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Abstract: Loop quantum cosmology (LQC) is a framework of quantum cosmology based on the
quantization of symmetry reduced models following the quantization techniques of loop quantum
gravity (LQG). This paper is devoted to reviewing LQC as well as its various extensions including
modified gravity and higher dimensions. For simplicity considerations, we mainly focus on the
effective theory, which captures main quantum corrections at the cosmological level. We set up the
basic structure of Brans–Dicke (BD) and higher dimensional LQC. The effective dynamical equations
of these theories are also obtained, which lay a foundation for the future phenomenological
investigations to probe possible quantum gravity effects in cosmology. Some outlooks and future
extensions are also discussed.
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1. Introduction

Loop quantum gravity (LQG) is a quantum gravity scheme that tries to quantize general
relativity (GR) with the nonperturbative techniques consistently [1–4]. Many issues of LQG have
been carried out in the past thirty years. In particular, among these issues, loop quantum cosmology
(LQC), which is the cosmological sector of LQG has received increasing interest and has become one
of the most thriving and fruitful directions of LQG [5–9]. It is well known that GR suffers singularity
problems and this, in turn, implies that our universe also has an infinitely dense singularity point
that is highly unphysical. However, in contrast with GR, LQC is a singularity free theory that stands
for one of the most attractive features of this theory. In LQC, the classical cosmological singularity
is naturally replaced by a quantum bounce [10,11] and thus avoids the inevitable cosmological
singularity in classical GR.

Recently, this non-perturbatively loop quantization procedure has been successfully generalized
to the modified gravity theories such as metric f (R) theories [12,13], Brans–Dicke (BD) theory [14]
and scalar-tensor theories [15,16]. However, at the level of the full theory of quantum gravity, it is
extremely complex. In order get around this complexity, to test the ideas and constructions of the full
theory and also to draw some physical predictions, it is desirable to study their symmetry-reduced
models, such as cosmological models. Among all scalar-tensor theories of gravity, the simplest one
is the so-called Brans–Dicke theory that was introduced by Brans and Dicke in 1961 to modify GR in
accordance with Mach’s principle [17]. Therefore, in this review, we will focus on the loop quantum
cosmology of Brans–Dicke theory.

The cosmological models of classical Brans–Dicke theory were first studied in [18,19]. Since then,
many aspects of Brans–Dicke cosmology have been widely investigated in the past decades [20].
The scalar field non-minimally coupled with curvature in Brans–Dicke theory is even expected to
account for the dark energy problem [21–26], which has become a topical issue in cosmology [27].
It should be noted that the solar system experiments constrain the coupling constant ω of the
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original four-dimensional Brans–Dicke theory to being a very large number [28,29]. For simplicity
consideration and consistency with the solar system experiments, in this review, we will only focus
on the Brans–Dicke LQC theory [30] with coupling constant ω 6= − 3

2 .
On the other hand, higher dimensional spacetime and gravity theories are subjects of great

interest in the grand unify theories. Historically, the very first higher dimensional gravity theory is
the famous five-dimensional Kaluza–Klein theory, which tries to unify the four-dimensional GR and
Maxwell theory [31]. Recent theoretical developments such as the string/M theories [32], AdS/CFT
correspondence [33], Brane world scenario [34,35], and so on reveal that higher dimensions are
preferred by these theories. In the past half century, many aspects of these higher dimensional gravity
theories have been extensively studied, particularly on the physical issues related with Black holes
and cosmology. In fact, higher dimensional cosmology now is a rather huge and active field with
fruitful outputs. For instance, the accelerated expansions of our universe can be naturally explained
by some of the higher dimensional cosmological models [23,36]. Hence, one is naturally to ask: is it
possible to generalize the structure of LQC to the spacetime dimensions other than four, (particularly
in the higher dimensions)?

