Next Article in Journal
Exploring the Gender-Specific Adaptive Responses to Climate Variability: Application of Grazing Game in the Semi-Arid Region of Ghana
Next Article in Special Issue
Organic Manure Increases Carbon Sequestration Far beyond the “4 per 1000 Initiative” Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2
Previous Article in Journal
Bacillus velezensis T149-19 and Bacillus safensis T052-76 as Potential Biocontrol Agents against Foot Rot Disease in Sweet Potato
Previous Article in Special Issue
Mineralization of Farm Manures and Slurries for Successive Release of Carbon and Nitrogen in Incubated Soils Varying in Moisture Status under Controlled Laboratory Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Relative Importance of Plant Species Composition and Environmental Factors in Affecting Soil Carbon Stocks of Alpine Pastures (NW Italy)

1
Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
2
Istituto per le Piante da Legno e l’Ambiente (IPLA), 10132 Torino, Italy
3
Consiglio Nazionale delle Ricerche, Istituto per la BioEconomia, 50019 Sesto Fiorentino, Italy
4
Department of Veterinary Sciences, University of Torino, 10095 Torino, Italy
5
Gran Paradiso National Park, Botanical and Forest Conservation Office, 11012 Aosta, Italy
*
Author to whom correspondence should be addressed.
These authors equally contributed to this work.
Agriculture 2021, 11(11), 1047; https://doi.org/10.3390/agriculture11111047
Submission received: 24 September 2021 / Revised: 19 October 2021 / Accepted: 22 October 2021 / Published: 26 October 2021
(This article belongs to the Special Issue Soil Carbon and Nitrogen in Agricultural Systems)

Abstract

:
Alpine pastures are agricultural systems with a high provision of ecosystem services, which include carbon (C) stocking. Particularly, the soil organic C (SOC) stocks of Alpine pastures may play a pivotal role in counteracting global climate change. Even if the importance of pasture SOC has been stated by several research studies, especially by comparing different land uses, little is known about the role of plant species composition. We studied a wide sample of 324 pastures in the north-western Italian Alps by performing coupled vegetation and soil surveys. Climatic (i.e., mean annual precipitation), topographic (i.e., elevation, slope, southness), vegetation (i.e., the first three dimensions of a non-metric multid imensional scaling—NMDS), and soil (i.e., pH) parameters were considered as independent variables in a generalised linear model accounting for SOC stocks in the 0–30 cm depth. Pasture SOC was significantly affected by precipitation (positively) and by pH (negatively) but not by topography. However, the higher influence was exerted by vegetation through the first NMDS dimension, which depicted a change in plant species along a thermic-altitudinal gradient. Our research highlighted the remarkable importance of vegetation in regulating SOC stocks in Alpine pastures, confirming the pivotal role of these semi-natural agricultural systems in the global scenario of climate change.

1. Introduction

Mountain pastures can provide many ecosystem services, such as provisioning services (e.g., biodiversity, forage), regulation and maintenance services (e.g., water purification, soil retention), and cultural services (e.g., nature-based recreation, eco-tourism) [1,2]. Among regulation services, carbon (C) stocking is of particular relevance [3]. Carbon stocking is a key process, able to reduce the amount of atmospheric CO2 originated by anthropogenic emissions [4]. Therefore, the role of land uses efficient in C stocking, namely, able to counteract current climate change, is becoming essential worldwide. Indeed, the land sinks represent the main reduction factor in the global C balance by removing about one fourth of the total emitted C [5]. Part of the C is stocked in the above ground biomass (especially in woodlands), but a major portion is allocated in the soil [6]. Soil organic carbon (SOC) mainly derives from the stocking of atmospheric CO2 fixed by plants through photosynthesis and its amount can vary depending on site conditions, biotic factors, including vegetation composition, and anthropic management [7].
Although the importance of SOC stocking in slowing global warming has been widely studied [4,8], little is known about the role of Alpine pastures and the variability of SOC stocks related to climatic, environmental, and vegetation features [9]. Specifically, several research studies compared different land uses (e.g., grasslands, forests, arable crops) in terms of their ability to stock C in the European Alps, but the importance of botanical composition within pastures has not been explored yet. It is worth mentioning that Alpine pastures in Europe are composed by a huge variety of plant species and habitats, determined by different topographic (elevation, slope, aspect), abiotic (climate, bedrock type), and biotic (pastoral management, first of all, which directly affects soil fertility) conditions [10,11].
The present study aimed at evaluating the relative importance of various abiotic and biotic (i.e., vegetation) drivers in affecting SOC stocks in a wide sample of pastures in the western Italian Alps.

2. Materials and Methods

The study was conducted in a wide number of Alpine valleys within the Piedmont region, north-western Italy (Figure 1), characterised by contrasting climatic, topographic, vegetation, and soil conditions. Between years 2000 and 2007, we surveyed 324 grassland sites, encompassing a wide geographical and ecological range. The survey sites were ascribable to 54 different vegetation types (sensu Cavallero et al. [12]; see Appendix A). All the grasslands were grazed by cattle during summers, generally with lenient stocking rates.
Elevation, slope, and southness of the sites were computed using a digital terrain model at 5-m resolution [13]. Mean annual precipitation was assessed at each site using a 1-km resolution raster obtained by interpolating the long-time data series (1977–2007) of 386 weather stations spread all over the region [14]. Spatial analyses were carried out with QGIS v.3.16 LTR software [15].
At each site, the composition of grassland vegetation was determined with the vegetation point-quadrat method [16] along 25-m transects and at 50-cm intervals. To account for species richness more accurately, the list of all occasional species not recorded along the transect but occurring in a 1-m buffer area around was completed as well [17,18]. Nomenclature followed Landolt et al. [19]. Then, the relative abundance of every species was calculated as the proportion in percentage of the frequency of occurrence of each species on the sum of the frequencies of all the species in each transect. A value of 0.3% was attributed to all occasional species [17]. Species relative abundances were used to perform a non-metric multidimensional scaling (NMDS) to take the vegetation composition of each survey into account in further analyses. The number of dimensions of the NMDS was defined after checking the goodness of stress value, while Bray–Curtis was specified as dissimilarity index and 100 maximum random starts were set. Species relative abundances were also used to compute some plant community variables, namely: Landolt’s indicator values for temperature (T), humus (H), soil moisture (F), and soil nutrients (N) [19], the pastoral value (PV, which is a proxy for forage productivity and quality [16]), and Shannon diversity index [20]. These plant community variables together with species richness, were included in the NMDS biplots as supplementary variables.
A soil pit was dug close to each vegetation transect for soil description and sampling. The volumetric content (%) of coarse fragments, i.e., particles larger than 2 mm and smaller than 25 cm diameter, was visually assessed. Then, a soil sample of each horizon observed within the 0–30 cm depth interval was collected and transported to the laboratory. Samples were analysed for pH (soil:water = 1:2.5) according to standard soil analysis procedures [21] and an average pH value, weighted on the depth (in cm) of each observed horizon, was calculated. Organic C content was determined as well, using Walkley–Black titration [22].
Bulk density was estimated according to the following pedotransfer function, specifically calibrated for ‘permanent grasslands’ land use of the Alpine soil region [23]:
B D = 1.565081 0.3946467 × SOC 0.0103851 × S k e l
where BD is the bulk density derived from the pedotransfer function and SOC and Skel are the % of OC and coarse fragments in the soil samples, respectively. Whenever Skel proportion was above 10%, the following correction was applied [24]:
B D c = B D × 1 1.67 × S k e l 100 3.39  
where BDc is the corrected bulk density, referred to the fine earth fraction, and Skel is the coarse fragment content by mass. The OC, BD, and Skel values were used to assess the SOC stocks at each site as the sum of SOC values of all i horizons found within the first 30 cm, weighted on their relative depth (in cm):
SOC s t o c k = i = 1 n ( O C i × B D i × d e p t h i × 1 S k e l i × 100 )
Precipitation among the climatic variables, elevation, slope, and southness among the topographic ones, the components of the NMDS for vegetation, and soil pH were included in a generalized linear model to predict C stock. Previous to run the model, all variables were tested for autocorrelation, and standardised in order to compare the resulting β scores. Being SOC stock a continuous variable, the Gaussian and Gamma distributions were applied and the best fitting one, i.e., that one showing the lowest Akaike Information Criterion [25], was retained. Statistical analyses were carried out in R environment, version 3.5.2 [26], using ‘goeveg’ [27], ‘vegan’ [28], and ‘glmmTMB’ [29] packages.

