# Test and Simulation Analysis of the Working Process of Soybean Seeding Monomer

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Composition and Structure of the Seeding Monomer

#### 2.1. Opener

#### 2.2. Vertical Type-Hole Wheel Seedmeter

#### 2.2.1. Type-Hole Wheel

#### 2.2.2. Seed Scraper

#### 2.2.3. Seed Guard Plate

#### 2.3. Coverer

#### 2.4. Compacting Roller

## 3. Covering and Compacting Test

## 4. Covering and Compacting Simulation

## 5. Analysis of the Results

#### 5.1. Analysis of Covering and Compacting Results

#### 5.1.1. Analysis of Covering Test Results

#### 5.1.2. Analysis of the Results of the Compacting Test

#### 5.2. Analysis of the Open Furrow Results

#### 5.3. Seed Spacing Analysis

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Van Zeebroeck, M.; Tijskens, E.; Dintwa, E.; Kafashan, J.; Loodts, J.; De Baerdemaeker, J.; Ramon, H. The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Model building and validation of DEM to predict bruise damage of apples. Postharvest Biol. Technol.
**2006**, 41, 85–91. [Google Scholar] [CrossRef] - Kafashan, J.; Van Zeebroeck, M.; Ramon, H.; Tijskens, B. A novel approach to a realistic discrete element modelling (DEM) in 3D. Commun. Agric. Appl. Biol. Sci.
**2007**, 72, 205–208. [Google Scholar] [PubMed] - Kafash, J.; Van Liedekerke, P.; Ramon, H.; Tijskens, B. An Approach to represent realistic particles of bulk assembly in three-dimensional-DEM simulations and applications. Commun. Agric. Appl. Biol. Sci.
**2011**, 76, 33–36. [Google Scholar] - Kafashan, J.; Tijskens, B.; Ramon, H. Shape modelling of fruit by image processing. Commun. Agric. Appl. Biol. Sci.
**2005**, 70, 161–164. [Google Scholar] [PubMed] - Obermayr, M.; Vrettos, C.; Eberhard, P.; Däuwel, T. A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil. J. Terramech.
**2014**, 53, 93–104. [Google Scholar] [CrossRef] - Yu, Y.J.; Fu, H.; Yu, J.Q. DEM-based simulation of the corn threshing process. Adv. Powder Technol.
**2015**, 26, 1400–1409. [Google Scholar] [CrossRef] - Kafashan, J.; Wiącek, J.; Noorhazlinda Abd, R.; Gan, J. Two-dimensional particle shapes modelling for DEM simulations in engineering: A review. Granul. Matter
**2019**, 21, 80. [Google Scholar] [CrossRef] - Kafashan, J.; Wiacek, J.; Ramon, H.; Mouazen, A.M. Modelling and simulation of fruit drop tests by discrete element method. Biosyst. Eng.
**2021**, 212, 228–240. [Google Scholar] [CrossRef] - Yan, D.X.; Yu, J.Q.; Wang, Y.; Zhou, L.; Sun, K.; Tian, Y. A Review of the Application of Discrete Element Method in Agricultural Engineering: A Case Study of Soybean. Processes
**2022**, 10, 1305. [Google Scholar] [CrossRef] - Wang, Y.; Yu, J.Q.; Yu, Y.J. Validation of a coupled model of discrete element method with multibody kinematics to simulate the screening process of a swing-bar sieve. Powder Technol.
**2019**, 346, 193–202. [Google Scholar] [CrossRef] - Yuan, J.; Yu, J.Q. Analysis on Operational Process of Self-excited Vibrating Subsoiler Based on DEM-MBD Coupling Algorithm. Trans. Chin. Soc. Agric. Mach.
**2020**, 51, 17–24. [Google Scholar] - Xu, T.Y.; Yu, J.Q.; Yu, Y.J.; Wang, Y. A modelling and verification approach for soybean seed particles using the discrete element method. Adv. Powder Technol.
**2018**, 29, 3274–3290. [Google Scholar] [CrossRef] - Chinese Academy of Agricultural Mechanization Sciences. Agricultural Machinery Design Manual; China Agricultural Science and Technology Press: Beijing, China, 2007. [Google Scholar]
- Xu, T.Y.; Zhang, R.X.; Wang, Y.; Jiang, X.M.; Feng, W.Z.; Wang, J.L. Simulation and Analysis of the Working Process of Soil Covering and Compacting of Precision Seeding Units Based on the Coupling Model of DEM with MBD. Processes
**2022**, 10, 1103. [Google Scholar] [CrossRef] - Yan, D.X.; Yu, J.Q.; Zhang, N.; Tian, Y.; Wang, L. Test and Simulation Analysis of Soybean Seed Throwing Process. Processes
**2022**, 10, 1731. [Google Scholar] [CrossRef] - Yan, D.X.; Yu, J.Q.; Wang, Y.; Zhou, L.; Tian, Y.; Zhang, N. Soil Particle Modeling and Parameter Calibration Based on Discrete Element Method. Agriculture
**2022**, 12, 1421. [Google Scholar] [CrossRef] - Gürsoy, S.; Chen, Y.; Li, B. Measurement and modelling of soil displacement from sweeps with different cutting widths. Biosyst. Eng.
**2017**, 161, 1–13. [Google Scholar] [CrossRef] - Janda, A.; Ooi, J.Y. DEM modeling of cone penetration and unconfined compression in cohesive solids. Powder Technol.
**2016**, 293, 60–68. [Google Scholar] [CrossRef] - Thakur, S.C.; Morrissey, J.P.; Sun, J.; Chen, J.F.; Ooi, J.Y. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granul. Matter
**2014**, 16, 383–400. [Google Scholar] [CrossRef] - Ma, Y.J.; Wang, A.; Zhao, J.G.; Hao, J.; Li, J.; Ma, L.; Zhao, W. Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method. Trans. Chin. Soc. Agric. Eng.
**2019**, 35, 16–23. [Google Scholar] - Wang, X.L.; Hu, H.; Wang, Q.G.; Li, H.; He, J.; Chen, W. Calibration Method of Soil Contact Characteristic Parameters Based on DEM Theory. Trans. Chin. Soc. Agric. Mach.
**2017**, 48, 78–85. [Google Scholar]