However, this is not an easy task, essentially because LQG is a quantization scheme based on
the connection dynamics, while the SU(2) connection dynamics are only well defined in three and
four dimensions (the LQC in 2 + 1 dimensions has already been constructed in [37]), and, thus, do not
have a simple generalization to the higher dimensions. Fortunately, this difficulty has been overcome
by Thiemann et al. in a series of papers [38–41]. The main idea of [38] is that in n + 1 dimensional GR,
in order to obtain a well defined connection dynamics, one should adopt SO(n + 1) connections AI J

a
rather than the speculated SO(n) connections. With these higher dimensional connection dynamics
in hand, Thiemann et al. successfully generalize the LQG to arbitrary spacetime dimensions. Based
on this higher dimensional LQG, the authors construct the n + 1 dimensional LQC, with n ≥ 3 [42].

This paper is organized as follows: after a brief introduction, we review four-dimensional spatial
flat k = 0 LQC in Section 2. Then, we generalize LQC to modified gravity and higher dimensional
case in Section 3 and 4, respectively. The effective Hamiltonian and modified Friedman equations of
these theories are obtained. Conclusions and outlooks are given in the last section.

2. k = 0 Loop Quantum Cosmology

2.1. Classical Connection Dynamics

To make this paper self-contained, we first review some basic elements of four-dimensional k = 0
loop quantum cosmology [7]. Loop quantum cosmology is a model that quantizes the symmetry
reduced cosmological model by following the techniques of LQG as closely as possible. While loop
quantum gravity is a quantization scheme of gravity built on the connection dynamics formalism of
general relativity, with 3-metric hab, loop quantum gravity instead uses the densitized triad Ea

i and
SU(2) connections Ai

a as the basic building blocks, where these canonical geometric variables are
defined as follows:

Ea
i =
√

hea
i , Ai

a = Γi
a + γKi

a, (1)

where ea
i is the triad such that habea

i eb
j = δij, Ka

i ≡ Kabei
b, Γi

a is the spin connection determined by Ea
i ,

and γ is a nonzero real number called Barbero–Immizi parameter.
These canonical conjugate pairs satisfy the following commutation relation:

{Aa
i (x), Ej

b(y)} = 8πGγδ
j
i δ

a
bδ(x, y). (2)
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Moreover, to make sure these connection dynamics are equivalent to the general relativity, we
have to impose three constraints as follows [2,4]

Gi = DaEa
i , (3)

Va =
1

κγ
Fi

abEb
i , (4)

Hgr =
εijkEa

i Eb
j

2κ
√

h
Fab,k−2(γ2 + 1)

Ea
[iE

b
j]

2κ
√

h
Ki

aK j
b, (5)

where κ = 8πG.
Now, we consider an isotropic and homogenous k = 0 Universe. We choose a fiducial Euclidean

metric oqab on the spatial slice of the isotropic observers and introduce a pair of fiducial orthonormal
triad and co-triad as (oea

i , oωi
a), respectively, such that oqab = oωi

a
oωi

b. Then, the physical spatial metric
is related to the fiducial one by qab = a2oqab. In the cosmological model, our universe can be described
by the Friedman–Robertson–Walker (FRW) metric:

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (6)

where a is the scale factor. By using these fiducial orthonormal triad and co-triad (oea
i , oωi

a),
the densitized triad and spin connection can be simplified as

Ea
i = pV−

2
3

0

√
det(0q)oea

i , Aj
b = cV−

1
3

0
oω

j
b. (7)

By using the classical expression and comological line elements, one can easily link (c, p) with
scale factor a as p = a2 and c = γȧ, respectively. Commutation relation between c and p can be
reduced from (2) as follows

{c, p} = κγ

3
. (8)

For our spatial flat and isotropic cosmological case, Gaussian and diffeomorphism constraints
are satisfied automatically. The only remaining part is the Hamiltonian constraint (5). By using the
strategy in [5], assume that the matter field is a massless scalar field φ. We denote pφ as the conjugate
momentum of scalar field φ. The commutation relation between φ and pφ reads {φ, pφ} = 1. In the
cosmological model, this Hamiltonian, therefore, reduces to

HT = − 3
κγ2 c2√p +

p2
φ

2p3/2 . (9)

In order to yield the dynamic evolution equation, we need to calculate the equation of motion
for p, which reads

