# High-Speed Railways Interference Signal Characteristics and Multiple Remote References Denoising of Magnetotelluric Data in Jizhong Depression, China

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Overview of the Experiment

## 3. Characteristics of HSR Noise

## 4. Effect of the Remote Reference Method (RR)

#### 4.1. Principle of Single RR and Multiple RRs

#### 4.2. Effect of MRR

## 5. Results of MT Profile Experiment

## 6. Discussion and Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Gurk, M.; Bosch, F.P.; Tougiannidis, N. Electric field variations measured continuously in free air over a conductive thin zone in the tilted lias-epsilon black shales near Osnabrück, northwest Germany. J. Appl. Geophys.
**2013**, 91, 21–30. [Google Scholar] [CrossRef] - Wannamaker, P.E.; Doerner, W.M. Crustal structure of the RubyMountains and southern Carlin Trend region, Nevada, frommagnetotelluric data. Ore Geol. Rev.
**2002**, 21, 185–210. [Google Scholar] [CrossRef] - Meng, Y.S.; Chen, X.Q.; Wang, W.G.; Li, R.H.; Wang, G. Geophysical Implications for Prospective Prediction of Copper Polymetallic Ore Bodies: Northern Margin of Alxa Block, China. Minerals
**2022**, 12, 653. [Google Scholar] [CrossRef] - Ádám, A.; Novák, A.; Szarka, L.; Wesztergom, V. The magnetotelluric (MT) investigation of the Diósjenő dislocation belt. Acta Geod. Et Geophys.
**2003**, 38, 305–326. [Google Scholar] [CrossRef] - Cagniard, L. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics
**1953**, 18, 605–635. [Google Scholar] [CrossRef] - Mehanee, S.; Zhdanov, M. A quasi-analytical boundary condition for three-dimensional finite difference electromagnetic modeling. Radio Sci.
**2004**, 39, RS6014. [Google Scholar] [CrossRef][Green Version] - Feucht, D.W.; Sheehan, A.F.; Bedrosian, P.A. Magnetotelluric Imaging of Lower Crustal Melt and Lithospheric Hydration in the Rocky Mountain Front Transition Zone, Colorado, USA. J. Geophys. Res. Solid Earth
**2017**, 122, 9489–9510. [Google Scholar] [CrossRef] - Hanekop, O.; Simpson, F. Error propagation in electromagnetic transfer functions: What role for the magnetotelluric method in detecting earthquake precursors. Geophys. J. Int.
**2006**, 165, 763–774. [Google Scholar] [CrossRef] - Maithya, J.; Fujimitsu, Y. Analysis and interpretation of magnetotelluric data in characterization of geothermal resource in Eburru geothermal field, Kenya. Geothermics
**2019**, 81, 12–31. [Google Scholar] [CrossRef] - Zhang, L.L.; Zhao, C.J.; Yu, P.; Xiang, Y.; Peng, X.C.; Koyama, T.; Yang, W.C. The electrical conductivity structure of the Tarim basin in NW China as revealed by three-dimensional magnetotelluric inversion. J. Asian Earth Sci.
**2020**, 187, 104093. [Google Scholar] [CrossRef] - Padilha, A.L.; Vitorello, I.; Brito, P.M.A. Magnetotelluric soundings across the Taubat Basin, Southeast Brazil, Earth. Planets Space
**2002**, 54, 617–627. [Google Scholar] [CrossRef][Green Version] - Szarka, L. Geophysical aspects of manmade electromagnetic noise in the earth—A review. Surv. Geophys.
**1988**, 9, 287–318. [Google Scholar] [CrossRef] - Takahashi, I.; Hattori, K.; Harada, M.; Yoshino, C. Anomalous geoelectrical and geomagnetic signals observed at Southern Boso Peninsula, Japan. Ann. Geophys.
**2007**, 50, 123–135. [Google Scholar] [CrossRef] - Larsen, J.C.; Mackie, R.L.; Manzella, A.; Fiordelisi, A.; Rievenj, S. Robust smooth magnetotelluric transfer functions. Geophys. J. Int.
**1996**, 124, 801–819. [Google Scholar] [CrossRef] - Goubau, W.; Gamble, T.; Clarke, J. Magnetotelluric data analysis: Removal of bias. Geophysics
**1978**, 43, 1157–1166. [Google Scholar] [CrossRef] - Gamble, T.D.; Goubau, W.M.; Clarke, J. Magnetotellurics with a remote magnetic reference. Geophysics
**1979**, 44, 53–68. [Google Scholar] [CrossRef][Green Version] - Egbert, G.D.; Booker, J.R. Robust estimation of geomagnetic transfer functions. Geophys. J. Int.
**1986**, 87, 173–194. [Google Scholar] [CrossRef][Green Version] - Tang, J.T.; Cai, J.H.; Ren, Z.Y.; Hua, X.R. Hilbert-Huang transform and time-frequency analysis of magnetotelluric signal. J. Cent. South Univ. (Sci. Technol.)
**2009**, 5, 1399–1405. [Google Scholar] - Trad, D.O.; Travassos, J.M. Wavelet filtering of magnetotelluric data. Geophysics
**2000**, 65, 482–491. [Google Scholar] [CrossRef] - Tang, J.T.; Li, J.; Xiao, X.; Zhang, L.C.; Lü, Q.T. Mathematical morphology filtering and noise suppression of magnetotelluric sounding data. Chin. J. Geophys.
**2012**, 55, 1784–1793. [Google Scholar] - Zhou, Y.Y.; Chang, Y.; Chen, H. Application of reference based blind source separation method in the reduction of near field noise of geomagnetic measurements. Chin. J. Geophys.