3. Results and Discussion

3.1. Climate, Topography, and Vegetation Features

Mean annual precipitation of the studied sites ranged from 727 to 1574 mm, thus including dry to wet climatic conditions. The altitude, slope, and aspect ranged, respectively, between 988 and 2688 m a.s.l., between 0.4 and 49.8°, and between 1.1 and 179.7°. Such a wide range of topographic conditions, combined with different soils and varying effects of livestock grazing, determined a huge variability of ecological conditions and consequently a considerably high species richness. Indeed, we recorded more than 685 plant species in total and about 35 species per transect. The descriptive statistics of climatic, topographic, and vegetation features of the sites are reported in Table 1.
Being 0.16 the stress value of the first three dimensions of the NMDS, i.e., less than 0.20, the fitting was considered satisfactory [30]. The supplementary variables included in the NMDS biplot improved the understanding of such a complex and variable vegetation, by highlighting its ecological trends in terms of plant community indices (Figure 2). Plant species were arranged on the first NMDS dimension according to a thermic-altitudinal gradient (Figure 2a), with thermophilic low-altitude species on the left side (such as Bromus erectus Huds., Brachypodium rupestre (Host) Roem. & Schult., Lathyrus pratensis L., Plantago media L., and Rosa canina aggr.) and those typical of cold, high-altitude environments on the right side (such as Alchemilla pentaphyllea L., Carex curvula All., Leucanthemopsis alpina (L.) Heywood, Phyteuma globularifolium Sternb. & Hoppe, and Salix herbacea L.). The arrow of Landolt’s T confirmed this gradient, being left-directed and close to the horizontal axis. The second dimension was related to the storage of dead organic material (as outlined by Landolt’s H arrow), with species growing on soils poor in humus in the upper part of the graph (such as Anthyllis vulneraria L., Helianthemum oelandicum (L.) Dum. Cours., Helictotrichon sedenense (DC.) Holub, Onobrychis montana DC., and Sesleria caerulea (L.) Ard.) and species found on soils with higher humus content at the bottom (such as Calluna vulgaris (L.) Hull, Potentilla erecta (L.) Raeusch., Carex pallescens L., Agrostis capillaris L., Poa chaixii Vill.). Finally, the distribution of the species on the third dimension showed a positive gradient of soil nutrient and forage quality, as shown by the position of Landolt’s N and PV arrows, respectively. Indeed, in Figure 2b the species typical of nutrient rich environments, such as Taraxacum officinale s.l., Peucedanum ostruthium (L.) W.D.J. Koch, Poa pratensis L., Geranium sylvaticum L., and Silene vulgaris (Moench) Garcke, were in the upper part of the biplot, while those typical of nutrient-poor pastures, such as Festuca paniculata (L.) Schinz & Thell., C. vulgaris, Vaccinium myrtillus L., Chamaecytisus hirsutus (L.) Link, and Gymnadenia conopsea (L.) R. Br., were at the bottom.

3.2. Soil Features

The soil pH encompassed both acidic and basic soil conditions, ranging from 3.3 to 8.3 (Table 2). Soil C stock in the investigated pastures ranged between 1.9 and 234.9 t ha−1, with an average value of 87.8 t ha−1. Such values were higher when compared to those of other land uses (arable lands: 52.6 ± 5.56; permanent crops: 41.4 ± 2.06; woodlands: 71.4 ± 2.10; t ha−1 ± standard error), which were recorded with the same methods in the same region during a previous trial [23]. Rodríguez-Murillo [31] and Hoffmann et al. [32] found similar SOC contents in Spanish and Swiss pastures, respectively. Another recent study conducted by Ferré et al. [33] on Italian alpine grasslands reported lower values of C stocks. However, this trial was carried out in a single 1.5-ha study area characterised by a limited variability of ecological conditions, and the related outcomes should be considered with caution consequently. Canedoli et al. [3] in north-western Italy and Liefeld et al. [34] in Switzerland reported lower C stocks compared to our trial, but at the same time they highlighted higher SOC values in grasslands than in the woodlands and the arable lands, respectively, highlighting a similar trend. This may be due to the accumulation of OC in the upper soil horizons, which is particularly relevant in well-managed alpine pastures if compared to forests [35]. Indeed, the positive role of Alpine grasslands as CO2 sinks may be exerted only with an active and balanced pastoral management, thus avoiding both overgrazing and abandonment [36,37]. Other research studies located in the European Alps reported SOC amounts characterised by wide variability, but they did not consider the role of differing plant species composition in determining the variations of soil bio-chemical features [38,39].

3.3. Modelling Soil Organic Carbon Stocks

Data analysed through generalised linear model with Gaussian distribution showed a lower Akaike information criterion when compared to Gamma one (3237 vs. 3287) thus the relative model results were retained. Model outputs highlighted the relative importance of each factor in affecting SOC stocks (Table 3), providing new knowledge through a comprehensive approach concerning the role of vegetation in C bio-cycling of European Alpine pastures, which was scantly focused till present. Among the selected variables, those exerting a significant influence on SOC stocks were precipitation, vegetation (particularly, the first dimension of the NMDS), and soil pH. Conversely, elevation, slope, and southness showed non-significant effects as well as the second and third NMDS dimensions. The limited importance of southness and slope confirmed the outcomes of a previous trial [40], which, however, reported significant negative effects of both elevation and precipitation. In the present study, the precipitation showed a positive influence on SOC, likely due to an indirect effect on biomass production, which is generally associated to higher C stocks [41].
However, vegetation was found to be the most important driver, as highlighted by the highest β score. Its negative sign showed that higher SOC stocks were recorded in pastures with higher proportions of those species distributed on the left side of Figure 2a, i.e., in pastures rich in plants typical of warm, low-altitude, species-rich environments. Similar to precipitation, species typical of warmer pastures (proxied by Landolt’s T value) may be associated to greater biomass production, with positive effects on SOC content [41]. Species richness may exert a positive influence on C stocking as well, since it generally corresponds to a diversity of root systems (characterised by differing depts, biomasses, C storages, etc.) and to an enhanced soil microbial diversity (which improves SOC transformation and degradation), which indirectly influences decomposition processes [42,43]. Surprisingly, a significant effect of the second dimension of NMDS (i.e., a vegetational proxy of soil humus content) on SOC was not observed. This may depend on humus type, which could affect SOC content but is not taken into account by Landolt’s H [19,44]. However, further investigations are needed to clarify this relationship. Finally, the lack of a significant effect of the third dimension of NMDS (related to soil fertility) was likely expected. Indeed, in this study, the pastures with low Landolt’s N and PV, i.e., with low soil fertility due to undergrazing [45], were encroached by shrubs, such as C. vulgaris, V. myrtillus, and C. hirsutus. Likely, the low biochemical quality of shrub litter delayed its decomposition and allowed higher organic matter accumulations in the topsoil [37]. However, the effect of shrub proliferation at a depth greater than the 30 cm considered here was partially unclear since the low root turnover of shrubs compared to grasses should have reduced the C inputs in the soil.
As for pH, larger amounts of SOC were recorded in soils with an acidic reaction, confirming the remarkable importance of pH in affecting SOC stocks in Alpine grasslands [46], probably because low pH is associated to high SOC contents, or mineralisation is reduced at low pH [47,48].
According to our results, the SOC stocking of Alpine pastures, generally managed under extensive grazing regimes, was predominantly influenced by the vegetation rather than by abiotic factors. More specifically, we observed a remarkable role of warm-pasture species (such as B. erectus), which might have a limited interest as fodder resource (in terms of quantity and quality [49]), but which can definitely have a remarkable weight on carbon stocks. Dry pastures, which generally host large proportions of such plants, are widely represented in the Alps. For instance, the dry grasslands dominated by B. rupestre, F. paniculata, or F. ovina aggr. cover more than 30% of the pasture area in Piedmont Region [12]. The importance of alpine pastures in SOC stocking was in general confirmed, as the observed values were generally higher compared to other land uses. Thus, pasture conservation policies should be encouraged, such as through specific PES (payments for ecosystem services) [50]. In the current scenario of climate change, the abundance of warm grassland species will likely increase in the future years [51], and a shift at higher elevations would be expected. Consequently, an increase of SOC stocks in Alpine pastures might be observed but, precipitation being a relevant factor affecting C cycling as well, a targeted monitoring should be carried out to take the complex and spatially heterogeneous patterns of climate change into account [52,53].
Future research should be addressed to monitor the possible effects of management intensity, for instance of different stocking rates or grazing regimes. Moreover, the SOC stocking ability of permanent pasture should be compared with that of mountain hay meadows. An extension would be advisable to lowland grasslands too, where the species richness and diversity are generally lower compared to the mountain ones, and which are generally more intensively managed in terms of number of exploitations per year and fertilisation.