ṗ = {p, HT} =
2
γ

c
√

p. (10)

By using the Hamiltonian constraint, we can easily yield Friedman equation

H2 =

(
ṗ

2p

)2
=

1
γ2 p

c2 =
κ

3

p2
φ

2p3 =
κ

3
ρ, (11)

where H = ȧ
a and ρ =

p2
φ

2p3 are the Hubble parameter and the matter density, respectively.
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2.2. Quantum Theory

To quantize the cosmological model rigorously, we first need to construct the quantum
kinematical Hilbert space of quantum cosmology. This quantum kinematical Hilbert space constitutes
hybridly with the so-called polymer-like quantization for the gravity part, and with Schrodinger
representation for the scalar field . The kinematical Hilbert space for the geometry part can be defined
asHgr

kin := L2(RBohr, dµH), where RBohr and dµH are, respectively, the Bohr compactification of the real
line and the Haar measure on it [5]. On the other hand, for convenience, we choose the Schrodinger
representation for the scalar field [8]. Thus, the kinematical Hilbert space for the scalar field part
is defined as in the usual quantum mechanics: Hsc

kin := L2(R, dµ). Hence, the whole Hilbert space
of the 3 + 1 dimensional LQC is a direct product, Hkin = Hgr

kin ⊗H
sc
kin. In order to implement the

Hamiltonian constraint at the quantum level, there are essentially two quantum effects that we need
to consider. The first one is inverse volume corrections, which comes from the classical Hamiltonian
constraint that involves the inverse of the determinate of the metric and thus can not be promoted as
a well defined operator on the kinematic Hilbert space. In a 3 + 1 dimensional LQG, this difficulty can

be overcome through the well known classical identity (Thiemann trick) 1
2 εijk εabcEb

j Ec
k√

q = 1
κγ{Ai

a, V} [2],
where the q denotes the determinant of the three metric and V is the volume of the fiducial cell. The
second quantum effect is called a holonomy correction because the connection is not a well-defined
quantum operator and needs to be replaced by holonomy:

hλ
�jk

= cos (λc) + sin(λc)τjk. (12)

At the effective level, this is equivalent for replacing c 7→ sin(λc)
λ [10,11].

Under such a replacement, the effective Hamiltonian becomes

He f f = − 3
κγ2

sin2(µ̄c)
µ̄2

√
p +

p2
φ

2p3/2 . (13)

Here, we choose λ = µ̄ =
√

∆
p [6–8,10], with ∆ being the minimal area in loop quantum gravity [2,10].

With this effective Hamiltonian in hand, we can easily derive the modified Friedman equation. To this
aim, similar to the classical case, we again calculate the evolution of a canonical variable p

ṗ = {p, He f f } =
2
γ

sin(µ̄c) cos(µ̄c)
µ̄

√
p =

2
γ
√

∆
sin(µ̄c) cos(µ̄c)p. (14)

On the other hand, we can rewrite the effective Hamiltonian as

sin2(µ̄c) =
κγ2∆

3

p2
φ

2p3 =
ρ

ρc
, (15)

where ρc =
3

κγ2∆ . Therefore, the modified Friedman equation reads

H =

(
ȧ
a

)2
=

(
ṗ

2p

)2
=

1
γ2∆

sin2(µ̄c) cos2(µ̄c) =
κ

3
ρ(1− ρ

ρc
). (16)

It is easy to see at the point ρ = ρc, the Hubble parameter H = 0. Moreover, it can be verified
that there is a bounce occurring at that point [10].
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3. Loop Quantum Cosmology of Modified Gravity

3.1. Classical Theory

Modified gravity now receives more and more attention. In this section, we generalize loop
quantum cosmology to modified gravity [14,15,30]. We mainly focus on one of the simplest modified
gravity theories, which is the so-called Brans–Dicke theory. The treatment of other more complicated
gravity can be found in [15]. The action of Brans–Dicke theory reads [14]

