravity: Cosmology. Phys. Rev. D
**2013**, 87, 083521. [Google Scholar] [CrossRef] - Diener, P.; Gupt, B.; Singh, P. Chimera: A hybrid approach to numerical loop quantum cosmology. Class. Quantum Gravity
**2014**, 31, 025013. [Google Scholar] [CrossRef] - Diener, P.; Gupt, B.; Singh, P. Numerical simulations of a loop quantum cosmos: robustness of the quantum bounce and the validity of effective dynamics. Class. Quantum Gravity
**2014**, 31, 105015. [Google Scholar] [CrossRef]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, X.
Loop Quantum Cosmology, Modified Gravity and Extra Dimensions. *Universe* **2016**, *2*, 15.
https://doi.org/10.3390/universe2030015

**AMA Style**

Zhang X.
Loop Quantum Cosmology, Modified Gravity and Extra Dimensions. *Universe*. 2016; 2(3):15.
https://doi.org/10.3390/universe2030015

**Chicago/Turabian Style**

Zhang, Xiangdong.
2016. "Loop Quantum Cosmology, Modified Gravity and Extra Dimensions" *Universe* 2, no. 3: 15.
https://doi.org/10.3390/universe2030015