4. Conclusions

The novel results of this study carried out in a huge range of ecological conditions highlighted the relevant importance of grassland species composition in affecting soil C stock of Alpine soils, while topographic attributes had negligible effects. More specifically, dry pastures (which also generally host rare plants and a high species richness) stocked more carbon in the upper soil horizons. Among abiotic factors, precipitation positively affected soil organic carbon stocks, likely through an indirect effect due to the increased herbage biomass. Conversely, lower SOC values were found on acidic soils, where mineralization might be hampered. Future conservation strategies should aim to consider the role of such extensively managed pastures, which can be found in the Alpine region, and of the dry grassland species in enhancing this ecosystem service.

Author Contributions

Conceptualization, F.P., G.L. and M.L.; Methodology, S.R.E., F.P., F.U., G.L. and M.L.; Investigation, F.P., F.U., G.L. and M.L.; Data Curation, S.R.E., F.P., F.U., A.M.; Writing—Original Draft Preparation, S.R.E., F.P., F.U., L.Z., A.M., G.L. and M.L.; Writing—Review and Editing, S.R.E., A.M., G.L. and M.L.; Supervision, G.L., M.L.; Project Funding Acquisition, P.F., G.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by SUPER-G project (EU Horizon 2020 programme) grant number 774124.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

We would prefer to exclude this statement since the study did not involve humans.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Acknowledgments

The authors want to thank Andrea Cavallero for inspiring and coordinating the work, Lucia Crosetto for her essential help, and all students and researchers who contributed to fieldwork, laboratory analyses, and data handling. This work contributes to the SUPER-G project (funded under EU Horizon 2020 programme; grant number 774124).