S(g) =
1

2κ

∫
Σ

d4x
√
−g
[

φR− ω

φ
gµν(∂µφ)∂µφ

]
, (17)

where ω is the coupling constant of the Brans–Dicke theory.
Though a complicated Hamiltonian analysis, we can rewrite Brans–Dicke theory in the

connection dynamics formalism and find that BD theory also admits three constraints just like
GR. The Gauss and Diffeomophism constraints keep the same form as in GR and the Hamiltonian
constraint of the Brans–Dicke theory reads [14]

HBD =
φ

2κ

[
Fj

ab − (γ2 +
1

φ2 )ε jmnK̃m
a K̃n

b

]
ε jklEa

k Eb
l√

h

+
κ

3 + 2ω

(
(K̃i

aEa
i )

2

κ2φ
√

h
+ 2

(K̃i
aEa

i )π

κ
√

h
+

π2φ√
h

)

+
ω

2κφ

√
h(Daφ)Daφ +

1
κ

√
hDaDaφ, (18)

where K̃i
a ≡ K̃abeb

i , with K̃ab being

K̃ab = φKab +
hab

2N
(φ̇− Nc∂cφ), (19)

where Kab is the extrinsic curvature of three manifold. The only non-vanishing Poisson bracket
between these canonical variables reads

{K̃ j
a(x), Eb

k(y)} = κδb
a δ

j
kδ(x, y). (20)

Moreover, the connection Ai
a defined as

Ai
a = Γi

a + γK̃i
a, (21)

where Γi
a is the spin connection, and γ is a nonzero real number. Fi

ab ≡ 2∂[a Ai
b] + εi

kl A
k
a Al

b is the

curvature of Ai
a.

Since the spatial topology is non-compact and the total volume of the spatial manifold is infinite,
we introduce an “elemental cell” V and restrict all integral to V . The homogeneity of the universe
guarantees that the whole space information is reflected in this elemental cell. Now, we choose
a fiducial Euclidean metric oqab and introduce a pair of fiducial orthnormal triad and co-triad as
(oea

i , oωi
a), respectively, such that oqab = oωi

a
oωi

b. For simplicity, we let the elemental cell V be a
cubic measured by our fiducial metric and denote its volume as Vo. Because our FRW metric is
spatially flat, we have Γi

a = 0, and, hence, Ai
a = γK̃i

a. Via fixing the degrees of freedom of local gauge
and diffeomorphism, we finally obtain the connection and densitized triad by symmetrical reduction
as [5]:

Ai
a = c̃V−

1
3

0
oωi

a, Eb
j = pV−

2
3

0

√
det(0q)oeb

j , (22)
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where c̃, p are only functions of t. Hence, the phase space of the cosmological model consists of
conjugate pairs (c̃, p) and (φ, π). The basic Poisson brackets between them can be simply read as:

{c̃, p} =
κ

3
γ,

{φ, π} = 1. (23)

From the classical line element, we can obtain c̃ = γ(φȧ + φ̇ a
2 ), p = a2. Note that by the

symmetric reduction, the Gaussian and diffeomorphism constraints are satisfied automatically.
Moreover, since we only consider the homogeneous universe model, the last two terms in the
Hamiltonian constraint (18) only evolve spatial derivatives, and thus should vanish. Hence, we
only need to consider the remaining five terms in the Hamiltonian constraint (18). The reduced
Hamiltonian in the cosmological model reads

HBD = −3c̃2
√
|p|

γ2κφ
+

κ

(3 + 2ω)φ|p|
3
2
(

3c̃p
κγ

+ πφ)2. (24)

Similar to the last section, by using evolution of p and the Hamiltonian constraint, we can get
the Friedman equation as follows [30]:(

ȧ
a
+

φ̇

2φ

)2

=
1

φ2
κ

3
ρe f f =

κ

3φ2 (
βφ̇2

4κ
+ φρ)

=
βφ̇2

12φ2 +
κρ

3φ
. (25)

3.2. Effective Equation

To study the effective theory of loop quantum Brans–Dicke cosmology, we also want to know
the effect of matter fields on the dynamical evolution. Hence, we include an extra massless scalar
matter field ϕ into Brans–Dicke cosmology. Then, classically, the total Hamiltonian constraint of the
model reads