**2019**, 62, 572–586. [Google Scholar] - Bhattacharya, B.B.; Shalivahan. Application of robust processing of magnetotelluric data using single and remote reference sites. Curr. Sci.
**1999**, 76, 1108–1113. [Google Scholar] - Oettinger, G.; Haak, V.; Larsen, J.C. Noise reduction in magnetotelluric time-series with a new signal-noise separation method and its application to a field experiment in the Saxonian Granulite Massif. Geophys. J. Int.
**2001**, 146, 659–669. [Google Scholar] [CrossRef][Green Version] - Shalivahan; Bhattacharya, B.B. How remote can the far remote reference site for magnetotelluric measurements be? J. Geophys. Res. Solid Earth
**2002**, 107, 2105. [Google Scholar] [CrossRef] - Wang, H.; Chen, J.L.; Teng, X.Z. Source effect on magnetotelluric data due to mining area and its suppression. Prog. Geophys.
**2016**, 31, 1358–1366. (In Chinese) [Google Scholar] - He, D.F.; Cui, Y.Q.; Zhang, Y.Y.; Shan, S.Q.; Xiao, Y.; Zhang, C.B.; Zhou, C.A.; Gao, Y. Structural genetic types of paleoburied hill in Jizhong depression, Bohai Bay Basin. Acta Petrol. Sin.
**2017**, 33, 1338–1356. [Google Scholar] - Miao, Q.Z.; Wang, G.L.; Xing, L.X.; Zhang, W.; Zhou, X.N.; Wang, W.Q. Study on application of deep thermal reservoir by using geophysical and geochemical methods in the Jizhong depression zone. Acta Geol. Sin.
**2020**, 94, 2147–2156. [Google Scholar] - Shi, Z.; Zhang, H.; Duan, T.; Zhang, P. Investigation of oil and gas reservoir in Jizhong depression based on time-frequency electromagnetic method. Glob. Geol.
**2018**, 37, 585–594. [Google Scholar] - Lin, G.S.; Gao, S.B. Selective-tripping scheme for power supply arm on high-speed railway based on correlation analysis between feeder current fault components in multisite. IEEJ Trans. Electr. Electron. Eng.
**2019**, 14, 773–779. [Google Scholar] [CrossRef] - Goldstein, M.A.; Strangway, D.W. Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics
**1975**, 40, 669–683. [Google Scholar] [CrossRef] - Wang, G.; Lei, D.; Zhang, Z.Y.; Hu, X.Y.; Li, Y.B.; Wang, D.Y.; Zhu, W. Tensor CSAMT and AMT Studies of the Xiarihamu Ni-Cu Sulfide Deposit in Qinghai, China. J. Appl. Geophys.
**2018**, 159, 795–802. [Google Scholar] [CrossRef] - Zonge, K.L.; Hughes, L.J. Controlled Source Audio-Frequency Magnetotellurics. In Electromagnetic Methods in Applied Geophysics—Applications—Part A and Part B; SEG (Society of Exploration Geophysicists): Houston, TX, USA, 1991; Volume 2, pp. 713–810. [Google Scholar]
- Gamble, T.D.; Goubau, W.M.; Clarke, J. Error analysis for remote reference Magnetotellurics. Geophysics
**1979**, 44, 959–968. [Google Scholar] [CrossRef] - Chave, A.D.; Thomson, D.J. Bounded influence magnetotelluric response function estimation. Geophys. J. Int.
**2004**, 157, 988–1006. [Google Scholar] [CrossRef] - Smaï, F.; Wawrzyniak, P. Razorback, an open source Python library for robust processing of magnetotelluric data. Front. Earth Sci.
**2020**, 8, 296. [Google Scholar] [CrossRef] - Rodi, W.; Mackie, R.L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics
**2001**, 66, 174–187. [Google Scholar] [CrossRef] - Mehanee, S.; Zhdanov, M. Two-dimensional magnetotelluric inversion of blocky geoelectrical structures. J. Geophys. Res. Solid Earth
**2002**, 107, EPM 2-1–EPM 2-11. [Google Scholar] [CrossRef] - Mehanee, S.; Golubev, N.; Zhdanov, M. Weighted regularized inversion of magnetotelluric data. In Expanded Abstract Presented at the 68th International and Meeting; Society of Exploration Geophysicists: New Orleans, LA, USA, 1998. [Google Scholar]
- He, D.F.; Cui, Y.Q.; Shan, S.Q.; Xiao, Y.; Zhang, Y.Y.; Zhang, C.B. Characteristics of geologic framework of buried-hill in Jizhong depression, Bohai Bay Basin. Chin. J. Geol.
**2018**, 53, 1–24. [Google Scholar] - Zhan, Y.; Zhao, G.Z.; Wang, L.F.; Wang, J.J.; Xiao, Q.B. Deep structure in shijiazhuang and the vicinity by magnetotellurics. Seismol. Geol.
**2011**, 33, 913–927. [Google Scholar] - He, D.F.; Shan, S.Q.; Zhang, Y.Y.; Lu, R.Q.; Zhang, R.F.; Cui, Y.Q. 3-D geologic architecture of Xiong’an New Area: Constraints from seismic reflection data. Sci. China Earth Sci.
**2018**, 61, 1007–1022. [Google Scholar] [CrossRef] - Santarato, I. On the interference of man-made EM fields in the magnetotelluric ‘dead band’. Geophys. Prospect.
**1999**, 47, 707–719. [Google Scholar] - Xavier, G.; Alan, G.J. Robust processing of magnetotelluric data in the AMT dead band using the continuous wavelet transform. Geophysics
**2008**, 73, F223–F234. [Google Scholar]