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. List of vegetation types (sensu Cavallero et al. [12]) surveyed in the 324 pastures. The dominant plant species and the number of surveys performed per each vegetation type is provided.
Table A1. List of vegetation types (sensu Cavallero et al. [12]) surveyed in the 324 pastures. The dominant plant species and the number of surveys performed per each vegetation type is provided.
Vegetation TypeSurveys
Agrostis schraderana2
Alchemilla gr. alpina1
Alchemilla gr. vulgaris5
Alchemilla pentaphyllea5
Alopecurus gerardi2
Brachypodium caespitosum/rupestre18
Briza media1
Bromus erectus11
Calamagrostis villosa1
Carex curvula4
Carex fimbriata2
Carex foetida3
Carex fusca2
Carex humilis2
Carex rupestris2
Carex sempervirens5
Carex tendae1
Dactylis glomerata10
Dryas octopetala1
Elyna myosuroides1
Festuca gr. halleri1
Festuca gr. ovina18
Festuca gr. rubra and Agrostis tenuis41
Festuca gr. violacea14
Festuca paniculata21
Festuca scabriculmis5
Hedysarum brigantiacum2
Helianthemum nummularium3
Helianthemum oelandicum1
Helictotrichon parlatorei5
Ligusticum mutellina2
Luzula alpino-pilosa1
Molinia arundinacea1
Molinia coerulea1
Nardus stricta53
Onobrychis montana10
Petasites hybridus1
Phleum alpinum1
Plantago alpina1
Poa alpina2
Poa violacea7
Polygonum bistorta2
Polygonum viviparum3
Rumex alpinus1
Salix herbacea2
Scirpus sylvaticus1
Sesleria varia7
Stipa pennata2
Taraxacum officinale1
Trifolium alpinum and Carex sempervirens26
Trifolium thalii2
Trisetum flavescens4
Vaccinium gaultherioides2
Vaccinium myrtillus1
Total324
Table A2. List of plant species recorded in the 324 vegetation transects. The species code displayed in the biplots of the non-metric multidimensional scaling (NMDS), the number and proportion of transects where the species was found, and the average species relative abundance (SRA) are reported.
Table A2. List of plant species recorded in the 324 vegetation transects. The species code displayed in the biplots of the non-metric multidimensional scaling (NMDS), the number and proportion of transects where the species was found, and the average species relative abundance (SRA) are reported.
Species NameSpecies CodeTransectsSRA
n%
Abies alba 10%0.30
Acer pseudoplatanus 21%0.50
Achillea erba-rotta 21%0.30
Achillea macrophylla 10%2.84
Achillea millefolium aggr.Achmill13341%0.30
Achillea moschata 10%2.29
Achillea nana 31%0.66
Achnatherum calamagrostis 21%0.63
Acinos alpinusAcialpi268%0.30
Aconitum napellus 31%2.29
Adenostyles leucophylla 10%4.04
Aegopodium podagraria 41%4.03
Agrostis alpinaAgralpi5216%4.05
Agrostis canina 10%6.29
Agrostis capillarisAgrcapi12539%2.25
Agrostis rupestrisAgrrupe3310%8.63
Agrostis schraderiana 165%0.44
Ajuga genevensis 52%0.37
Ajuga pyramidalis 103%0.84
Ajuga reptans 82%2.12
Alchemilla alpina aggr.Alcalpi5918%8.66
Alchemilla pentaphylleaAlcpent268%2.91
Alchemilla vulgaris aggr.Alcvulg12639%0.30
Allium carinatum 10%0.45
Allium lusitanicum 21%7.06
Allium narcissiflorum 21%0.30
Allium oleraceum 21%0.77
Allium schoenoprasum 82%0.40
Allium sphaerocephalon 62%0.30
Alnus viridis 93%4.12
Alopecurus alpinusAloalpi5015%0.30
Alyssum alyssoides 21%0.47
Alyssum montanum 41%0.30
Anacamptis pyramidalis 10%0.65
Androsace obtusifolia 103%1.88
Androsace vitaliana 82%1.88
Androsace adfinis 31%0.42
Anemone baldensis 52%1.53
Anemone narcissifloraAnenarc289%1.54
Anemone nemorosa 62%1.06
Anemone ranunculoides 10%0.30
Angelica sylvestris 10%0.64
Antennaria carpatica 82%0.63
Antennaria dioicaAntdioi6119%1.86
Anthericum liliago 93%3.05
Anthoxanthum odoratum aggr.Antodor18056%5.54
Anthriscus sylvestris 21%4.00
Anthyllis montana 21%1.53
Anthyllis vulnerariaAntvuln4113%0.30
Aphanes arvensis 10%0.30
Arabidopsis thaliana 10%0.38
Arabis allionii 52%0.30
Arabis auriculata 10%0.31
Arabis ciliataAracili216%0.55
Arabis hirsuta 82%0.30
Arctium minus 10%3.67
Arctium nemorosum 10%0.30
Arenaria biflora 10%0.43
Arenaria ciliata 144%1.03
Arenaria serpyllifolia aggr. 72%0.31
Armeria alpinaArmalpi3310%2.60
Armeria arenaria 82%0.88
Arnica montanaArnmont8827%1.63
Arrhenatherum elatius 72%0.54
Artemisia absinthium 52%6.40
Artemisia campestris 21%0.30
Artemisia glacialis 21%0.91
Asperula cynanchica 62%0.30
Asperula purpurea 10%2.24
Asphodelus macrocarpus 134%0.76
Aster alpinus 155%1.73
Aster bellidiastrum 124%2.36
Astragalus alpinus 82%0.30
Astragalus australis 10%5.56
Astragalus cicer 10%3.93
Astragalus danicus 62%0.30
Astragalus glycyphyllos 21%0.67
Astragalus monspessulanus 113%0.30
Astragalus penduliflorus 31%0.93
Astragalus sempervirens 41%0.65
Astrantia major 52%0.86
Astrantia minorAstmino216%0.30
Athamanta cretensis 10%0.30
Athyrium filix-femina 21%5.02
Avenella flexuosaAveflex10934%0.30
Barbarea intermedia 41%0.68
Bartsia alpinaBaralpi237%0.30
Bellis perennis 21%0.30
Berberis vulgaris 21%0.30
Betula pendula 41%0.45
Biscutella laevigataBislaev7523%0.42
Botrychium lunariaBotluna309%14.56
Brachypodium rupestreBrarupe5517%2.10
Briza mediaBrimedi3511%16.75
Bromus erectusBroerec206%0.30
Bromus inermis 10%0.30
Buglossoides arvensis 10%0.70
Bunium bulbocastanumBunbulb206%0.30
Buphthalmum salicifolium 10%0.30
Bupleurum falcatum 21%1.80
Bupleurum ranunculoidesBupranu258%1.30
Calamagrostis arundinacea 21%0.30
Calamagrostis varia 10%26.21
Calamagrostis villosa 10%10.26
Callianthemum coriandrifolium 10%3.82
Calluna vulgarisCalvulg3410%0.69
Campanula barbata 165%0.30
Campanula cochleariifolia 10%0.88
Campanula excisa 10%0.68
Campanula glomerata 62%0.61
Campanula persicifolia 52%0.96
Campanula rhomboidalis 10%0.87
Campanula scheuchzeriCamsche16752%0.58
Capsella bursa-pastoris 62%0.30
Cardamine alpina 10%0.68
Cardamine resedifolia 103%3.47
Cardaminopsis halleri 31%1.02
Carduus defloratusCardefl8225%14.18
Carex acuta 10%0.99
Carex aterrima 52%1.14
Carex atrata 21%4.27
Carex caryophylleaCarcary237%9.78
Carex curvulaCarcurv186%7.62
Carex echinata 10%1.11
Carex ericetorum 31%20.51
Carex fimbriata 21%4.94
Carex flacca 31%16.27
Carex flava aggr. 31%17.45
Carex foetida 155%3.50
Carex hirta 10%8.19
Carex humilis 175%1.43
Carex leporina 113%31.43
Carex nigra 31%1.72
Carex ornithopoda 175%2.52
Carex pallescensCarpall206%4.77
Carex panicea 41%1.90
Carex paniculata 10%2.34
Carex parviflora 41%1.46
Carex pauciflora 21%5.01
Carex pilulifera 31%1.19
Carex rosae 72%16.43
Carex rupestris 41%8.81
Carex sempervirensCarsemp20764%1.08
Carex spicata 10%3.40
Carex tendae 72%0.30
Carlina acanthifolia 10%1.05
Carlina acaulisCaracau7022%0.63
Carlina vulgaris 21%1.68
Carum carviCarcarv309%0.30
Castanea sativa 10%0.76
Centaurea nervosaCennerv186%0.66
Centaurea nigra 113%0.90
Centaurea scabiosa 155%1.38
Centaurea triumfettii 165%0.77
Centaurea unifloraCenunif6420%0.30
Cephalanthera longifolia 21%0.98
Cerastium arvenseCerarve12338%1.91
Cerastium cerastoides 21%0.79
Cerastium fontanumCerfont278%0.73
Cerinthe glabra 31%0.30
Cerinthe minor 21%2.26
Chaerophyllum hirsutumChahirs299%3.31
Chamaecytisus hirsutusChahirr3110%0.75
Chenopodium bonus-henricus 155%0.62
Cirsium acaule 62%0.30
Cirsium arvense 10%0.50
Cirsium eriophorum 52%0.91
Cirsium palustre 31%0.42
Cirsium spinosissimumCirspin268%0.40
Cirsium vulgare 82%1.05
Clinopodium vulgare 103%0.39
Coeloglossum virideCoeviri196%0.78
Colchicum alpinum 10%0.32
Colchicum autumnale 113%0.30
Conopodium majus 10%0.30
Corylus avellana 10%0.30
Cotoneaster integerrimus 31%0.30
Crataegus monogyna 21%0.89