H = −3c̃2
√
|p|

γ2κφ
+

κ

(3 + 2ω)φ|p|
3
2
(

3c̃p
κγ

+ πφ)2 +
p2

ϕ

2|p|
3
2

, (26)

where pϕ is the momentum conjugate to ϕ. The effective description of LQC is a delicate and
topical issue since it may relate the quantum gravity effects to low-energy physics. The effective
equations of LQC are being studied from both the canonical perspective [43–46] and the path integral
perspective [47–53]. Since the key element in the polymer-like quantization of the previous subsection
is to take holonomies rather than connections as basic variables, a heuristic and simple way to
get the effective equations is to do the replacement c̃ → sin(µ̄c̃)

µ̄ [30]. In fact, this replacement is
rigorous in Brans–Dicke as well as more general scalar-tensor theories of gravity [14,15,30]. Under this
replacement, the effective version of Hamiltonian constraint (26) takes the form

H = −3 sin2(µ̄c̃)
√
|p|

κγ2φµ̄2 +
κ

βφ|p|
3
2
(

3 sin(µ̄c̃)p
µ̄κγ

+ πφ)2 + |p|
3
2 ρ, (27)

where ρ =
p2

ϕ

2|p|3
by definition is the matter density of massless scalar field. The more detailed study

show that the effective Hamiltonian (27) derived by a path integral formalism [30] actually takes the
same form. Then, the canonical equations of motion read:
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ṗ =
2
√
|p|

γφµ̄
sin(µ̄c̃) cos(µ̄c̃)− 2κ

βφ|p|
1
2

(
3 sin(µ̄c̃)p

µ̄κγ
+ πφ) cos(µ̄c̃

)
, (28)

φ̇ =
2κ

β|p|
3
2
(

3 sin(µ̄c̃)p
µ̄κγ

+ πφ). (29)

In the above calculation, the Poisson brackets (23) have been used. The combination of
Equations (28) and (29) gives:

(
ṗ

2p
+

φ̇

2φ

)2

=

[
sin(µ̄c̃) cos(µ̄c̃)

γφµ̄
√
|p|

+
κ

βφ|p|
3
2
(

3 sin(µ̄c̃)p
µ̄κγ

+ πφ)(1− cos(µ̄c̃))

]2

=

[
sin(µ̄c̃) cos(µ̄c̃)

γφ
√

∆
+

φ̇

2φ
(1− cos(µ̄c̃))

]2

. (30)

On the other hand, from the effective Hamiltonian constraint (27), we can get

−3 sin2(µ̄c̃)
κγ2φ∆

+
βφ̇2

4κφ
+ ρ = 0, (31)

which implies

sin2(µ̄c̃) =
ρe f f

ρc
, (32)

where ρc = 3
γ2∆κ

=
√

3
32π2G2γ3 h̄ and ρe f f = βφ̇2

4κ + φρ. Taking Equation (32) into account and p = a2,
we can rewrite Equation (30) as:

(
ȧ
a
+

φ̇

2φ

)2

=

[
1
φ

√
κ

3
ρe f f (1−

ρe f f

ρc
) +

φ̇

2φ
(1−

√
1−

ρe f f

ρc
)

]2

. (33)

This is the effective Friedmann equation of Brans–Dicke cosmology, which contains important
quantum correction terms. In addition, we can show that, for a contracting universe, ρe f f
monotonically increases while v decreases [30]. Thus, it is easy to see from Equation (33) that, when
ρe f f approaches ρc, one gets cos(µ̄c̃) = 1− ρe f f

ρc
= 0. Then, from Equation (28), we can obtain ṗ = 0.