**Figure 5.**The frequency domain curves. (

**a**) Apparent resistivity of ρ

_{yx}. (

**b**) Impedance phase of φ

_{yx}. (

**c**) Spectrum of Ex. (

**d**) Spectrum of Ey.

**Figure 7.**Plots of apparent resistivity and phase data of station 2. Red curves denote the single station (ss), blue curves denote nocturnal data (nd), magenta curves denote station 8 as a remote reference (RR8), green curves denote station 7 as a remote reference (RR7), and black curves denote stations 7 and 8 as remote references (MRR7&8). (

**a**) Comparison of ss and MRR. (

**b**) Comparison of nd and MRR. (

**c**) Comparison of RR7 and MRR. (

**d**) Comparison of RR8 and MRR.

**Figure 8.**Comparison diagram of the inversion results for profile AA’. (

**a**) Seismic profile near AA’. (

**b**) The 2D inversion result of the MRR (7 and 8). (

**c**) The 2D inversion result of the SS.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, G.; Wang, D.; Meng, Y.; Li, Y.; Wang, W.; Zhu, W.; Cui, A.; Zhao, Y. High-Speed Railways Interference Signal Characteristics and Multiple Remote References Denoising of Magnetotelluric Data in Jizhong Depression, China. *Appl. Sci.* **2023**, *13*, 4304.
https://doi.org/10.3390/app13074304

**AMA Style**

Wang G, Wang D, Meng Y, Li Y, Wang W, Zhu W, Cui A, Zhao Y. High-Speed Railways Interference Signal Characteristics and Multiple Remote References Denoising of Magnetotelluric Data in Jizhong Depression, China. *Applied Sciences*. 2023; 13(7):4304.
https://doi.org/10.3390/app13074304

**Chicago/Turabian Style**

Wang, Gang, Dayong Wang, Yinsheng Meng, Yongbo Li, Wenguo Wang, Wei Zhu, Aiming Cui, and Yi Zhao. 2023. "High-Speed Railways Interference Signal Characteristics and Multiple Remote References Denoising of Magnetotelluric Data in Jizhong Depression, China" *Applied Sciences* 13, no. 7: 4304.
https://doi.org/10.3390/app13074304