Crepis aurea 41%1.20
Crepis conyzifoliaCrecony3912%1.57
Crepis paludosa 21%2.39
Crocus albiflorusCroalbi6420%1.45
Cruciata glabraCruglab5015%0.85
Cruciata laevipes 41%0.30
Crupina vulgaris 10%0.30
Cryptogramma crispa 21%0.63
Cuscuta epithymum 10%1.55
Cynosurus cristatus 72%0.67
Cytisophyllum sessilifolium 21%0.30
Cytisus scoparius 31%5.75
Dactylis glomerataDacglom5015%0.30
Dactylorhiza maculata 41%0.30
Dactylorhiza majalis 10%0.34
Dactylorhiza sambucinaDacsamb186%4.32
Danthonia decumbens 155%0.30
Daphne mezereum 124%0.50
Daucus carota 21%3.00
Deschampsia cespitosa 72%1.64
Dianthus carthusianorum 134%0.57
Dianthus deltoides 82%1.43
Dianthus furcatus 124%0.74
Dianthus pavoniusDiapavo11235%0.30
Dianthus superbus 31%1.15
Dianthus sylvestris 72%0.30
Digitalis grandiflora 21%0.30
Doronicum grandiflorum 21%0.36
Draba aizoides 93%5.86
Dryas octopetala 93%0.30
Dryopteris filix-mas 52%0.30
Echinops ritro 10%0.30
Echium vulgare 31%0.30
Elymus repens 10%4.73
Elyna myosuroides 155%0.30
Empetrum hermaphroditum 10%0.30
Epilobium angustifolium 41%2.40
Epilobium fleischeri 10%0.76
Epilobium montanum 10%0.30
Epilobium palustre 21%3.81
Equisetum arvense 10%0.41
Erigeron alpinus 113%0.30
Erigeron annuus 10%0.60
Erigeron uniflorus 103%3.09
Eriophorum angustifolium 31%1.71
Eriophorum latifolium 21%5.88
Eriophorum scheuchzeri 10%0.96
Eritrichium nanum 10%0.30
Eryngium campestre 10%0.92
Erysimum jugicola 62%0.30
Erysimum virgatum 21%0.78
Euphorbia cyparissias 52%1.98
Euphorbia dulcis 31%0.47
Euphrasia alpina 165%0.30
Euphrasia hirtella 10%0.83
Euphrasia minimaEupmini196%1.03
Euphrasia rostkoviana 10%0.83
Euphrasia stricta 124%0.30
Fagus sylvatica 21%2.83
Festuca arundinacea 21%5.50
Festuca dimorpha 21%3.34
Festuca filiformis 62%15.64
Festuca flavescens 21%4.60
Festuca gigantea 31%5.93
Festuca halleri aggr. 134%8.66
Festuca ovina aggr.Fesovin16049%12.36
Festuca paniculataFespani6219%3.99
Festuca pratensis 41%4.90
Festuca quadrifloraFesquad247%10.26
Festuca rubraFesrubr16350%11.50
Festuca scabriculmis 175%8.90
Festuca violacea aggr.Fesviol8225%0.40
Fourraea alpina 93%0.95
Fragaria vesca 82%0.71
Fraxinus excelsior 31%0.36
Fritillaria tubaeformis 41%3.28
Gagea fragifera 21%9.84
Galeopsis ladanum 10%0.30
Galeopsis pubescens 10%0.71
Galeopsis tetrahit 52%16.67
Galium laevigatum 10%1.32
Galium lucidum aggr.Galluci216%1.77
Galium mollugo aggr.Galmoll227%0.98
Galium pusillum aggr.Galpusi6019%0.98
Galium rubrum aggr.Galrubr4012%0.90
Galium verumGalveru3711%5.39
Genista cinerea 21%1.54
Genista germanica 175%2.36
Genista pilosa 72%1.31
Genista tinctoria 124%0.93
Gentiana acaulis aggr.Genacau8927%0.34
Gentiana campestris aggr.Gencamp268%0.30
Gentiana cruciata 10%0.36
Gentiana luteaGenlute237%0.77
Gentiana nivalis 31%0.36
Gentiana punctata aggr. 62%0.30
Gentiana purpurea 10%0.52
Gentiana ramosa 31%0.63
Gentiana vernaGenvern5316%0.30
Geranium molle 21%0.34
Geranium pyrenaicum 41%1.67
Geranium sylvaticumGersylv3410%2.43
Geum montanumGeumont12840%0.30
Geum rivale 10%1.03
Globularia bisnagarica 82%2.45
Globularia cordifolia 144%6.24
Gnaphalium hoppeanum 21%0.65
Gnaphalium norvegicum 21%1.56
Gnaphalium supinum 175%0.52
Gnaphalium sylvaticum 41%0.41
Gymnadenia conopseaGymcono268%1.94
Gymnocarpium dryopteris 10%0.30
Gypsophila repens 52%10.97
Hedysarum hedysaroides 62%0.30
Helianthemum apenninum 21%4.69
Helianthemum nummulariumHelnumm8526%3.05
Helianthemum oelandicum aggr.Heloela3210%14.45
Helictotrichon parlatorei 165%3.59
Helictotrichon pratense 165%1.45
Helictotrichon pubescens 124%4.24
Helictotrichon sedenenseHelsede237%0.30
Helictotrichon sempervirens 10%2.32
Helictotrichon versicolorHelvers196%0.30
Helleborus foetidus 10%4.24
Heracleum sphondylium 72%1.18
Hieracium angustifoliumHieangu237%0.30
Hieracium aurantiacum 10%0.61
Hieracium cymosum 52%1.04
Hieracium glanduliferumHieglan5617%1.40
Hieracium lactucellaHielact5516%1.07
Hieracium murorum aggr.Hiemuro268%0.30
Hieracium peletierianum 21%1.98
Hieracium pilosellaHiepilo5517%0.54
Hieracium piloselloides 52%0.54
Hieracium pilosum 21%0.35
Hieracium prenanthoides 52%1.06
Hieracium pseudopilosella 21%0.89
Hieracium saussureoides 10%0.30
Hieracium tomentosum 82%0.49
Hieracium valdepilosum 31%0.30
Hieracium villosum 10%1.27
Hippocrepis comosaHipcomo3912%0.57
Holcus lanatus 31%1.54
Homogyne alpinaHomalpi3511%0.30
Huperzia selago 10%2.02
Hypericum maculatum 134%0.79
Hypericum perforatum 113%0.48
Hypericum richeriHyprich6620%0.30
Hypochaeris maculata 103%1.15
Hypochaeris radicata 10%0.77
Hypochaeris unifloraHypunif258%0.30
Jasione montana 10%3.96
Juncus articulatus 21%3.85
Juncus filiformis 10%0.89
Juncus jacquinii 52%2.59
Juncus trifidusJuntrif5316%4.71
Juncus triglumis 10%0.30
Juniperus communis 62%1.14
Juniperus nanaJunnana4012%0.88
Knautia arvensis 113%0.30
Knautia dipsacifolia 10%1.52
Knautia mollis 103%0.30
Koeleria hirsuta 10%0.30
Koeleria macrantha 10%1.60
Koeleria pyramidata 82%2.21
Koeleria vallesiana 21%1.10
Lactuca perennis 31%0.30
Larix decidua 134%1.12
Laserpitium gallicum 31%1.32
Laserpitium halleri 31%0.80
Laserpitium latifolium 165%2.90
Laserpitium siler 31%1.14
Lathyrus heterophyllus 21%1.63
Lathyrus pratensisLatprat289%3.28
Lathyrus sphaericus 21%2.49
Lavandula angustifolia 82%1.28
Leontodon autumnalis 31%1.81
Leontodon crispus 62%5.05
Leontodon helveticusLeohelv7724%0.30
Leontodon hirtus 10%2.51
Leontodon hispidusLeohisp8927%0.57
Leontopodium alpinum 93%1.33
Leucanthemopsis alpinaLeualpi216%0.77
Leucanthemum atratum aggr.Leuatra196%0.62
Leucanthemum vulgare aggr.Leuvulg5617%6.53
Ligusticum mutellina 175%2.23
Ligusticum mutellinoides 62%0.30
Lilium bulbiferum 41%0.30
Lilium martagon 62%0.53
Linum alpinum 72%1.29
Linum strictum 72%0.30
Linum tenuifolium 10%0.30
Listera ovata 10%1.41
Lloydia serotina 21%1.10
Loiseleuria procumbens 72%1.51
Lolium multiflorum 21%1.91
Lotus corniculatusLotcorn18557%5.35
Luzula alpinopilosaLuzalpi237%1.22
Luzula campestris aggr.Luzcamp8827%2.76
Luzula luteaLuzlute4414%1.17
Luzula luzuloides 41%2.42
Luzula nivea 134%1.30
Luzula sieberi 165%0.71
Luzula spicata aggr.Luzspic4213%0.61
Maianthemum bifolium 31%0.30
Malus domestica 10%2.44
Medicago lupulina 62%0.30
Medicago sativa 10%1.93
Meum athamanticumMeuatha3611%0.30
Minuartia austriaca 10%1.19
Minuartia capillacea 31%0.46
Minuartia laricifolia 41%1.54
Minuartia recurva 10%0.96
Minuartia sedoides 103%0.80
Minuartia vernaMinvern237%43.12
Molinia arundinacea 10%24.20
Molinia caerulea 31%0.58
Myosotis alpestrisMyoalpe6921%0.60
Myosotis arvensis 165%0.30
Myosotis ramosissima 10%0.30
Myosotis sylvatica 10%0.30
Myrrhis odorata 10%0.56
Narcissus radiiflorus 31%13.68
Nardus strictaNarstri17554%0.30
Nepeta nepetella 10%0.33
Nigritella rhellicaniNigrhel268%2.04
Odontites luteus 10%7.84
Onobrychis montanaOnomont3912%0.76
Onobrychis viciifolia 10%1.58
Ononis cristata 31%1.20
Ononis natrix 52%0.30
Orchis mascula 10%0.30
Orchis militaris 10%0.30
Orchis tridentata 41%0.30
Orchis ustulata 72%1.37
Oreochloa seslerioides 21%1.02
Ornithogalum umbellatumOrnumbe3511%2.73
Oxytropis campestris 41%0.96
Oxytropis helvetica 124%0.39
Oxytropis lapponica 41%3.05
Oxytropis neglecta 52%1.56
Paradisea liliastrum 134%0.34
Parnassia palustris 52%0.30
Pastinaca sativa 10%0.61
Pedicularis cenisia 72%0.99
Pedicularis comosa 10%0.30
Pedicularis foliosa 21%0.61
Pedicularis gyroflexaPedgyro3711%0.77
Pedicularis kerneri 72%0.63
Pedicularis rosea 21%0.64