This implies a quantum bounce that would happen at that point for a contracting universe.
The modified Friedman equation has two important limits cases. The first one is when φ = 1,

and note that in this case we have ρe f f = ρ and φ̇ = 0, Equation (33) returns to the well-known
effective Friedmann equation of LQC [10,44] as(

ȧ
a

)2
=

κ

3
ρ(1− ρ

ρc
). (34)

Second, in the classical regime, i.e., when ρe f f � ρc, we can omit
ρe f f
ρc

terms in Equation (33) to
get the classical limit as: (

ȧ
a
+

φ̇

2φ

)2

=
1

φ2
κ

3
ρe f f =

κ

3φ2 (
βφ̇2

4κ
+ φρ)

=
βφ̇2

12φ2 +
κρ

3φ
, (35)
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which is nothing but the classical Friedmann equation of Brans–Dicke cosmology. This, in turn,
guarantees our effective theory as a correct classical limit.

4. Loop Quantum Cosmology in Higher Dimensions

Now, we turn to generalizing our results to higher dimensions, and this section is mainly based
on [42]. The connection dynamics of n+1 dimensional gravity (n ≥ 3) with a gauge group SO(n + 1)
or SO(1, n) is obtained in [38]. The Ashtekar connection formalism of n + 1 dimensional gravity
constitutes an SO(1, n) (or SO(n + 1)) connections AI J

a and a group value densitized vector πb
I J

defined on an oriented n dimensional manifold S, where a, b = 1, 2 . . . n are the spatial indices
and I, J = 1, 2, 3 . . . n denotes SO(1, n) group indices. The commutation relation for the canonical
conjugate pairs satisfies

{AaI J(x), πbKL(y)} = 16πGγδK
[Iδ

L
J]δ

b
a δ(x, y), (36)

where γ is a nonzero real number. Here, the πbKL satisfies the “Simplicity constraint” [38].
Solving this “Simplicity constraint” at the classical level gives us πbKL = 2n[KEb|L] = 2

√
hhabn[KeL]

a ,
where the spatial metric reads hab = ei

aebi, nK is a normal, which satisfies eK
a nK = 0 and nKnK = −1 for

SO(1, n) (for the case SO(n+ 1), nKnK = 1). Moreover, the densitized vector Ea
I satisfies hhab = Ea

I EbI ,
where h is the determinant of the n dimensional spatial metric hab. AI J

a is an SO(1, n) connection
defined as AI J

a = ΓI J
a + γK I J

a , where ΓI J
a and K I J

a are n dimensional spin connection and extrinsic
curvature, respectively. Besides the Simplicity constraint, the n+1 dimensional gravity has three
constraints similar to 3+1 dimensional general relativity [38,40]:

GI J := DaπaI J := ∂aπaI J + 2A[I
a Kπa|K|J], (37)

Va =
1

2γ
FabI Jπ

bI J , (38)

Hgr =
1

2κ
√

h

(
FabI Jπ

aIKπb
K

J + 4D̄aI J
T (F−1)aI J,bKLD̄bKL

T − 2(1 + γ2)KaIKbJ Ea[I Eb|J]
)

, (39)

where FabI J ≡ 2∂[a Ab]I J + 2Aa[I|K Ab
K
|J] is the curvature of connection AaI J , and D̄aI J

T = γ
4 FaI J,bKLK̄T

bKL,
with K̄T

bKL being the transverse and traceless part of extrinsic curvature KbKL. Moreover, we have
[F · F−1]aI J

bKL = δa
b η̄ I

[K η̄ J
L], with η̄ I

J = δI
J − nInJ .

Now, let us consider the n + 1 dimensional isotropic and homogenous k = 0 Universe. Its line
element is described by the n+1 dimensional Friedmann–Robertson–Walker (FRW) metric

ds2 = −N2dt2 + a2(t)dΩ2, (40)

where a is the scale factor, N is the lapse function, and dΩ2 is the n dimensional spatial section.
In the following, for simplicity, we fix N = 1. We choose a fiducial Euclidean metric oqab on the n
dimensional spatial slice of the isotropic observers and introduce a pair of fiducial orthnormal bases
as (oea

I , oω I
a) such that oqab = oω I

a
oω I

b. The physical spatial metric is related to the fiducial one by

qab = a2oqab. Then, the densitized vector can be expressed as Ea
I = pV−

n−1
n

0

√
0qoea

I , thus the πaI J and
spin connection AI J

b , respectively, reduce to

πaI J = 2pV−
n−1

n
0

√
0qon[I oea|J] = pV−

n−1
n

0

√
0qoπaI J , (41)