**Figure 3.**Structure diagram of the type-hole wheel seedmeter [13].

**Figure 5.**The installation angle of rubber scraping tongue [13].

**Figure 8.**The pictures of the covering and compacting test process, (

**a**) the seeding monomer, (

**b**) the seed furrow, (

**c**) soybean seed particles seeded in the seed furrow, (

**d**) the measurement of seed particle spacing and (

**e**) the measurement of vertical distance of soybean seed particles.

**Figure 10.**Position of soybean seed particles in the soil (

**a**) before covering, (

**b**) after covering, (

**c**) after compacting and (

**d**) partially enlarged view.

**Figure 11.**The relationship between the change in the position of soybean seed particles after covering and the working speed of the seeding monomer of (

**a**) vertical and (

**b**) horizontal.

**Figure 12.**The relationship between the change in the position of soybean seed particles after compacting and the working speed of the seeding monomer of (

**a**) vertical and (

**b**) horizontal.

**Figure 13.**The change in the position of soybean seed particles in the vertical direction after covering and after compacting at different working speeds.

**Figure 16.**Distribution of soybean seed particles in the soil in (

**a**) XOY plane and (

**b**) XOZ plane at a working speed of 0.75 m/s.

**Figure 17.**Distribution of soybean seed particles in the soil in (

**a**) XOY plane and (

**b**) XOZ plane at a working speed of 1.11 m/s.

**Figure 18.**Distribution of soybean seed particles in the soil in (

**a**) XOY plane and (

**b**) XOZ plane at a working speed of 1.47 m/s.

Constraint Number | Constraint Object | Constraint Type |
---|---|---|

1 | opener–ground | sliding pair |

2 | seeding wheel–shaft | revolute pair |

3 | coverer–shaft | revolute pair |

4 | cross beam–back beam | revolute pair |

5 | back beam–roller | revolute pair |

Material | Density, kg/m^{3} | Poisson’s Ratio | Elasticity Modulus, Pa |
---|---|---|---|

Soybean | 1257 | 0.4 | 7.60 × 10^{8} |

Galvanized steel | 7850 | 0.3 | 7.90 × 10^{11} |

Soil | 1844 | 0.25 | 1.00 × 10^{6} |

Parameter | SN42–SN42 | SN42–Soil | Soil–Soil |
---|---|---|---|

Coefficient of restitution | 0.627 | 0.75 | 0.6 |

Coefficient of static friction | 0.2 | 0.254 | 0.9 |

Coefficient of rolling friction | 0.02 | 0.011 | 0.7 |

Constant pull-off force, N | 0 | 0 | 0 |

Surface energy, J/m^{2} | 0 | 0.5 | 4 |

Contact Plasticity Ratio | 0.35 | 0.35 | 0.35 |

Slope Exp | 1 | 1.5 | 1.5 |

Tensile Exp | 1 | 1 | 1 |

Tangential stiff Multiplier | 0.67 | 0.67 | 0.67 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yan, D.; Xu, T.; Yu, J.; Wang, Y.; Guan, W.; Tian, Y.; Zhang, N.
Test and Simulation Analysis of the Working Process of Soybean Seeding Monomer. *Agriculture* **2022**, *12*, 1464.
https://doi.org/10.3390/agriculture12091464

**AMA Style**

Yan D, Xu T, Yu J, Wang Y, Guan W, Tian Y, Zhang N.
Test and Simulation Analysis of the Working Process of Soybean Seeding Monomer. *Agriculture*. 2022; 12(9):1464.
https://doi.org/10.3390/agriculture12091464

**Chicago/Turabian Style**

Yan, Dongxu, Tianyue Xu, Jianqun Yu, Yang Wang, Wei Guan, Ye Tian, and Na Zhang.
2022. "Test and Simulation Analysis of the Working Process of Soybean Seeding Monomer" *Agriculture* 12, no. 9: 1464.
https://doi.org/10.3390/agriculture12091464