Pedicularis rostratospicataPedrost206%0.44
Pedicularis tuberosa 52%0.62
Pedicularis verticillata 31%41.28
Petasites hybridus 10%0.53
Peucedanum oreoselinum 21%1.31
Peucedanum ostruthiumPeuostr186%0.89
Phleum phleoides 21%2.68
Phleum pratense 41%4.61
Phleum rhaeticumPhlrhae11235%0.91
Phyteuma betonicifoliumPhybeto8927%2.53
Phyteuma globulariifoliumPhyglob186%1.23
Phyteuma hemisphaericumPhyhemi216%1.19
Phyteuma micheliiPhymich309%0.85
Phyteuma orbicularePhyorbi4313%0.38
Phyteuma ovatum 52%0.30
Phyteuma scheuchzeri 10%0.62
Phyteuma scorzonerifolium 62%0.30
Phyteuma spicatum 10%0.30
Picea abies 10%0.30
Picris hieracioides 10%0.66
Pimpinella major 93%1.36
Pimpinella saxifraga 144%0.64
Pinguicula alpina 10%0.30
Pinguicula vulgaris 10%0.30
Pinus mugo 52%0.30
Pinus sylvestris 31%4.27
Plantago alpina aggr.Plaalpi13040%1.89
Plantago atrata 72%3.27
Plantago fuscescensPlafusc3210%1.09
Plantago lanceolataPlalanc216%0.91
Plantago major 82%2.11
Plantago mediaPlamedi258%0.39
Platanthera bifolia 41%0.30
Platanthera chlorantha 10%4.82
Poa alpinaPoaalpi17554%3.00
Poa annua aggr. 93%1.52
Poa bulbosa 10%0.30
Poa cenisia 10%3.42
Poa chaixiiPoachai278%0.30
Poa minor 10%0.30
Poa nemoralis 31%3.01
Poa pratensisPoaprat278%2.33
Poa trivialis 62%4.85
Poa variegataPoavari6821%0.51
Polygala alpestrisPolalpe237%0.30
Polygala alpina 10%0.30
Polygala amarella 21%1.79
Polygala chamaebuxus 31%0.37
Polygala vulgarisPolvulg216%0.30
Polygonatum verticillatum 21%1.23
Polygonum alpinum 41%0.30
Polygonum aviculare 10%3.28
Polygonum bistortaPolbist8526%3.20
Polygonum viviparumPolvivi8426%0.30
Populus tremula 10%0.30
Potentilla alba 21%0.30
Potentilla argentea 21%2.97
Potentilla aureaPotaure3611%2.83
Potentilla crantziiPotcran4915%3.37
Potentilla erectaPoterec5116%0.30
Potentilla fruticosa 10%1.76
Potentilla grandifloraPotgran11535%0.97
Potentilla intermedia 21%1.35
Potentilla neumannianaPotneum196%1.64
Potentilla reptans 21%0.53
Potentilla rupestris 31%0.69
Potentilla valderia 21%0.95
Primula farinosa 10%0.30
Primula hirsuta 10%2.24
Primula pedemontana 21%0.74
Primula verisPriveri4213%0.30
Pritzelago alpina 10%0.45
Prunella grandiflora 72%1.83
Prunella laciniata 10%1.28
Prunella vulgaris 93%0.30
Prunus avium 10%0.30
Prunus domestica 10%0.30
Prunus spinosa 21%0.36
Pseudorchis albidaPsealbi289%2.73
Pteridium aquilinum 52%0.39
Pulmonaria australis 62%0.30
Pulmonaria officinalis 10%1.19
Pulsatilla alpinaPulalpi3711%0.30
Pulsatilla halleri 10%0.90
Pulsatilla vernalis 72%1.26
Pyrola minor 10%0.30
Pyrola rotundifolia 10%0.30
Quercus pubescens 10%0.30
Ranunculus aconitifolius 31%2.02
Ranunculus acrisRanacri186%1.49
Ranunculus bulbosus 124%2.07
Ranunculus kuepferiRankuep5316%2.26
Ranunculus montanus aggr.Ranmont16852%0.37
Ranunculus platanifolius 21%0.62
Ranunculus repens 10%0.76
Ranunculus seguieri 10%0.30
Rhamnus alpina 10%0.30
Rhamnus pumila 10%2.71
Rhinanthus alectorolophus 165%1.15
Rhinanthus glacialisRhiglac3410%0.92
Rhodiola rosea 31%0.97
Rhododendron ferrugineumRhoferr4514%0.30
Rorippa islandica 10%0.42
Rosa aggr.Rosaggr258%0.30
Rubus aggr. 10%1.93
Rubus idaeus 82%0.71
Rumex acetosaRumacet7222%0.59
Rumex acetosella 134%2.15
Rumex alpestris 93%6.42
Rumex alpinus 155%1.35
Rumex obtusifolius 62%2.15
Rumex scutatus 82%0.74
Sagina saginoidesSagsagi206%0.30
Salix breviserrata 21%0.30
Salix foetida 10%0.30
Salix glaucosericea 10%0.30
Salix hastata 10%0.30
Salix helvetica 21%6.90
Salix herbaceaSalherb3511%4.93
Salix reticulata 52%5.08
Salix retusa 113%2.30
Salix serpillifolia 41%2.52
Salvia pratensis 134%0.92
Sanguisorba minor 134%1.29
Sanguisorba officinalis 62%0.50
Saponaria ocymoides 72%1.99
Satureja montana 21%0.30
Saxifraga aizoides 10%1.55
Saxifraga bryoides 21%0.30
Saxifraga exarata aggr. 21%0.30
Saxifraga oppositifolia 10%0.36
Saxifraga paniculata 93%0.30
Saxifraga purpurea 31%0.67
Scabiosa columbaria aggr.Scacolu4213%0.49
Scilla bifolia 41%23.40
Scirpus sylvaticus 10%0.30
Scorzonera austriaca 10%0.30
Scrophularia canina 10%1.41
Scutellaria alpina 52%1.40
Securigera varia 31%0.37
Sedum acre 41%0.30
Sedum album 10%1.87
Sedum alpestre 52%0.49
Sedum anacampseros 175%0.66
Sedum rupestre aggr. 62%0.30
Selaginella selaginoides 21%0.42
Sempervivum arachnoideumSemarac237%1.38
Sempervivum montanum 113%0.70
Sempervivum tectorum 124%0.52
Senecio doronicumSendoro299%0.64
Senecio incanusSeninca3310%0.30
Senecio jacobaea 10%0.30
Senecio ovatus 10%0.30
Senecio viscosus 10%1.40
Seseli annuum 10%0.63
Seseli libanotis 41%9.34
Sesleria caeruleaSescaer3912%1.13
Sibbaldia procumbensSibproc227%1.01
Silene acaulisSilacau3711%0.60
Silene dioica 41%0.30
Silene flos-cuculi 10%0.48
Silene flos-jovis 165%0.30
Silene latifolia 10%0.64
Silene nutansSilnuta5918%0.30
Silene otites 31%0.37
Silene rupestris 93%0.30
Silene saxifraga 10%0.50
Silene viscaria 21%1.25
Silene vulgarisSilvulg289%1.27
Soldanella alpinaSolalpi4915%0.55
Solidago virgaurea 165%0.30
Sorbus aria 103%0.30
Sorbus aucuparia 52%0.98
Stachys officinalis 62%0.69
Stachys pradicaStaprad289%0.63
Stachys recta 93%1.09
Stellaria graminea 41%0.97
Stellaria holostea 10%1.57
Stellaria media 10%20.33
Stipa pennata aggr. 31%0.30
Tanacetum vulgare 21%0.52
Taraxacum laevigatum s. l. 82%1.03
Taraxacum officinale aggr. 134%4.46
Taraxacum officinale s. l.Taroffi4715%0.30
Tephroseris aurantiaca 10%5.85
Teucrium chamaedrys 134%1.54
Teucrium montanum 41%0.53
Teucrium scorodonia 41%0.30
Thalictrum aquilegiifolium 10%0.50
Thalictrum minus aggr. 62%0.36
Thesium alpinum 72%0.79
Thesium linophyllon aggr. 10%0.45
Thlaspi alpestreThlalpe196%2.24
Thymus serpyllum aggr.Thyserp15147%0.30
Tofieldia calyculata 10%0.30
Tragopogon dubius 10%0.45
Tragopogon pratensis 155%0.30
Traunsteinera globosa 31%6.49
Trichophorum cespitosum 21%2.49
Trifolium alpestreTrialpe258%12.62
Trifolium alpinumTrialpi10833%0.30
Trifolium aureum 10%0.59
Trifolium badiumTribadi289%3.57
Trifolium hybridum 10%12.91
Trifolium medium 21%1.70
Trifolium montanumTrimont309%3.17
Trifolium pallescens 31%1.22
Trifolium pannonicum 62%2.16
Trifolium pratenseTriprat14745%2.40
Trifolium repensTrirepe5517%6.03
Trifolium thaliiTrithal3410%10.48
Triglochin palustris 10%0.97
Trinia glauca 41%0.80
Trisetum distichophyllum 10%4.81
Trisetum flavescensTriflav5116%1.60
Trollius europaeusTroeuro309%0.42
Tulipa australis 62%1.19
Tussilago farfara 10%1.25
Urtica dioica 155%3.18
Vaccinium gaultherioidesVacgaul6019%2.36
Vaccinium myrtillusVacmyrt6821%1.49
Vaccinium vitis-idaea 21%3.16
Valeriana celtica 52%0.30
Valerianella locusta 10%0.52
Veratrum albumVeralbu6019%0.88
Verbascum densiflorum 52%0.30
Verbascum lychnitis 62%0.38
Verbascum thapsus 62%1.87
Veronica allioniiVeralli5316%0.66
Veronica alpinaVeralpi196%0.30
Veronica aphylla 10%0.30
Veronica arvensis 41%2.28
Veronica bellidioides 52%1.34
Veronica chamaedrysVercham237%0.47
Veronica fruticulosa aggr. 31%1.50
Veronica officinalisVeroffi206%0.30
Veronica prostrata 10%0.70
Veronica serpyllifolia 41%0.57
Veronica verna 10%1.99
Vicia cracca 134%0.30
Vicia hirsuta 10%1.34
Vicia onobrychioides 21%2.67
Vicia sativa 41%1.44
Vicia sepium 21%0.30
Vicia villosa 10%0.30
Vincetoxicum hirundinaria 134%0.30
Viola arvensis 10%0.61
Viola biflora 93%1.32
Viola calcarataViocalc8927%2.00
Viola canina 41%0.30
Viola odorata 10%0.30
Viola palustris 10%0.30
Viola pinnata 10%0.52
Viola riviniana 31%0.30
Viola suavis 21%0.35
Viola thomasiana 52%0.39
Viola tricolor 165%0.30