AI J
b = 2cV−

1
n

0
on[I oω

J]
b = cV−

1
n

0
oΩI J

a . (42)
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In the following, without loss of generality, we will fix the fiducial volume V0 = 1.
A straightforward calculation shows

p = an−1, c = γȧ. (43)

These canonical variables satisfy the commutation relation as follows:

{c, p} = κγ

n
. (44)

For our cosmological case, the Gaussian and diffeomorphism constraints are satisfied
automatically. For the Hamiltonian constraint, we first note that, in our cosmological situation,
the extrinsic curvature only has the diagonal part. Hence, the transverse traceless part of extrinsic
curvature K̄T

bKL is identical to zero. Therefore, the second term of the Hamiltonian constraint
is vanishing. Moreover, the spin connection Γ is also zero for our homogenous and isotropic
universe. Thus, a simple straightforward calculation shows KKEE term proportional to Fππ term.
Combining all of the above ingredients together, the Hamiltonian constraint (39) reduces to

Hgr = − 1
2κγ2 FabI J

πaIKπb
K

J
√

h
. (45)

Now, as in the 3 + 1 dimensional LQC, we also consider a minimally coupled massless scalar
field φ as our matter field. The total Hamiltonian now reads

HTotal = − 1
2κγ2 FabI J

πaIKπb
K

J
√

h
+

p2
φ

2
√

h
, (46)

where the pφ by definition is the conjugate momentum of massless scalar field φ. The Poisson bracket
between scalar field φ and conjugate momentum pφ reads {φ, pφ} = 1. In the cosmological model
that we consider in this paper, this Hamiltonian therefore reduces to

HTotal = −n(n− 1)
2κγ2 c2 p

n−2
n−1 +

p2
φ

2p
n

n−1
. (47)

In order to reproduce an n+1 dimensional Friedmann equation with our Hamiltonian (47) and
commutation relation (44), we calculate the equation of motion for p, which reads

ṗ = {p, HTotal} =
n− 1

γ
cp

n−2
n−1 . (48)

By using the Hamiltonian constraint, we successfully reproduce the classical n + 1 dimensional
Friedmann equation

H2 =

(
ṗ

(n− 1)p

)2
=

1
γ2 p2 c2 p

2(n−2)
n−1

=
2κ

n(n− 1)

p2
φ

2p
2n

n−1
=

2κ

n(n− 1)
ρ, (49)

where

H =
ȧ
a

ρ =
p2

φ

2V2 =
p2

φ

2p
2n

n−1
(50)
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are the Hubble parameter and the matter density in n+1 dimensions, respectively.
In n + 1 dimensional quantum gravity, the n− 1 dimensional area operator is quantized just like

its counterparts in 3 + 1 dimensions, and the discrete spectrum of this n − 1 dimensional quantum
operator reads [40]

∆n = κh̄γ ∑
I

√
I(I + n− 1) = 8πγ(`p)

n−1 ∑
I

√
I(I + n− 1), (51)

where I is an integer and `p = n−1
√

Gh̄ is the Planck length with G and h̄ being the Newton’s and
Planck’s constants in n + 1 dimensions [40]. Now, similar to the last two sections, at the effective
level, the quantum Hamiltonian can be simply obtained again from a replacement [42]

c 
sin(µ̄c)

µ̄
, (52)

where µ̄ =
(

∆n
|p|

) 1
n−1 , with ∆n being a minimum nonzero eigenvalue of the n dimensional area

operator [7].
Under such a replacement, the quantum effective Hamiltonian reads

He f f = −n(n− 1)
2κγ2

sin2(µ̄c)
µ̄2 p

n−2
n−1 +

p2
φ

2p
n

n−1
. (53)

Now, we are ready to derive the physical evolution equation of the n + 1 dimensional Universe,
and the most important one is, of course, the modified Friedmann equation. To this aim, combining
the effective Hamiltonian constraint He f f (53) with the symplectic structure of n+ 1 dimensional loop
quantum cosmology, one can easily obtain equations of motion for the p as

ṗ = {p, He f f } =
n− 1

γ

sin(µ̄c) cos(µ̄c)
µ̄

p
n−2
n−1 . (54)

By using Equation (54), and recalling that p = an−1, it is easy to see that

H2 =

(
ȧ
a

)2
=

(
ṗ

(n− 1)p

)2
=

1

γ2(∆n)
2

n−1
sin2(µ̄c) cos2(µ̄c). (55)

Note that the right-hand side of the above equation evolves sin2(µ̄c) cos2(µ̄c). It therefore
strongly hints to us that it might have some relation with the effective Hamiltonian constraint (53).
A simple and straightforward calculation shows us that this is true. In fact, the effective Hamiltonian
constraint He f f = 0 can be rewritten as the following compact form

sin2(µ̄c) =
2κγ2(∆n)

2
n−1 ρ

n(n− 1)
=

ρ

ρc
. (56)

Here, we define ρc =
n(n−1)

2κγ2(∆n)
2

n−1
as the n + 1 dimensional critical matter density, which actually

is the upper bound of the matter density. With this equation in hand, the modified Friedmann
equation can be easily obtained as

H2 =

(
ȧ
a

)2
=

2κ

n(n− 1)
ρ

(
1− ρ

ρc

)
. (57)
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5. Conclusions

In this paper, we review the four-dimensional LQC as well as its extension to modified gravity
and higher dimensions. We give a detailed construction of the effective Hamiltonian and use that
effective Hamiltonian to obtain the modified Friedman equation that represents the evolution of the
universe. We start from a 3+1 dimensional case, and then generalize it to the higher dimensional case
as well as a modified gravity case. Our result shows that the heuristic replacement c � sin(µ̄c)

µ̄ is
actually works quite general. In all cases we consider here, the modified Friedman equation contains
a corrections term ρ

ρc
. Therefore, in the classical regime, we have ρ

ρc
→ 0. This, in turn, implies the

corrected classical limit, while, in the Planck regime, the ratio ρ
ρc

approaches 1. Hence, in all these
theories, one can naturally expect the existence of a quantum bounce. A more detailed discussion can
be found in [30,54].

There are several directions to further extend our work. The first one is to incorporate
the dimension reduction mechanism with our higher dimensional LQC model. Getting a
four-dimensional cosmology theory and comparing this theory with the observation data will be very
interesting and might find some higher dimensional quantum effects. Second, for modified gravity
LQC, the perturbation theories, especially in the Jordan frame, are yet to be carried out. Moreover, we
can compare the perturbation theory in the Jordan frame and in the Einstein frame to see whether
there is a difference or not. Third, we can combine modified gravity and higher dimensional
LQC to construct higher dimensional modified LQC, since in the classical case, some of the higher
dimensional modified cosmological models can naturally explain the accelerated expansions of our
current Universe [23,36]. It will be very interesting to investigate the quantum effective of these
models. We hope to explore these delicate and important issues in the near future.

Finding observational signals are always one of the most important issues of LQC. In particular:
does current CMB data already contain some quantum gravity effects? In the 3+1 dimensional LQC
of GR, the effects of LQC will slightly modify the form of Mukhanov–Sasaki equation and therefore
give different values of some physical quantities such as the power spectrum, the tensor to scalar ratio,
and so on [55,56]. In the higher dimensional LQC model as well as the LQC of modified gravity, we
expect the corresponding Mukhanov–Sasaki equation will contain some new terms and give different
predictions that can be verified/falsified by the experimental data.

This paper aims to provide a short introduction to effective theories of LQC and its extensions.
It should be mentioned that, because of length limitation, many aspects of LQC are not covered.
These topics include but are not limited to inflationary scenarios in LQC [57], Starobinski types
model [58,59], the value of Immirzi parameters in higher dimensions [60], linking LQC with
LQG [61,62], more detailed discussion on singularity issues [63,64], and so on.
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