References

  1. Haines-Young, R.; Potschin-Young, M. Revision of the Common International Classification for Ecosystem Services (CICES V5. 1): A Policy Brief. One Ecosyst. 2018, 3, e27108. [Google Scholar] [CrossRef]
  2. Lavorel, S.; Grigulis, K.; Leitinger, G.; Kohler, M.; Schirpke, U.; Tappeiner, U. Historical Trajectories in Land Use Pattern and Grassland Ecosystem Services in Two European Alpine Landscapes. Reg. Environ. Chang. 2017, 17, 2251–2264. [Google Scholar] [CrossRef]
  3. Canedoli, C.; Ferrè, C.; Abu El Khair, D.; Comolli, R.; Liga, C.; Mazzucchelli, F.; Proietto, A.; Rota, N.; Colombo, G.; Bassano, B.; et al. Evaluation of Ecosystem Services in a Protected Mountain Area: Soil Organic Carbon Stock and Biodiversity in Alpine Forests and Grasslands. Ecosyst. Serv. 2020, 44, 101135. [Google Scholar] [CrossRef]
  4. Lefèvre, C.; Rekik, F.; Alcantara, V.; Wiese, L. Soil Organic Carbon: The Hidden Potential; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
  5. Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
  6. Lal, R.; Negassa, W.; Lorenz, K. Carbon Sequestration in Soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
  7. Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N. Soil Organic Carbon Storage as a Key Function of Soils-A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
  8. Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
  9. Zhao, Y.F.; Wang, X.; Jiang, S.L.; Zhou, X.H.; Liu, H.Y.; Xiao, J.J.; Hao, Z.G.; Wang, K.C. Climate and Geochemistry Interactions at Different Altitudes Influence Soil Organic Carbon Turnover Times in Alpine Grasslands. Agric. Ecosyst. Environ. 2021, 320, 107591. [Google Scholar] [CrossRef]
  10. Theurillat, J.-P.; Aeschimann, D.; Küpfer, P.; Spichiger, R. The Higher Vegetation Units of the Alps. Colloq. Phytosociol. 1995, 23, 189–239. [Google Scholar]
  11. Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-540-00347-2. [Google Scholar]
  12. Cavallero, A.; Aceto, P.; Gorlier, A.; Lombardi, G.; Lonati, M.; Martinasso, B.; Tagliatori, C. I Tipi Pastorali delle Alpi Piemontesi: Vegetazione e Gestione dei Pascoli delle Alpi Occidentali; Alberto Perdisa Editore: Bologna, Italy, 2007; ISBN 978-88-8372-321-6. [Google Scholar]
  13. Regione Piemonte Digital Terrain Model with 5 Meters Resolution. Available online: http://www.geoportale.piemonte.it/geonetworkrp/srv/ita/metadata.show?uuid=r_piemon:224de2ac-023e-441c-9ae0-ea493b217a8e (accessed on 6 September 2021).
  14. Arpa Piemonte—Home Page. Available online: http://rsaonline.arpa.piemonte.it/meteoclima50/ascii.htm (accessed on 6 September 2021).
  15. QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project: Beaverton, OR, USA, 2019. [Google Scholar]
  16. Daget, P.; Poissonet, J. Une méthode d’analyse phytosociologique des prairies. Ann. Agron. 1971, 22, 5–41. [Google Scholar]
  17. Ravetto Enri, S.; Nucera, E.; Lonati, M.; Alberto, P.F.; Probo, M. The Biodiversity Promotion Areas: Effectiveness of Agricultural Direct Payments on Plant Diversity Conservation in the Semi-Natural Grasslands of the Southern Swiss Alps. Biodivers. Conserv. 2020, 29, 4155–4172. [Google Scholar] [CrossRef]
  18. Pittarello, M.; Probo, M.; Perotti, E.; Lonati, M.; Lombardi, G.; Ravetto Enri, S. Grazing Management Plans Improve Pasture Selection by Cattle and Forage Quality in Sub-Alpine and Alpine Grasslands. J. Mt. Sci. 2019, 16, 2126–2135. [Google Scholar] [CrossRef]
  19. Landolt, E.; Bäumler, B.; Erhardt, A.; Hegg, O.; Klotzli, F.; Lammler, W.; Nobis, M.; Rudmann-Maurer, K.; Schweingruber, F.H.; Theurillat, J.-P.; et al. Flora Indicativa: Ökologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen = Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps; Editions des Conservatoire et Jardin Botaniques de la Ville de Genève & HauptVerlag: Bern, Switzerland; Stuttgart, Germany; Vienna, Austria, 2010; ISBN 978-3-258-07461-0. [Google Scholar]
  20. Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988; ISBN 978-0-7099-3539-1. [Google Scholar]
  21. Ministero per le Politiche Agricole e Forestali. Decreto Ministeriale 13 Settembre 1999 Approvazione Dei “Metodi Ufficiali Di Analisi Chimica Del Suolo”; Ministero per le Politiche Agricole e Forestali: Rome, Italy, 1999.
  22. Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
  23. Calzolari, C.; Ungaro, F.; L’Abate, G.; Pellegrini, S.; Vinci, I. Realizzazione della Carta dello Stock di Carbonio Organico nei Suoli Italiani; Global Soil Partnership: Rome, Italy, 2017; p. 39. [Google Scholar]
  24. Torri, D.; Poesen, J.; Monaci, F.; Busoni, E. Rock Fragment Content and Fine Soil Bulk Density. Catena 1994, 23, 65–71. [Google Scholar] [CrossRef]
  25. Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
  26. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
  27. Goral, F.; Schellenberg, J. Goeveg: Functions for Community Data and Ordinations; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
  28. Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
  29. Magnusson, A.; Skaug, H.; Nielsen, A.; Berg, C.; Kristensen, K.; Maechler, M.; van Bentham, K.; Bolker, B.; Sadat, N.; Lüdecke, D.; et al. GlmmTMB: Generalized Linear Mixed Models Using Template Model Builder; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
  30. Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation; PRIMER-E Ltd.: Plymouth, UK, 1994; Volume 2, pp. 117–143. [Google Scholar]
  31. Rodríguez-Murillo, J.C. Organic Carbon Content under Different Types of Land Use and Soil in Peninsular Spain. Biol. Fertil. Soils 2001, 33, 53–61. [Google Scholar] [CrossRef]
  32. Hoffmann, U.; Hoffmann, T.; Jurasinski, G.; Glatzel, S.; Kuhn, N.J. Assessing the Spatial Variability of Soil Organic Carbon Stocks in an Alpine Setting (Grindelwald, Swiss Alps). Geoderma 2014, 232–234, 270–283. [Google Scholar] [CrossRef]
  33. Ferré, C.; Caccianiga, M.; Zanzottera, M.; Comolli, R. Soil–Plant Interactions in a Pasture of the Italian Alps. J. Plant Interact. 2020, 15, 39–49. [Google Scholar] [CrossRef] [Green Version]
  34. Leifeld, J.; Bassin, S.; Fuhrer, J. Carbon Stocks in Swiss Agricultural Soils Predicted by Land-Use, Soil Characteristics, and Altitude. Agric. Ecosyst. Environ. 2005, 105, 255–266. [Google Scholar] [CrossRef]
  35. Guidi, C.; Vesterdal, L.; Gianelle, D.; Rodeghiero, M. Changes in Soil Organic Carbon and Nitrogen Following Forest Expansion on Grassland in the Southern Alps. For. Ecol. Manag. 2014, 328, 103–116. [Google Scholar] [CrossRef]
  36. Meyer, S.; Leifeld, J.; Bahn, M.; Fuhrer, J. Free and Protected Soil Organic Carbon Dynamics Respond Differently to Abandonment of Mountain Grassland. Biogeosciences 2012, 9, 853–865. [Google Scholar] [CrossRef] [Green Version]
  37. Garcia-Pausas, J.; Romanyà, J.; Montané, F.; Rios, A.I.; Taull, M.; Rovira, P.; Casals, P. Are soil carbon stocks in mountain grasslands compromised by land-use changes? In High Mountain Conservation in a Changing World; Springer: Cham, Switzerland, 2017; pp. 207–230. [Google Scholar]
  38. Djukic, I.; Zehetner, F.; Tatzber, M.; Gerzabek, M.H. Soil Organic-Matter Stocks and Characteristics along an Alpine Elevation Gradient. J. Plant Nutr. Soil Sci. 2010, 173, 30–38. [Google Scholar] [CrossRef]
  39. Kopáček, J.; Kaňa, J.; Šantrůčková, H. Pools and Composition of Soils in the Alpine Zone of the Tatra Mountains. Biologia 2006, 61, S35–S49. [Google Scholar] [CrossRef]
  40. Garcia-Pausas, J.; Casals, P.; Camarero, L.; Huguet, C.; Sebastia, M.-T.; Thompson, R.; Romanya, J. Soil Organic Carbon Storage in Mountain Grasslands of the Pyrenees: Effects of Climate and Topography. Biogeochemistry 2007, 82, 279–289. [Google Scholar] [CrossRef]
  41. Yang, Y.; Fang, J.; Ma, W.; Smith, P.; Mohammat, A.; Wang, S.; Wang, W.E.I. Soil Carbon Stock and Its Changes in Northern China’s Grasslands from 1980s to 2000s. Glob. Change Biol. 2010, 16, 3036–3047. [Google Scholar] [CrossRef]
  42. Steinbeiss, S.; Beßler, H.; Engels, C.; Temperton, V.M.; Buchmann, N.; Roscher, C.; Kreutziger, Y.; Baade, J.; Habekost, M.; Gleixner, G. Plant Diversity Positively Affects Short-Term Soil Carbon Storage in Experimental Grasslands. Glob. Change Biol. 2008, 14, 2937–2949. [Google Scholar] [CrossRef]
  43. Tian, F.-P.; Zhang, Z.-N.; Chang, X.-F.; Sun, L.; Wei, X.-H.; Wu, G.-L. Effects of Biotic and Abiotic Factors on Soil Organic Carbon in Semi-Arid Grassland. J. Soil Sci. Plant Nutr. 2016, 16, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
  44. Kukuļs, I.; Nikodemus, O.; Kasparinskis, R.; Žīgure, Z. Humus Forms, Carbon Stock and Properties of Soil Organic Matter in Forests Formed on Dry Mineral Soils in Latvia. Est. J. Earth Sci. 2020, 69, 63–75. [Google Scholar] [CrossRef]
  45. Pittarello, M.; Lonati, M.; Gorlier, A.; Perotti, E.; Probo, M.; Lombardi, G. Plant Diversity and Pastoral Value in Alpine Pastures Are Maximized at Different Nutrient Indicator Values. Ecol. Indic. 2018, 85, 518–524. [Google Scholar] [CrossRef]
  46. Liao, K.; Wu, S.; Zhu, Q. Can Soil PH Be Used to Help Explain Soil Organic Carbon Stocks? Clean Soil Air Water 2016, 44, 1685–1689. [Google Scholar] [CrossRef]
  47. Curtin, D.; Campbell, C.A.; Jalil, A. Effects of Acidity on Mineralization: PH-Dependence of Organic Matter Mineralization in Weakly Acidic Soils. Soil Biol. Biochem. 1998, 30, 57–64. [Google Scholar] [CrossRef]
  48. Sapek, B. Impact of soil pH on nitrogen mineralization in grassland soils. In Progress in Nitrogen Cycling Studies; Springer: Cham, Switzerland, 1996; pp. 271–276. [Google Scholar]
  49. Pornaro, C.; Basso, E.; Macolino, S. Pasture Botanical Composition and Forage Quality at Farm Scale: A Case Study. Ital. J. Agron. 2019, 14, 214–221. [Google Scholar] [CrossRef]
  50. Rodríguez-Ortega, T.; Olaizola, A.M.; Bernués, A. A Novel Management-Based System of Payments for Ecosystem Services for Targeted Agri-Environmental Policy. Ecosyst. Serv. 2018, 34, 74–84. [Google Scholar] [CrossRef]
  51. Theurillat, J.-P.; Guisan, A. Potential Impact of Climate Change on Vegetation in the European Alps: A Review. Clim. Change 2001, 50, 77–109. [Google Scholar] [CrossRef]
  52. Sun, Q.; Miao, C.; Duan, Q. Changes in the Spatial Heterogeneity and Annual Distribution of Observed Precipitation across China. J. Clim. 2017, 30, 9399–9416. [Google Scholar] [CrossRef]
  53. Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
Figure 1. Location of the 324 survey sites in north-western Italian Alps. Each black dot represents a site.
Figure 1. Location of the 324 survey sites in north-western Italian Alps. Each black dot represents a site.
Agriculture 11 01047 g001
Figure 2. Biplots of the non-metric multidimensional scaling (NMDS): (a) first and second dimensions, (b) first and third dimensions. Stress value for the three dimensions: 0.16. Only species recorded in more than 5% of the surveys are displayed and identified by a species code (see Appendix A for the complete species and code list). Dashed arrows represent passive variables: biodiversity (species richness and Shannon diversity index), Landolt’s indicator values (F, soil moisture; H, humus; N, soil nutrients; T, temperature), and pastoral value (PV).
Figure 2. Biplots of the non-metric multidimensional scaling (NMDS): (a) first and second dimensions, (b) first and third dimensions. Stress value for the three dimensions: 0.16. Only species recorded in more than 5% of the surveys are displayed and identified by a species code (see Appendix A for the complete species and code list). Dashed arrows represent passive variables: biodiversity (species richness and Shannon diversity index), Landolt’s indicator values (F, soil moisture; H, humus; N, soil nutrients; T, temperature), and pastoral value (PV).
Agriculture 11 01047 g002aAgriculture 11 01047 g002b
Table 1. Climatic, topographic, and vegetation descriptors of the 324 sites. SE, standard error of the mean; Landolt’s indicators: F, soil moisture; N, soil nutrients; H, humus; T, temperature.
Table 1. Climatic, topographic, and vegetation descriptors of the 324 sites. SE, standard error of the mean; Landolt’s indicators: F, soil moisture; N, soil nutrients; H, humus; T, temperature.
VariableMin25%Median75%MaxMeanSE
Climate
Precipitation [mm y−1]726.9900.4962.31103.51574.11008.28.88
Topography
Elevation [m a.s.l.]9881813209423292688204120.0
Slope [°]0.412.920.828.849.820.90.57
Southness [°]1.178.7124.9155.9179.7111.92.91
Vegetation
Species richness926354462350.7
Shannon index1.33.23.74.15.03.60.04
Landolt’s F1.62.32.62.94.22.60.02
Landolt’s N1.62.22.42.74.72.50.02
Landolt’s H1.93.03.23.44.93.20.02
Landolt’s T1.91.92.32.73.92.30.03
Pastoral Value20.934.440.646.373.141.20.51
Table 2. Soil descriptors of the 324 sites. SE, standard error of the mean.
Table 2. Soil descriptors of the 324 sites. SE, standard error of the mean.
VariableMin25%Median75%MaxMeanSE
pH3.34.65.05.88.35.30.06
Coarse fragment content [%]0.06.815.925.870.018.50.81
Bulk density [t m−3]0.20.70.91.01.20.80.01
Soil organic carbon [t ha−1]1.959.287.8112.8234.987.82.09
Table 3. Results of the generalized linear model accounting for the stock of soil organic carbon. NMDS, non-metric multidimensional scaling; SE, standard error; ***, p < 0.001; **, p < 0.01.
Table 3. Results of the generalized linear model accounting for the stock of soil organic carbon. NMDS, non-metric multidimensional scaling; SE, standard error; ***, p < 0.001; **, p < 0.01.
β ScoreSEp ValueSig.
(Intercept)87.7871.928<0.001***
Precipitation9.9942.515<0.001***
Elevation7.6194.2060.070
Slope0.2412.3250.917
Southness0.1822.2370.935
NMDS1−11.7824.0680.004**
NMDS2−3.6112.8970.213
NMDS3−1.9912.2190.370
pH−8.5742.7520.002**
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ravetto Enri, S.; Petrella, F.; Ungaro, F.; Zavattaro, L.; Mainetti, A.; Lombardi, G.; Lonati, M. Relative Importance of Plant Species Composition and Environmental Factors in Affecting Soil Carbon Stocks of Alpine Pastures (NW Italy). Agriculture 2021, 11, 1047. https://doi.org/10.3390/agriculture11111047

AMA Style

Ravetto Enri S, Petrella F, Ungaro F, Zavattaro L, Mainetti A, Lombardi G, Lonati M. Relative Importance of Plant Species Composition and Environmental Factors in Affecting Soil Carbon Stocks of Alpine Pastures (NW Italy). Agriculture. 2021; 11(11):1047. https://doi.org/10.3390/agriculture11111047

Chicago/Turabian Style

Ravetto Enri, Simone, Fabio Petrella, Fabrizio Ungaro, Laura Zavattaro, Andrea Mainetti, Giampiero Lombardi, and Michele Lonati. 2021. "Relative Importance of Plant Species Composition and Environmental Factors in Affecting Soil Carbon Stocks of Alpine Pastures (NW Italy)" Agriculture 11, no. 11: 1047. https://doi.org/10.3390/agriculture11111047

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop