Next Article in Journal
Small Ruminant Piroplasmosis: High Prevalence of Babesia aktasi n. sp. in Goats in Türkiye
Next Article in Special Issue
Tick-Borne Encephalitis Virus and Borrelia burgdorferi Seroprevalence in Balkan Tick-Infested Individuals: A Two-Centre Study
Previous Article in Journal
Immunoreactivity of a Putative ECF σ Factor, LIC_10559, from Leptospira interrogans with Sera from Leptospira-Infected Animals
Previous Article in Special Issue
The First Records of Canine Babesiosis in Dogs from Dermacentor reticulatus—Free Zone in Poland
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Commentary

An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma

1
Ecology and Emergence of Arthropod-borne Pathogens unit, Institut Pasteur, Université Paris-cité, Centre National de Recherche Scientifique (CNRS) UMR 2000, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) USC 1510, 75015 Paris, France
2
Interactions Hôtes-Agents Pathogènes unit, Université de Toulouse, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), F-31076 Toulouse, France
3
Bioscope Corse Méditerranée unit UR7310, Faculté de Sciences, Campus Grimaldi, Université de Corse, 20250 Corte, France
4
Santé publique France, 94410 Saint-Maurice, France
5
Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
6
Biologie Épidémiologie et Analyse de Risque en santé animale unit, Oniris, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 44300 Nantes, France
7
Biologie Moléculaire et immunologie Parasitaire unit, Laboratoire de Santé Animale, Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecole Nationale Vétérinaire d’Alfort (ENVA), 94700 Maisons-Alfort, France
8
Reference Centre for Tick-Borne Diseases, Paris and Northern Region, Department of Infectious Diseases, General Hospital of Villeneuve-Saint-Georges, 94190 Villeneuve-Saint-Georges, France
9
Epidémiologie des maladies animales et zoonotiques unit, Université de Lyon, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, 69280 Marcy l’Etoile, France
10
Epidémiologie des maladies animales et zoonotiques unit, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, 63122 Saint-Genès-Champanelle, France
11
Animal Santé Territoires Risques Ecosystèmes unit, Centre de coopération international en recherche agronomique pour le développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Montpellier II, F-34398 Montpellier, France
*
Author to whom correspondence should be addressed.
Pathogens 2023, 12(4), 513; https://doi.org/10.3390/pathogens12040513
Submission received: 24 February 2023 / Revised: 15 March 2023 / Accepted: 22 March 2023 / Published: 25 March 2023

Abstract

:
Current and likely future changes in the geographic distribution of ticks belonging to the genus Hyalomma are of concern, as these ticks are believed to be vectors of many pathogens responsible for human and animal diseases. However, we have observed that for many pathogens there are no vector competence experiments, and that the level of evidence provided by the scientific literature is often not sufficient to validate the transmission of a specific pathogen by a specific Hyalomma species. We therefore carried out a bibliographical study to collate the validation evidence for the transmission of parasitic, viral, or bacterial pathogens by Hyalomma spp. ticks. Our results show that there are very few validated cases of pathogen transmission by Hyalomma tick species.

In addition to their direct impact as ectoparasites, ticks are of greater importance as vectors of pathogens to animals and are the second most important group of pathogen vectors affecting humans after mosquitoes, mainly due to their transmission of Borrelia burgdorferi sensu lato [1]. In addition, these arthropods are capable of transmitting the largest variety of pathogens including bacteria, parasites (protozoa, helminths), and viruses. However, like all biological vectors, ticks are not simple “syringes”, as is often believed. Each species, or even each tick population, has a vector competence corresponding to its intrinsic ability to acquire the pathogen by feeding on an infected host, allowing the multiplication/development of this agent and its retransmission to a new host during a new blood meal [2]. To this vector competence is added the set of factors that may influence transmission, thus defining the vector capacity—that is, the ability of a vector to transmit a pathogen at a given time and in a defined region, according to extrinsic conditions such as humidity, temperature, but also vector abundance, trophic preferences, etc. [3].
Ticks acquire pathogens during a blood meal taken on infected vertebrate hosts. Several routes of pathogen transmission to vertebrate hosts are then possible on the occasion of a new blood meal via a deposit on the skin of the host and penetration via the bite wound (via feces, by crushing or via coxal fluid excretion), or via the injection of saliva that accompanies the blood meal and represents the predominant route of pathogen transmission for ticks [4]. In addition, within the tick population, a pathogen may persist from one life stage to the next via transstadial transmission (essential for tick-borne transmission by hard ticks that take only one blood meal per life stage), from the female to its offspring via transovarial transmission, from male to female ticks during copulation via sexual transmission, or from an infected tick to a non-infected one via co-feeding when ticks feed adjacent to each other on the same host [2,5].
The unique detection of pathogenic DNA in a tick collected in the environment or on a vertebrate host does not prove vector competence, but only indicates the fact that the tick took a blood meal on an infected animal. Although such DNA detection in unfed hard ticks is more indicative than detection in engorged ones—as, considering that ixodid ticks feed only once per life stage, it suggests transstadial persistence—it should be noted that this does not imply the viability of the concerned pathogen. In fact, the persistence of DNA during the molting process is possible, as detection has been reported of some vertebrate DNA dating back to a blood meal taken by the previous life stage [6]. Furthermore, the DNA of pathogens that are not transmitted by the tick species concerned is often detected simply as a result of feeding on hosts that harbor such pathogens [7]. The detection of mRNA, a priori reflecting the presence of a living organism, presents an additional but still insufficient level of evidence of vectorial transmission. Additionally, the detection of a given pathogen in both ticks and samples from tick-infested vertebrate hosts collected in the same area, the co-occurrence with already known tick-borne pathogens, or a documented infection following a tick bite, can all represent indirect significant evidence of a given pathogen transmission. The demonstration of transstadial and/or transovarial persistence, which validates the existence of a development of the pathogen in ticks, is a strong indication in favor of biological vector transmission. However, conclusive evidence of vector competence for a given pathogen can only be provided by the demonstration of the ability of a tick species to acquire a pathogen on an infected host, to allow its development, and to transmit it to a new host. Unfortunately, very few vector competence experiments have been conducted due to the difficulties encountered in carrying out complete transmission cycles under experimental conditions. Indeed, it requires having pathogen-free tick colonies, vertebrate hosts suitable for both tick engorgement and pathogen replication (or to have effective artificial tick feeding methods combined with optimal cultivation methods of the pathogen), and can require high biosecurity levels depending on the pathogen concerned [8,9].
Ticks from the Hyalomma genus are considered to be expanding from some parts of their range, as reported for the invasion of H. marginatum into Europe since the late 20th century [10,11]. This is of concern, as these ticks are vectors of many pathogens responsible for human and animal diseases [12] and because there are few measures to control them, in particular during their off-host development [13]. Like other hard ticks, Hyalomma species take one blood meal per life stage before molting (larva and nymph) or, after fertilization, laying eggs (female). The majority of Hyalomma spp. ticks have a three-host cycle (each of the three life stages must find a new host on which to take a blood meal). However, some are diphasic, such as those of the marginatum group (larvae and nymphs taking their blood meals on the same host), and one species, Hyalomma scupense, is monophasic (all three life stages remain on the same host). Hyalomma ticks feed on domestic or wild vertebrate hosts, with some species such as H. marginatum or H. rufipes utilizing a large variety of hosts, which favors pathogen spillover. Humans, by entering the ecosystem of these hosts, can become accidental hosts of ticks, and thus, become exposed to pathogens [14]. The genus Hyalomma includes the most xerophilous species among all ticks and may be favored under future climate change [15].
Numerous pathogens—parasitic, viral, or bacterial—have been reported in the scientific literature as transmitted or potentially transmitted by ticks of the genus Hyalomma. The synthesis of these studies, with an attributed level of evidence of vectorial transmission, is reported in Table 1. The level of evidence ranges from a simple detection of pathogen DNA or RNA in ticks collected from vertebrate hosts to a formal demonstration of experimental transmission from an infected vertebrate host to a new naïve one, coupled with appropriate epidemiological data. To build this table, we considered the 27 Hyalomma species described by Guglielmone et al. in 2010 [16]. Species for which no evidence of a potential vector role has been reported to date have not been included, namely Hyalomma albiparmatum, Hyalomma arabica, Hyalomma brevipunctatum, Hyalomma glabrum, Hyalomma hystricis, Hyalomma nitidum, Hyalomma punt, Hyalomma rhipicephaloides, Hyalomma franchinii, and Hyalomma kumari. Our literature review includes the names of Hyalomma species that have been used for several past decades but have since been abandoned in favor of the currently used names, namely Hyalomma plumbeum (now H. marginatum) and Hyalomma detritum (now H. scupense). Note that the data identified for Hyalomma savignyi, now reclassified as H. lusitanicum, are not considered here, since H. savignyi is now considered to include several subspecies. Hyalomma savignyi data could therefore also apply to H. lusitanicum, as well as to H. anatolicum, H. impeltatum, H. impressum, H. marginatum, or H. truncatum. For bibliographic research, a narrative review was performed using the terms “Hyalomma” and “[pathogen sought]” (all microorganisms whose transmission by ticks has been reported in the scientific literature with de facto exclusion of symbionts) with the Boolean operator “AND” in the PubMed and Scopus databases without date restriction. The literature search was conducted in English. We retained peer-reviewed research articles and reviews (not including conference proceedings) and book sections. Screening was conducted first on titles, then on abstracts, and finally on the full text when available. After reading the entire articles, the ones that were eliminated corresponded to those that did not have available data or no original data. The number of references found in each of the two databases is shown in Table 1. All references concerning experimental validation and the epidemiological arguments for transmission are mentioned in the table, but the list concerning DNA/RNA detection is not exhaustive.
In conclusion, we observed that there are many missing pathogen vector competence experiments, and that the level of evidence provided by the scientific literature is often not sufficient to validate the existence of vectorial transmission. We conclude that the pathogen/tick associations for which transmission from an infected host to an initially healthy host via tick bite has been experimentally validated are the following:
  • Crimean–Congo Hemorrhagic Fever Virus (CCHFv) by H. dromedarii, H. impeltatum, H. marginatum, H. rufipes, and H. truncatum.
  • African Horse Sickness virus by H. dromedarii.
  • Venezuelan equine encephalitis virus by H. truncatum.
  • Theileria annulata by H. anatolicum, H. dromedarii, H. excavatum, H. lusitanicum, and H. scupense.
  • Theileria equi by H. anatolicum and H. excavatum.
  • Theileria lestoquardi by H. anatolicum.
  • Theileria ovis by H. anatolicum.
  • Babesia occultans by H. rufipes.
  • Coxiella burnetii by H. aegyptium.
  • Anaplasma marginale by H. excavatum.
  • Rickettsia aeschlimannii by H. marginatum and H. rufipes.

Author Contributions

Conceptualization, Methodology, Formal Analysis, Investigation, Review and Editing, S.I.B., S.B., A.F., J.F. (Julie Figoni), J.F. (Johanna Fite), T.H., E.Q., S.M., A.R., M.R.-M., G.V. and L.V.; Original Draft writing and preparation, S.I.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The datasets generated during and/or analyzed during the current study can be find in the main text.

Acknowledgments

This narrative review was conducted by the ad hoc subgroup from the working expert group on the risks related to Hyalomma ticks at the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) commissioned by the French authorities. The authors thank the other experts who were part of this group for stimulating discussions and for their feedback on the expert report: S. Baize and F. Stachurski. We also thank Richard Paul and Jeremy Gray for proofreading the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as Vectors of Pathogens That Cause Disease in Humans and Animals. Front. Biosci. J. Virtual Libr. 2008, 13, 6938–6946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. De, S.; Kitsou, C.; Sonenshine, D.E.; Pedra, J.H.F.; Fikrig, E.; Kassis, J.A.; Pal, U. Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends Genet. 2021, 37, 8–11. [Google Scholar] [CrossRef] [PubMed]
  4. Šimo, L.; Kazimirova, M.; Richardson, J.; Bonnet, S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017, 7, 281. [Google Scholar] [CrossRef] [PubMed]
  5. Philip, C.B.; Parker, R.R. Rocky Mountain spotted fever. Investigation of sexual transmission in the wood tick Dermacentor andersoni. Public Health Rep. 1933, 48, 266–272. [Google Scholar] [CrossRef]
  6. Léger, E.; Liu, X.; Masseglia, S.; Noël, V.; Vourc’h, G.; Bonnet, S.; McCoy, K.D. Reliability of Molecular Host-Identification Methods for Ticks: An Experimental in Vitro Study with Ixodes ricinus. Parasit. Vectors 2015, 8, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  7. Dwużnik, D.; Mierzejewska, E.J.; Drabik, P.; Kloch, A.; Alsarraf, M.; Behnke, J.M.; Bajer, A. The role of juvenile Dermacentor reticulatus ticks as vectors of microorganisms and the problem of ‘meal contamination’. Exp. Appl. Acarol. 2019, 78, 181–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Bonnet, S.I.; Liu, X.Y. Laboratory Artificial Infection of Hard Ticks: A Tool for the Analysis of Tick-Borne Pathogen Transmission. Acarologia 2012, 52, 453–464. [Google Scholar] [CrossRef] [Green Version]
  9. Bonnet, S.I.; Nadal, C. Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission. Pathogens 2021, 10, 1403. [Google Scholar] [CrossRef]
  10. Fernández-Ruiz, N.; Estrada-Peña, A. Towards New Horizons: Climate Trends in Europe Increase the Environmental Suitability for Permanent Populations of Hyalomma marginatum (Ixodidae). Pathogens 2021, 10, 95. [Google Scholar] [CrossRef]
  11. Bah, M.T.; Grosbois, V.; Stachurski, F.; Muñoz, F.; Duhayon, M.; Rakotoarivony, I.; Appelgren, A.; Calloix, C.; Noguera, L.; Mouillaud, T.; et al. The Crimean-Congo Haemorrhagic Fever Tick Vector Hyalomma marginatum in the South of France: Modelling Its Distribution and Determination of Factors Influencing Its Establishment in a Newly Invaded Area. Transbound. Emerg. Dis. 2022, 69, e2351–e2365. [Google Scholar] [CrossRef] [PubMed]
  12. Bakheit, M.A.; Latif, A.A.; Vatansever, Z.; Seitzer, U.; Ahmed, J. The Huge Risks Due to Hyalomma Ticks. In Arthropods as Vectors of Emerging Diseases; Mehlhorn, H., Ed.; Parasitology Research Monographs; Springer: Berlin/Heidelberg, Germany, 2012; pp. 167–194. ISBN 978-3-642-28842-5. [Google Scholar]
  13. Bonnet, S.I.; Vourc’h, G.; Raffetin, A.; Falchi, A.; Figoni, J.; Fite, J.; Hoch, T.; Moutailler, S.; Quillery, E. The Control of Hyalomma Ticks, Vectors of the Crimean-Congo Hemorrhagic Fever Virus: Where Are We Now and Where Are We Going? PLoS Negl. Trop. Dis. 2022, 16, e0010846. [Google Scholar] [CrossRef] [PubMed]
  14. Kumar, B.; Manjunathachar, H.V.; Ghosh, S. A Review on Hyalomma Species Infestations on Human and Animals and Progress on Management Strategies. Heliyon 2020, 6, e05675. [Google Scholar] [CrossRef]
  15. Estrada-Peña, A.; De La Fuente, J.; Latapia, T.; Ortega, C. The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma marginatum (Ixodidae). PLoS ONE 2015, 10, e0125760. [Google Scholar] [CrossRef]
  16. Guglielmone, A.A.; Robbins, R.G.; Apanaskevich, D.A.; Petney, T.N.; Estrada-Peña, A.; Horak, I.G.; Shao, R.; Barker, S.C. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the World: A List of Valid Species Names. Zootaxa 2010, 2528, 1. [Google Scholar] [CrossRef] [Green Version]
  17. Kar, S.; Rodriguez, S.E.; Akyildiz, G.; Cajimat, M.N.B.; Bircan, R.; Mears, M.C.; Bente, D.A.; Keles, A.G. Crimean-Congo Hemorrhagic Fever Virus in Tortoises and Hyalomma Aegyptium Ticks in East Thrace, Turkey: Potential of a Cryptic Transmission Cycle. Parasit. Vectors 2020, 13, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Paștiu, A.I.; Matei, I.A.; Mihalca, A.D.; D’Amico, G.; Dumitrache, M.O.; Kalmár, Z.; Sándor, A.D.; Lefkaditis, M.; Gherman, C.M.; Cozma, V. Zoonotic Pathogens Associated with Hyalomma Aegyptium in Endangered Tortoises: Evidence for Host-Switching Behaviour in Ticks? Parasit. Vectors 2012, 5, 301. [Google Scholar] [CrossRef] [Green Version]
  19. Siroký, P.; Kubelová, M.; Modrý, D.; Erhart, J.; Literák, I.; Spitalská, E.; Kocianová, E. Tortoise Tick Hyalomma Aegyptium as Long Term Carrier of Q Fever Agent Coxiella Burnetii—Evidence from Experimental Infection. Parasitol. Res. 2010, 107, 1515–1520. [Google Scholar] [CrossRef]
  20. Brinkmann, A.; Hekimoğlu, O.; Dinçer, E.; Hagedorn, P.; Nitsche, A.; Ergünay, K. A Cross-Sectional Screening by next-Generation Sequencing Reveals Rickettsia, Coxiella, Francisella, Borrelia, Babesia, Theileria and Hemolivia Species in Ticks from Anatolia. Parasit. Vectors 2019, 12, 26. [Google Scholar] [CrossRef] [Green Version]
  21. Kalmár, Z.; Cozma, V.; Sprong, H.; Jahfari, S.; D’Amico, G.; Mărcuțan, D.I.; Ionică, A.M.; Magdaş, C.; Modrý, D.; Mihalca, A.D. Transstadial Transmission of Borrelia Turcica in Hyalomma Aegyptium Ticks. PLoS ONE 2015, 10, e0115520. [Google Scholar] [CrossRef]
  22. Takano, A.; Goka, K.; Une, Y.; Shimada, Y.; Fujita, H.; Shiino, T.; Watanabe, H.; Kawabata, H. Isolation and Characterization of a Novel Borrelia Group of Tick-Borne Borreliae from Imported Reptiles and Their Associated Ticks. Environ. Microbiol. 2010, 12, 134–146. [Google Scholar] [CrossRef] [PubMed]
  23. Hepner, S.; Fingerle, V.; Duscher, G.G.; Felsberger, G.; Marosevic, D.; Rollins, R.E.; Okeyo, M.; Sing, A.; Margos, G. Population Structure of Borrelia Turcica from Greece and Turkey. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2020, 77, 104050. [Google Scholar] [CrossRef] [PubMed]
  24. Keskin, A.; Bursali, A.; Snow, D.E.; Dowd, S.E.; Tekin, S. Assessment of Bacterial Diversity in Hyalomma Aegyptium, H. Marginatum and H. Excavatum Ticks through Tag-Encoded Pyrosequencing. Exp. Appl. Acarol. 2017, 73, 461–475. [Google Scholar] [CrossRef] [PubMed]
  25. Norte, A.C.; Harris, D.J.; Silveira, D.; Nunes, C.S.; Núncio, M.S.; Martínez, E.G.; Giménez, A.; de Sousa, R.; Lopes de Carvalho, I.; Perera, A. Diversity of Microorganisms in Hyalomma Aegyptium Collected from Spur-Thighed Tortoise (Testudo Graeca) in North Africa and Anatolia. Transbound. Emerg. Dis. 2022, 69, 1951–1962. [Google Scholar] [CrossRef]
  26. Akveran, G.A.; Karasartova, D.; Keskin, A.; Comba, A.; Celebi, B.; Mumcuoglu, K.Y.; Taylan-Ozkan, A. Bacterial and Protozoan Agents Found in Hyalomma Aegyptium (L., 1758) (Ixodida: Ixodidae) Collected from Testudo Graeca L., 1758 (Reptilia: Testudines) in Corum Province of Turkey. Ticks Tick-Borne Dis. 2020, 11, 101458. [Google Scholar] [CrossRef] [PubMed]
  27. Barradas, P.F.; Lima, C.; Cardoso, L.; Amorim, I.; Gärtner, F.; Mesquita, J.R. Molecular Evidence of Hemolivia Mauritanica, Ehrlichia spp. and the Endosymbiont Candidatus Midichloria Mitochondrii in Hyalomma Aegyptium Infesting Testudo Graeca Tortoises from Doha, Qatar. Animals 2020, 11, 30. [Google Scholar] [CrossRef]
  28. Gargili, A.; Palomar, A.M.; Midilli, K.; Portillo, A.; Kar, S.; Oteo, J.A. Rickettsia Species in Ticks Removed from Humans in Istanbul, Turkey. Vector Borne Zoonotic Dis. 2012, 12, 938–941. [Google Scholar] [CrossRef] [Green Version]
  29. Bitam, I.; Kernif, T.; Harrat, Z.; Parola, P.; Raoult, D. First Detection of Rickettsia Aeschlimannii in Hyalomma Aegyptium from Algeria. Clin. Microbiol. Infect. 2009, 15, 253–254. [Google Scholar] [CrossRef] [Green Version]
  30. Orkun, Ö. Molecular Investigation of the Natural Transovarial Transmission of Tick-Borne Pathogens in Turkey. Vet. Parasitol. 2019, 273, 97–104. [Google Scholar] [CrossRef]
  31. Orkun, Ö.; Emir, H. Identification of Tick-Borne Pathogens in Ticks Collected from Wild Animals in Turkey. Parasitol. Res. 2020, 119, 3083–3091. [Google Scholar] [CrossRef]
  32. Ergünay, K.; Dinçer, E.; Kar, S.; Emanet, N.; Yalçınkaya, D.; Polat Dinçer, P.F.; Brinkmann, A.; Hacıoğlu, S.; Nitsche, A.; Özkul, A.; et al. Multiple Orthonairoviruses Including Crimean-Congo Hemorrhagic Fever Virus, Tamdy Virus and the Novel Meram Virus in Anatolia. Ticks Tick-Borne Dis. 2020, 11, 101448. [Google Scholar] [CrossRef] [PubMed]
  33. Li, Y.; Galon, E.M.; Guo, Q.; Rizk, M.A.; Moumouni, P.F.A.; Liu, M.; Li, J.; Ji, S.; Chahan, B.; Xuan, X. Molecular Detection and Identification of Babesia spp., Theileria spp., and Anaplasma spp. in Sheep From Border Regions, Northwestern China. Front. Vet. Sci. 2020, 7, 630. [Google Scholar] [CrossRef] [PubMed]
  34. Moltmann, U.G.; Mehlhorn, H.; Schein, E.; Voigt, W.P.; Friedhoff, K.T. Ultrastructural Study on the Development of Babesia equi (Coccidia: Piroplasmia) in the Salivary Glands of Its Vector Ticks. J. Protozool. 1983, 30, 218–225. [Google Scholar] [CrossRef]
  35. Springer, A.; Shuaib, Y.A.; Isaa, M.H.; Ezz-Eldin, M.I.-E.; Osman, A.Y.; Yagoub, I.A.; Abdalla, M.A.; Bakiet, A.O.; Mohmed-Noor, S.E.-T.; Schaper, S.; et al. Tick Fauna and Associated Rickettsia, Theileria, and Babesia spp. in Domestic Animals in Sudan (North Kordofan and Kassala States). Microorganisms 2020, 8, E1969. [Google Scholar] [CrossRef]
  36. Kumar, S.; Malhotra, D.V.; Sangwan, A.K.; Goel, P.; Kumar, A.; Kumar, S. Infectivity Rate and Transmission Potential of Hyalomma anatolicum anatolicum Ticks for Babesia equi Infection. Vet. Parasitol. 2007, 144, 338–343. [Google Scholar] [CrossRef]
  37. Bhagwan, J.; Kumar, A.; Kumar, R.; Goyal, L.; Goel, P.; Kumar, S. Molecular Evidence of Theileria equi Infection in Hyalomma anatolicum Ticks Infested on Sero-Positive Indian Horses. Acta Parasitol. 2015, 60, 322–329. [Google Scholar] [CrossRef] [PubMed]
  38. Ghafar, A.; Cabezas-Cruz, A.; Galon, C.; Obregon, D.; Gasser, R.B.; Moutailler, S.; Jabbar, A. Bovine Ticks Harbour a Diverse Array of Microorganisms in Pakistan. Parasit. Vectors 2020, 13, 1. [Google Scholar] [CrossRef] [Green Version]
  39. Zeb, J.; Szekeres, S.; Takács, N.; Kontschán, J.; Shams, S.; Ayaz, S.; Hornok, S. Genetic Diversity, Piroplasms and Trypanosomes in Rhipicephalus microplus and Hyalomma anatolicum Collected from Cattle in Northern Pakistan. Exp. Appl. Acarol. 2019, 79, 233–243. [Google Scholar] [CrossRef] [Green Version]
  40. Bekloo, A.J.; Bakhshi, H.; Soufizadeh, A.; Sedaghat, M.M.; Bekloo, R.J.; Ramzgouyan, M.R.; Chegeni, A.H.; Faghihi, F.; Telmadarraiy, Z. Ticks Circulate Anaplasma, Ehrlichia, Babesia and Theileria Parasites in North of Iran. Vet. Parasitol. 2017, 248, 21–24. [Google Scholar] [CrossRef]
  41. Mossaad, E.; Gaithuma, A.; Mohamed, Y.O.; Suganuma, K.; Umemiya-Shirafuji, R.; Ohari, Y.; Salim, B.; Liu, M.; Xuan, X. Molecular Characterization of Ticks and Tick-Borne Pathogens in Cattle from Khartoum State and East Darfur State, Sudan. Pathogens 2021, 10, 580. [Google Scholar] [CrossRef]
  42. Afshari, A.; Habibi, G.; Abdigoudarzi, M.; Yazdani, F. Establishment and Validation of Theileria Annulata Sporozoite Ak-93 Infection in Laboratory-Reared Hyalomma anatolicum Tick Using In Vivo and In Vitro Assays. J. Arthropod-Borne Dis. 2020, 14, 261–269. [Google Scholar] [CrossRef] [PubMed]
  43. Aktas, M.; Dumanli, N.; Angin, M. Cattle Infestation by Hyalomma Ticks and Prevalence of Theileria in Hyalomma Species in the East of Turkey. Vet. Parasitol. 2004, 119, 1–8. [Google Scholar] [CrossRef]
  44. Al-Fahdi, A.; Alqamashoui, B.; Al-Hamidhi, S.; Kose, O.; Tageldin, M.H.; Bobade, P.; Johnson, E.H.; Hussain, A.-R.; Karagenc, T.; Tait, A.; et al. Molecular Surveillance of Theileria Parasites of Livestock in Oman. Ticks Tick-Borne Dis. 2017, 8, 741–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Amiri, M.; Yaghfoori, S.; Razmi, G. Molecular Detection of Theileria annulata among Dairy Cattle and Vector Ticks in the Herat Area, Afghanistan. Arch. Razi Inst. 2021, 76, 79–85. [Google Scholar] [CrossRef]
  46. Dehuri, M.; Panda, M.; Sahoo, N.; Mohanty, B.; Behera, B. Nested PCR Assay for Detection of Theileria annulata in Hyalomma anatolicum Infesting Cattle from Coastal Odisha, India. Anim. Biotechnol. 2022, 33, 1229–1234. [Google Scholar] [CrossRef]
  47. Kartashov, M.Y.; Kononova, Y.V.; Petrova, I.D.; Tupota, N.L.; Mikryukova, T.P.; Ternovoi, V.A.; Tishkova, F.H.; Loktev, V.B. Detection of Ehrlichia spp. and Theileria spp. in Hyalomma anatolicum Ticks Collected in Tajikistan. Vavilovskii Zhurnal Genet. Sel. 2020, 24, 55–59. [Google Scholar] [CrossRef]
  48. Omer, S.A.; Alsuwaid, D.F.; Mohammed, O.B. Molecular Characterization of Ticks and Tick-Borne Piroplasms from Cattle and Camel in Hofuf, Eastern Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 2023–2028. [Google Scholar] [CrossRef]
  49. Rahmani-Varmale, M.; Tavassoli, M.; Esmaeilnejad, B. Molecular Detection and Differentiation of Theileria lestoquardi, T. ovis and T. annulata in Blood of Goats and Ticks in Kermanshah Province, Iran. J. Arthropod-Borne Dis. 2019, 13, 297–309. [Google Scholar] [CrossRef]
  50. Robinson, P.M. Theileriosis annulata and Its Transmission—A Review. Trop. Anim. Health Prod. 1982, 14, 3–12. [Google Scholar] [CrossRef]
  51. Sayin, F.; Dinçer, S.; Karaer, Z.; Cakmak, A.; Inci, A.; Yukari, B.A.; Eren, H.; Vatansever, Z.; Nalbantoglu, S. Studies on the Epidemiology of Tropical Theileriosis (Theileria annulata Infection) in Cattle in Central Anatolia, Turkey. Trop. Anim. Health Prod. 2003, 35, 521–539. [Google Scholar] [CrossRef]
  52. Yaghfoori, S.; Mohri, M.; Razmi, G. Experimental Theileria lestoquardi Infection in Sheep: Biochemical and Hematological Changes. Acta Trop. 2017, 173, 55–61. [Google Scholar] [CrossRef] [PubMed]
  53. Tajeri, S.; Razmi, G.; Haghparast, A. Establishment of an Artificial Tick Feeding System to Study Theileria lestoquardi Infection. PLoS ONE 2016, 11, e0169053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Taha, K.M.; Elhussein, A.M. Experimental Transmission of Theileria lestoquardi by Developmental Stages of Hyalomma anatolicum Ticks. Parasitol. Res. 2010, 107, 1009–1012. [Google Scholar] [CrossRef]
  55. Abdigoudarzi, M. Detection of Naturally Infected Vector Ticks (Acari: Ixodidae) by Different Species of Babesia and Theileria Agents from Three Different Enzootic Parts of Iran. J. Arthropod-Borne Dis. 2013, 7, 164–172. [Google Scholar]
  56. Taha, K.M.; Salih, D.A.; Ahmed, B.M.; Enan, K.A.; Ali, A.M.; ElHussein, A.M. First Confirmed Report of Outbreak of Malignant Ovine Theileriosis among Goats in Sudan. Parasitol. Res. 2011, 109, 1525–1527. [Google Scholar] [CrossRef] [PubMed]
  57. Li, Y.; Guan, G.; Liu, A.; Peng, Y.; Luo, J.; Yin, H. Experimental Transmission of Theileria ovis by Hyalomma anatolicum anatolicum. Parasitol. Res. 2010, 106, 991–994. [Google Scholar] [CrossRef]
  58. Li, Y.; Guan, G.; Ma, M.; Liu, J.; Ren, Q.; Luo, J.; Yin, H. Theileria ovis Discovered in China. Exp. Parasitol. 2011, 127, 304–307. [Google Scholar] [CrossRef]
  59. Williams, R.J.; Al-Busaidy, S.; Mehta, F.R.; Maupin, G.O.; Wagoner, K.D.; Al-Awaidy, S.; Suleiman, A.J.; Khan, A.S.; Peters, C.J.; Ksiazek, T.G. Crimean-Congo Haemorrhagic Fever: A Seroepidemiological and Tick Survey in the Sultanate of Oman. Trop. Med. Int. Health 2000, 5, 99–106. [Google Scholar] [CrossRef]
  60. Bell-Sakyi, L.; Kohl, A.; Bente, D.A.; Fazakerley, J.K. Tick Cell Lines for Study of Crimean-Congo Hemorrhagic Fever Virus and Other Arboviruses. Vector Borne Zoonotic Dis. 2012, 12, 769–781. [Google Scholar] [CrossRef] [Green Version]
  61. Khan, A.S.; Maupin, G.O.; Rollin, P.E.; Noor, A.M.; Shurie, H.H.; Shalabi, A.G.; Wasef, S.; Haddad, Y.M.; Sadek, R.; Ijaz, K.; et al. An Outbreak of Crimean-Congo Hemorrhagic Fever in the United Arab Emirates, 1994–1995. Am. J. Trop. Med. Hyg. 1997, 57, 519–525. [Google Scholar] [CrossRef]
  62. Petrova, I.D.; Kononova, I.V.; Chausov, E.V.; Shestopalov, A.M.; Tishkova, F.K. Genetic variants of the Crimean-Congo hemorrhagic fever virus circulating in endemic areas of the southern Tajikistan in 2009. Mol. Genet. Mikrobiol. Virusol. 2013, 28, 29–36. [Google Scholar] [CrossRef]
  63. Mourya, D.T.; Yadav, P.D.; Shete, A.M.; Gurav, Y.K.; Raut, C.G.; Jadi, R.S.; Pawar, S.D.; Nichol, S.T.; Mishra, A.C. Detection, Isolation and Confirmation of Crimean-Congo Hemorrhagic Fever Virus in Human, Ticks and Animals in Ahmadabad, India, 2010–2011. PLoS Negl. Trop. Dis. 2012, 6, e1653. [Google Scholar] [CrossRef] [PubMed]
  64. Shahid, M.F.; Yaqub, T.; Ali, M.; Ul-Rahman, A.; Bente, D.A. Prevalence and Phylogenetic Analysis of Crimean-Congo Hemorrhagic Fever Virus in Ticks Collected from Punjab Province of Pakistan. Acta Trop. 2021, 218, 105892. [Google Scholar] [CrossRef] [PubMed]
  65. Kayedi, M.H.; Chinikar, S.; Mostafavi, E.; Khakifirouz, S.; Jalali, T.; Hosseini-Chegeni, A.; Naghizadeh, A.; Niedrig, M.; Fooks, A.R.; Shahhosseini, N. Crimean-Congo Hemorrhagic Fever Virus Clade IV (Asia 1) in Ticks of Western Iran. J. Med. Entomol. 2015, 52, 1144–1149. [Google Scholar] [CrossRef]
  66. Al-Khalifa, M.S.; Diab, F.M.; Khalil, G.M. Man-Threatening Viruses Isolated from Ticks in Saudi Arabia. Saudi Med. J. 2007, 28, 1864–1867. [Google Scholar]
  67. Dilcher, M.; Faye, O.; Faye, O.; Weber, F.; Koch, A.; Sadegh, C.; Weidmann, M.; Sall, A.A. Zahedan Rhabdovirus, a Novel Virus Detected in Ticks from Iran. Virol. J. 2015, 12, 183. [Google Scholar] [CrossRef] [Green Version]
  68. Chunikhin, S.P.; Stefuktina, L.F.; Korolev, M.B.; Reshetnikov, I.A.; Khozinskaia, G.A. Sexual transmission of the tick-borne encephalitis virus in ixodid ticks (Ixodidae). Parazitologiia 1983, 17, 214–217. [Google Scholar]
  69. Aristova, V.A.; Gushchina, E.A.; Gromashevskiĭ, V.L.; Gushchin, B.V. Experimental infection of ixodid ticks with Karshi virus. Parazitologiia 1986, 20, 347–350. [Google Scholar]
  70. Yadav, P.D.; Whitmer, S.L.M.; Sarkale, P.; Fei Fan Ng, T.; Goldsmith, C.S.; Nyayanit, D.A.; Esona, M.D.; Shrivastava-Ranjan, P.; Lakra, R.; Pardeshi, P.; et al. Characterization of Novel Reoviruses Wad Medani Virus (Orbivirus) and Kundal Virus (Coltivirus) Collected from Hyalomma anatolicum Ticks in India during Surveillance for Crimean Congo Hemorrhagic Fever. J. Virol. 2019, 93, e00106-19. [Google Scholar] [CrossRef] [Green Version]
  71. Kostiukov, M.A.; Daniiarov, O.; Skvortsova, T.M.; Kondrashina, N.G.; Berezina, L.K. Isolation of the Sindbis virus from Hyalomma anatolicum CL Kock 1844 ticks in Tadzhikistan. Med. Parazitol. 1981, 50, 34–35. [Google Scholar]
  72. Fard, N.S.R.; Khalili, M. PCR-Detection of Coxiella burnetii in Ticks Collected from Sheep and Goats in Southeast Iran. Iran. J. Arthropod-Borne Dis. 2011, 5, 1–6. [Google Scholar]
  73. Fard, N.S.R.; Omid Ghashghaei, O.; Khalili, M.; Sharifi, H. Tick Diversity and Detection of Coxiella burnetii in Tick of Small Ruminants Using Nested Trans PCR in Southeast Iran. Trop. Biomed. 2016, 33, 506–511. [Google Scholar]
  74. Ni, J.; Lin, H.; Xu, X.; Ren, Q.; Aizezi, M.; Luo, J.; Luo, Y.; Ma, Z.; Chen, Z.; Tan, Y.; et al. Coxiella burnetii Is Widespread in Ticks (Ixodidae) in the Xinjiang Areas of China. BMC Vet. Res. 2020, 16, 317. [Google Scholar] [CrossRef] [PubMed]
  75. Choubdar, N.; Karimian, F.; Koosha, M.; Nejati, J.; Oshaghi, M.A. Hyalomma spp. Ticks and Associated Anaplasma spp. and Ehrlichia spp. on the Iran-Pakistan Border. Parasit. Vectors 2021, 14, 469. [Google Scholar] [CrossRef] [PubMed]
  76. Yamchi, J.A.; Tavassoli, M. Survey on Infection Rate, Vectors and Molecular Identification of Theileria annulata in Cattle from North West, Iran. J. Parasit. Dis. 2016, 40, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
  77. Meng, K.; Li, Z.; Wang, Y.; Jing, Z.; Zhao, X.; Liu, J.; Cai, D.; Zhang, L.; Yang, D.; Wang, S. PCR-Based Detection of Theileria annulata in Hyalomma asiaticum Ticks in Northwestern China. Ticks Tick-Borne Dis. 2014, 5, 105–106. [Google Scholar] [CrossRef]
  78. Razmi, G.R.; Hosseini, M.; Aslani, M.R. Identification of Tick Vectors of Ovine Theileriosis in an Endemic Region of Iran. Vet. Parasitol. 2003, 116, 1–6. [Google Scholar] [CrossRef]
  79. Sun, M.; Wang, J.; Liu, Z.; Guan, G.; Li, Y.; Liu, J.; Xu, J.; Yin, H.; Luo, J. First Molecular Evidence of Babesia occultans and Theileria separata Infection in Ticks and Sheep in China. Exp. Appl. Acarol. 2019, 78, 223–229. [Google Scholar] [CrossRef]
  80. Narankhajid, M.; Yeruult, C.; Gurbadam, A.; Battsetseg, J.; Aberle, S.W.; Bayartogtokh, B.; Joachim, A.; Duscher, G.G. Some Aspects on Tick Species in Mongolia and Their Potential Role in the Transmission of Equine Piroplasms, Anaplasma phagocytophilum and Borrelia burgdorferi L. Parasitol. Res. 2018, 117, 3557–3566. [Google Scholar] [CrossRef] [Green Version]
  81. Song, R.; Wang, Q.; Guo, F.; Liu, X.; Song, S.; Chen, C.; Tu, C.; Wureli, H.; Wang, Y. Detection of Babesia spp., Theileria spp. and Anaplasma ovis in Border Regions, Northwestern China. Transbound. Emerg. Dis. 2018, 65, 1537–1544. [Google Scholar] [CrossRef] [Green Version]
  82. Guo, R.; Shen, S.; Zhang, Y.; Shi, J.; Su, Z.; Liu, D.; Liu, J.; Yang, J.; Wang, Q.; Hu, Z.; et al. A New Strain of Crimean-Congo Hemorrhagic Fever Virus Isolated from Xinjiang, China. Virol. Sin. 2017, 32, 80–88. [Google Scholar] [CrossRef] [PubMed]
  83. Moming, A.; Yue, X.; Shen, S.; Chang, C.; Wang, C.; Luo, T.; Zhang, Y.; Guo, R.; Hu, Z.; Zhang, Y.; et al. Prevalence and Phylogenetic Analysis of Crimean-Congo Hemorrhagic Fever Virus in Ticks from Different Ecosystems in Xinjiang, China. Virol. Sin. 2018, 33, 67–73. [Google Scholar] [CrossRef] [PubMed]
  84. Sun, S.; Dai, X.; Aishan, M.; Wang, X.; Meng, W.; Feng, C.; Zhang, F.; Hang, C.; Hu, Z.; Zhang, Y. Epidemiology and Phylogenetic Analysis of Crimean-Congo Hemorrhagic Fever Viruses in Xinjiang, China. J. Clin. Microbiol. 2009, 47, 2536–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  85. Zhang, Y.; Shen, S.; Fang, Y.; Liu, J.; Su, Z.; Liang, J.; Zhang, Z.; Wu, Q.; Wang, C.; Abudurexiti, A.; et al. Isolation, Characterization, and Phylogenetic Analysis of Two New Crimean-Congo Hemorrhagic Fever Virus Strains from the Northern Region of Xinjiang Province, China. Virol. Sin. 2018, 33, 74–86. [Google Scholar] [CrossRef]
  86. L’vov, D.K.; Al’khovskiĭ, S.V.; Shchelkanov, M.I.; Shchetinin, A.M.; Deriabin, P.G.; Gitel’man, A.K.; Aristova, V.A.; Botikov, A.G. Taxonomic status of the Burana virus (BURV) (Bunyaviridae, Nairovirus, Tamdy group) isolated from the ticks Haemaphysalis punctata Canestrini et Fanzago, 1877 and Haem. concinna Koch, 1844 (Ixodidae, Haemaphysalinae) in Kyrgyzstan. Vopr. Virusol. 2014, 59, 10–15. [Google Scholar] [PubMed]
  87. Karimov, S.K.; L’vov, D.K.; Rogovaia, S.G.; Kiriushchenko, T.V.; Ukbaeva, T.D. Isolation of the Karshi virus from Hyalomma asiaticum ticks in Alma-Ata Province, Kazakh SSR. Med. Parazitol. 1978, 47, 50–51. [Google Scholar]
  88. Khutoretskaya, N.V.; Aristova, V.A.; Rogovaya, S.G.; Lvov, D.K.; Karimov, S.K.; Skvortsova, T.M.; Kondrashina, N.G. Experimental Study of the Reproduction of Karshi Virus (Togaviridae, Flavivirus) in Some Species of Mosquitoes and Ticks. Acta Virol. 1985, 29, 231–236. [Google Scholar]
  89. L’vov, D.K.; Sidorova, G.A.; Gromashevsky, V.L.; Kurbanov, M.; Skvoztsova, L.M.; Gofman, Y.P.; Berezina, L.K.; Klimenko, S.M.; Zakharyan, V.A.; Aristova, V.A.; et al. Virus “Tamdy”—A New Arbovirus, Isolated in the Uzbee S.S.R. and Turkmen S.S.R. from Ticks Hyalomma asiaticum asiaticum Schulee et Schlottke, 1929, and Hyalomma plumbeum plumbeum Panzer, 1796. Arch. Virol. 1976, 51, 15–21. [Google Scholar] [CrossRef]
  90. L’vov, D.K.; Sidorova, G.A.; Gromashevskiĭ, V.L.; Skvortsova, T.M.; Aristova, V.A. Isolation of Tamdy virus (Bunyaviridae) pathogenic for man from natural sources in Central Asia, Kazakhstan and Transcaucasia. Vopr. Virusol. 1984, 29, 487–490. [Google Scholar]
  91. Zhou, H.; Ma, Z.; Hu, T.; Bi, Y.; Mamuti, A.; Yu, R.; Carr, M.J.; Shi, M.; Li, J.; Sharshov, K.; et al. Tamdy Virus in Ixodid Ticks Infesting Bactrian Camels, Xinjiang, China, 2018. Emerg. Infect. Dis. 2019, 25, 2136–2138. [Google Scholar] [CrossRef] [Green Version]
  92. Liu, X.; Zhang, X.; Wang, Z.; Dong, Z.; Xie, S.; Jiang, M.; Song, R.; Ma, J.; Chen, S.; Chen, K.; et al. A Tentative Tamdy Orthonairovirus Related to Febrile Illness in Northwestern China. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 70, 2155–2160. [Google Scholar] [CrossRef] [PubMed]
  93. Daiter, A.B. Transovarial and transpermal transmission of Coxiella burneti by the tick Hyalomma asiaticum and its role in the ecology of Q rickettsiosis. Parazitologiia 1977, 11, 403–411. [Google Scholar] [PubMed]
  94. Daiter, A.B. An experimental infection of Hyalomma asiaticum and Ornithodoros papillipes ticks with a single and combined infection with Coxiella burnetii and Dermacentroxenus sibericus. Parazitologiia 1979, 13, 8–18. [Google Scholar] [PubMed]
  95. Batu, N.; Wang, Y.; Liu, Z.; Huang, T.; Bao, W.; He, H.; Geri, L. Molecular Epidemiology of Rickettsia sp. and Coxiella burnetii Collected from Hyalomma asiaticum in Bactrian Camels (Camelus Bactrianus) in Inner Mongolia of China. Ticks Tick-Borne Dis. 2020, 11, 101548. [Google Scholar] [CrossRef] [PubMed]
  96. Parola, P.; Inokuma, H.; Camicas, J.L.; Brouqui, P.; Raoult, D. Detection and Identification of Spotted Fever Group Rickettsiae and Ehrlichiae in African Ticks. Emerg. Infect. Dis. 2001, 7, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
  97. Wang, W.; Liu, X.; Wang, X.; Dong, H.; Ma, C.; Wang, J.; Liu, B.; Mao, Y.; Wang, Y.; Li, T.; et al. Structural and Functional Diversity of Nairovirus-Encoded Nucleoproteins. J. Virol. 2015, 89, 11740–11749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  98. Yu, K.F.; Pauls, K.P. Segregation of Random Amplified Polymorphic DNA Markers and Strategies for Molecular Mapping in Tetraploid Alfalfa. Genome 1993, 36, 844–851. [Google Scholar] [CrossRef]
  99. Zapf, E.; Schein, E. New Findings in the Development Of Babesia (Theileria) equi (Laveran, 1901) in the Salivary Glands of the Vector Ticks, Hyalomma Species. Parasitol. Res. 1994, 80, 543–548. [Google Scholar] [CrossRef]
  100. Zapf, F.; Schein, E. The Development of Babesia (Theileria) equi (Laveran, 1901) in the Gut and the Haemolymph of the Vector Ticks, Hyalomma Species. Parasitol. Res. 1994, 80, 297–302. [Google Scholar] [CrossRef]
  101. Onyiche, T.E.; Răileanu, C.; Tauchmann, O.; Fischer, S.; Vasić, A.; Schäfer, M.; Biu, A.A.; Ogo, N.I.; Thekisoe, O.; Silaghi, C. Prevalence and Molecular Characterization of Ticks and Tick-Borne Pathogens of One-Humped Camels (Camelus dromedarius) in Nigeria. Parasit. Vectors 2020, 13, 428. [Google Scholar] [CrossRef]
  102. Scoles, G.A.; Ueti, M.W. Vector Ecology of Equine Piroplasmosis. Annu. Rev. Entomol. 2015, 60, 561–580. [Google Scholar] [CrossRef] [PubMed]
  103. Hamed, M.I.; Zaitoun, A.M.A.; El-Allawy, T.A.A.; Mourad, M.I. Investigation of Theileria camelensis in Camels Infested by Hyalomma Dromedarii Ticks in Upper Egypt. J. Adv. Vet. Res. 2011, 1, 4–7. [Google Scholar]
  104. Kumar, S.; Sudan, V.; Shanker, D.; Devi, A. Babesia (Theileria) equi Genotype A among Indian Equine Population. Vet. Parasitol. Reg. Stud. Rep. 2020, 19, 100367. [Google Scholar] [CrossRef] [PubMed]
  105. Hoogstraal, H.; Wassef, H.Y.; Buttiker, W. Ticks (Acarina) of Saudi Arabia Fam Argasidae Ixodidae. Fauna Saudi Arab. 1981, 3, 25–110. [Google Scholar]
  106. Mazlum, Z. Transmission of Theileria annulata by the Crushed Infected Unfed Hyalomma dromedarii. Parasitology 1969, 59, 597–600. [Google Scholar] [CrossRef] [PubMed]
  107. Gharbi, M.; Darghouth, M.A.; Elati, K.; AL-Hosary, A.A.T.; Ayadi, O.; Salih, D.A.; El Hussein, A.M.; Mhadhbi, M.; Khamassi Khbou, M.; Hassan, S.M.; et al. Current Status of Tropical Theileriosis in Northern Africa: A Review of Recent Epidemiological Investigations and Implications for Control. Transbound. Emerg. Dis. 2020, 67, 8–25. [Google Scholar] [CrossRef] [PubMed]
  108. Mamman, A.H.; Lorusso, V.; Adam, B.M.; Dogo, G.A.; Bown, K.J.; Birtles, R.J. Correction to: First Report of Theileria annulata in Nigeria: Findings from Cattle Ticks in Zamfara and Sokoto States. Parasit. Vectors 2021, 14, 353. [Google Scholar] [CrossRef]
  109. d’Oliveira, C.; van der Weide, M.; Jacquiet, P.; Jongejan, F. Detection of Theileria annulata by the PCR in Ticks (Acari: Ixodidae) Collected from Cattle in Mauritania. Exp. Appl. Acarol. 1997, 21, 279–291. [Google Scholar] [CrossRef]
  110. Youssef, S.Y.; Yasien, S.; Mousa, W.M.A.; Nasr, S.M.; El-Kelesh, E.A.M.; Mahran, K.M.; Abd-El-Rahman, A.H. Vector Identification and Clinical, Hematological, Biochemical, and Parasitological Characteristics of Camel (Camelus dromedarius) Theileriosis in Egypt. Trop. Anim. Health Prod. 2015, 47, 649–656. [Google Scholar] [CrossRef]
  111. de Kok, J.B.; d’Oliveira, C.; Jongejan, F. Detection of the Protozoan Parasite Theileria annulata in Hyalomma Ticks by the Polymerase Chain Reaction. Exp. Appl. Acarol. 1993, 17, 839–846. [Google Scholar] [CrossRef]
  112. Mustafa, U.E.H.; Jongejan, F.; Morzaria, S.P. Note on the Transmission of Theileria annulata by Hyalomma Ticks in the Sudan. Vet. Q. 1983, 5, 112–113. [Google Scholar] [CrossRef] [PubMed]
  113. Logan, T.M.; Linthicum, K.J.; Bailey, C.L.; Watts, D.M.; Dohm, D.J.; Moulton, J.R. Replication of Crimean-Congo Hemorrhagic Fever Virus in Four Species of Ixodid Ticks (Acari) Infected Experimentally. J. Med. Entomol. 1990, 27, 537–542. [Google Scholar] [CrossRef] [PubMed]
  114. Smirnova, S.E.; Mamaev, V.I.; Nepesova, N.M.; Filipenko, P.I.; Kalieva, V.I. Study of the circulation of Crimean hemorrhagic fever virus in Turkmenistan. J. Microbiol. Epidemiol. Immunobiol. 1978, 1, 92–97. [Google Scholar]
  115. Begum, F.; Wisseman, C.L.; Casals, J. Tick-Borne Viruses of West Pakistan. II. Hazara Virus, a New Agent Isolated from Ixodes redikorzevi Ticks from the Kaghan Valley, W. Pakistan. Am. J. Epidemiol. 1970, 92, 192–194. [Google Scholar] [CrossRef]
  116. Anderson, C.R.; Casals, J. Dhori Virus, a New Agent Isolated from Hyalomma dromedarii in India. Indian J. Med. Res. 1973, 61, 1416–1420. [Google Scholar]
  117. Wood, O.L.; Moussa, M.I.; Hoogstraal, H.; Büttiker, W. Kadam Virus (Togaviridae, Flavivirus) Infecting Camel-Parasitizing Hyalomma dromedarii Ticks (Acari: Ixodidae) in Saudi Arabia12. J. Med. Entomol. 1982, 19, 207–208. [Google Scholar] [CrossRef]
  118. Awad, F.I.; Amin, M.M.; Salama, S.A.; Khide, S. The Role Played by Hyalomma dromedarii in the Transmission of African Horse Sickness Virus in Egypt. Bull. Anim. Health Prod. Afr. Bull. Sante Prod. Anim. En Afr. 1981, 29, 337–340. [Google Scholar]
  119. Converse, J.D.; Moussa, M.I. Quaranfil Virus from Hyalomma dromedarii (Acari: Ixodoidea) Collected in Kuwait, Iraq and Yemen1. J. Med. Entomol. 1982, 19, 209–210. [Google Scholar] [CrossRef]
  120. Rehácek, J.; Brezina, R. Detection of Coxiella Burneti in Saliva of Experimentally Infected Ticks, Hyalomma dromedarii Koch. Bull. World Health Organ. 1968, 39, 974–977. [Google Scholar]
  121. Loftis, A.D.; Reeves, W.K.; Szumlas, D.E.; Abbassy, M.M.; Helmy, I.M.; Moriarity, J.R.; Dasch, G.A. Rickettsial Agents in Egyptian Ticks Collected from Domestic Animals. Exp. Appl. Acarol. 2006, 40, 67. [Google Scholar] [CrossRef]
  122. Abdullah, H.H.A.M.; El-Shanawany, E.E.; Abdel-Shafy, S.; Abou-Zeina, H.A.A.; Abdel-Rahman, E.H. Molecular and Immunological Characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) Vectors of Q Fever in Camels. Vet. World 2018, 11, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
  123. Selmi, R.; Ben Said, M.; Mamlouk, A.; Ben Yahia, H.; Messadi, L. Molecular Detection and Genetic Characterization of the Potentially Pathogenic Coxiella burnetii and the Endosymbiotic Candidatus midichloria mitochondrii in Ticks Infesting Camels (Camelus dromedarius) from Tunisia. Microb. Pathog. 2019, 136, 103655. [Google Scholar] [CrossRef] [PubMed]
  124. Bellabidi, M.; Benaissa, M.H.; Bissati-Bouafia, S.; Harrat, Z.; Brahmi, K.; Kernif, T. Coxiella burnetii in Camels (Camelus dromedarius) from Algeria: Seroprevalence, Molecular Characterization, and Ticks (Acari: Ixodidae) Vectors. Acta Trop. 2020, 206, 105443. [Google Scholar] [CrossRef] [PubMed]
  125. Ravi, A.; Ereqat, S.; Al-Jawabreh, A.; Abdeen, Z.; Abu Shamma, O.; Hall, H.; Pallen, M.J.; Nasereddin, A. Metagenomic Profiling of Ticks: Identification of Novel Rickettsial Genomes and Detection of Tick-Borne Canine Parvovirus. PLoS Negl. Trop. Dis. 2019, 13, e0006805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  126. Morita, C.; El Hussein, A.R.M.; Matsuda, E.; Gabbar, K.M.A.A.; Muramatsu, Y.; Rahman, M.B.A.; Eleragi, A.M.H.; Hassan, S.M.; Chitambo, A.M.; Ueno, H. Spotted Fever Group Rickettsiae from Ticks Captured in Sudan. Jpn. J. Infect. Dis. 2004, 57, 107–109. [Google Scholar] [PubMed]
  127. Demoncheaux, J.-P.; Socolovschi, C.; Davoust, B.; Haddad, S.; Raoult, D.; Parola, P. First Detection of Rickettsia aeschlimannii in Hyalomma dromedarii Ticks from Tunisia. Ticks Tick-Borne Dis. 2012, 3, 398–402. [Google Scholar] [CrossRef] [PubMed]
  128. Kernif, T.; Djerbouh, A.; Mediannikov, O.; Ayach, B.; Rolain, J.-M.; Raoult, D.; Parola, P.; Bitam, I. Rickettsia africae in Hyalomma dromedarii Ticks from Sub-Saharan Algeria. Ticks Tick-Borne Dis. 2012, 3, 377–379. [Google Scholar] [CrossRef]
  129. Ereqat, S.; Nasereddin, A.; Vayssier-Taussat, M.; Abdelkader, A.; Al-Jawabreh, A.; Zaid, T.; Azmi, K.; Abdeen, Z. Molecular Evidence of Bartonella Species in Ixodid Ticks and Domestic Animals in Palestine. Front. Microbiol. 2016, 7, 1217. [Google Scholar] [CrossRef] [Green Version]
  130. Ros-García, A.; M’ghirbi, Y.; Hurtado, A.; Bouattour, A. Prevalence and Genetic Diversity of Piroplasm Species in Horses and Ticks from Tunisia. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013, 17, 33–37. [Google Scholar] [CrossRef]
  131. Tirosh-Levy, S.; Gottlieb, Y.; Fry, L.M.; Knowles, D.P.; Steinman, A. Twenty Years of Equine Piroplasmosis Research: Global Distribution, Molecular Diagnosis, and Phylogeny. Pathogens 2020, 9, 926. [Google Scholar] [CrossRef]
  132. Al-Hosary, A.; Răileanu, C.; Tauchmann, O.; Fischer, S.; Nijhof, A.M.; Silaghi, C. Tick Species Identification and Molecular Detection of Tick-Borne Pathogens in Blood and Ticks Collected from Cattle in Egypt. Ticks Tick-Borne Dis. 2021, 12, 101676. [Google Scholar] [CrossRef]
  133. Hadani, A.; Tsur, I.; Pipano, E.; Zenft, Z. Studies on the Transmission of Theileria annulata by Ticks (Ixodidea, Ixodidae) I. Hyalomma excavatum. J. Protozool. 1963, 10, 35. [Google Scholar]
  134. Aktas, M.; Özübek, S.; Altay, K.; Ipek, N.D.S.; Balkaya, İ.; Utuk, A.E.; Kırbas, A.; Şimsek, S.; Dumanlı, N. Molecular Detection of Tick-Borne Rickettsial and Protozoan Pathogens in Domestic Dogs from Turkey. Parasit. Vectors 2015, 8, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Hashemi-Fesharki, R. Tick-Borne Diseases of Sheep and Goats and Their Related Vectors in Iran. Parassitologia 1997, 39, 115–117. [Google Scholar]
  136. Orkun, Ö.; Karaer, Z.; Çakmak, A.; Nalbantoğlu, S. Identification of Tick-Borne Pathogens in Ticks Feeding on Humans in Turkey. PLoS Negl. Trop. Dis. 2014, 8, e3067. [Google Scholar] [CrossRef] [PubMed]
  137. Ioannou, I.; Sandalakis, V.; Kassinis, N.; Chochlakis, D.; Papadopoulos, B.; Loukaides, F.; Tselentis, Y.; Psaroulaki, A. Tick-Borne Bacteria in Mouflons and Their Ectoparasites in Cyprus. J. Wildl. Dis. 2011, 47, 300–306. [Google Scholar] [CrossRef]
  138. Abdelkadir, K.; Palomar, A.M.; Portillo, A.; Oteo, J.A.; Ait-Oudhia, K.; Khelef, D. Presence of Rickettsia aeschlimannii, “Candidatus rickettsia barbariae” and Coxiella burnetii in Ticks from Livestock in Northwestern Algeria. Ticks Tick-Borne Dis. 2019, 10, 924–928. [Google Scholar] [CrossRef]
  139. Kilicoglu, Y.; Cagirgan, A.A.; Serdar, G.; Kaya, S.; Durmaz, Y.; Gur, Y. Molecular Investigation, Isolation and Phylogenetic Analsysis of Coxiella burnetii from Aborted Fetus and Ticks. Comp. Immunol. Microbiol. Infect. Dis. 2020, 73, 101571. [Google Scholar] [CrossRef]
  140. Kleinerman, G.; Baneth, G.; Mumcuoglu, K.; van Straten, M.; Berlin, D.; Apanaskevich, D.; Abdeen, Z.; Nasereddin, A.; Harrus, S. Molecular Detection of Rickettsia africae, Rickettsia aeschlimannii, and Rickettsia sibirica mongolitimonae in Camels and Hyalomma spp. Ticks from Israel. Vector Borne Zoonotic Dis. Larchmt. N 2013, 13, 851–856. [Google Scholar] [CrossRef]
  141. Shkap, V.; Kocan, K.; Molad, T.; Mazuz, M.; Leibovich, B.; Krigel, Y.; Michoytchenko, A.; Blouin, E.; de la Fuente, J.; Samish, M.; et al. Experimental Transmission of Field Anaplasma marginale and the A. centrale Vaccine Strain by Hyalomma Eecavatum, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) annulatus Ticks. Vet. Microbiol. 2009, 134, 254–260. [Google Scholar] [CrossRef]
  142. Psaroulaki, A.; Ragiadakou, D.; Kouris, G.; Papadopoulos, B.; Chaniotis, B.; Tselentis, Y. Ticks, Tick-Borne Rickettsiae, and Coxiella burnetii in the Greek Island of Cephalonia. Ann. N. Y. Acad. Sci. 2006, 1078, 389–399. [Google Scholar] [CrossRef] [PubMed]
  143. Gunes, T.; Poyraz, O.; Vatansever, Z. Crimean-Congo Hemorrhagic Fever Virus in Ticks Collected from Humans, Livestock, and Picnic Sites in the Hyperendemic Region of Turkey. Vector-Borne Zoonotic Dis. 2011, 11, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
  144. Padbidri, V.S.; Rodrigues, J.J.; Shetty, P.S.; Joshi, M.V.; Rao, B.L.; Shukla, R.N. Tick-Borne Rickettsioses in Pune District, Maharashtra, India. Int. J. Zoonoses 1984, 11, 45–52. [Google Scholar] [PubMed]
  145. Mamman, A.H.; Lorusso, V.; Adam,, B.M.; Dogo, G.A.; Bown, K.J.; Birtles, R.J. First report of Theileria annulata in Nigeria: Findings from cattle ticks in Zamfara and Sokoto States. Parasites Vectors 2021, 14, 242. [Google Scholar] [CrossRef] [PubMed]
  146. El-Azazy, O.M.; El-Metenawy, T.M.; Wassef, H.Y. Hyalomma impeltatum (Acari: Ixodidae) as a Potential Vector of Malignant Theileriosis in Sheep in Saudi Arabia. Vet. Parasitol. 2001, 99, 305–309. [Google Scholar] [CrossRef]
  147. Dohm, D.J.; Logan, T.M.; Linthicum, K.J.; Rossi, C.A.; Turell, M.J. Transmission of Crimean-Congo Hemorrhagic Fever Virus by Hyalomma impeltatum (Acari:Ixodidae) after Experimental Infection. J. Med. Entomol. 1996, 33, 848–851. [Google Scholar] [CrossRef]
  148. Gordon, S.W.; Linthicum, K.J.; Moulton, J.R. Transmission of Crimean-Congo Hemorrhagic Fever Virus in Two Species of Hyalomma Ticks from Infected Adults to Cofeeding Immature Forms. Am. J. Trop. Med. Hyg. 1993, 48, 576–580. [Google Scholar] [CrossRef]
  149. Wilson, M.L.; Gonzalez, J.P.; Cornet, J.P.; Camicas, J.L. Transmission of Crimean-Congo Haemorrhagic Fever Virus from Experimentally Infected Sheep to Hyalomma truncatum Ticks. Res. Virol. 1991, 142, 395–404. [Google Scholar] [CrossRef]
  150. Sadeddine, R.; Diarra, A.Z.; Laroche, M.; Mediannikov, O.; Righi, S.; Benakhla, A.; Dahmana, H.; Raoult, D.; Parola, P. Molecular Identification of Protozoal and Bacterial Organisms in Domestic Animals and Their Infesting Ticks from North-Eastern Algeria. Ticks Tick-Borne Dis. 2020, 11, 101330. [Google Scholar] [CrossRef]
  151. Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.-E.; et al. Update on Tick-Borne Rickettsioses around the World: A Geographic Approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [Green Version]
  152. Ehounoud, C.B.; Yao, K.P.; Dahmani, M.; Achi, Y.L.; Amanzougaghene, N.; N’Douba, A.K.; N’Guessan, J.D.; Raoult, D.; Fenollar, F.; Mediannikov, O. Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire. PLoS Negl. Trop. Dis. 2016, 10, e0004367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  153. Singh, K.R.; Bhatt, P.N. Transmission of Kyasanur Forest Disease Virus by Hyalomma marginatum isaaci. Indian J. Med. Res. 1968, 56, 610–613. [Google Scholar] [PubMed]
  154. Jouglin, M.; Fernández-De-Mera, I.G.; de La Cotte, N.; Ruiz-Fons, F.; Gortázar, C.; Moreau, E.; Bastian, S.; de La Fuente, J.; Malandrin, L. Isolation and Characterization of Babesia pecorum sp. Nov. from Farmed Red Deer (Cervus elaphus). Vet. Res. 2014, 45, 78. [Google Scholar] [CrossRef] [Green Version]
  155. Viseras, J.; Hueli, L.E.; Adroher, F.J.; García-Fernández, P. Studies on the Transmission of Theileria annulata to Cattle by the Tick Hyalomma lusitanicum. J. Vet. Med. Ser. B 1999, 46, 505–509. [Google Scholar] [CrossRef] [PubMed]
  156. Habela, M.; Rol, J.A.; Antón, J.M.; Peña, J.; Corchero, E.; van Ham, I.; Jongejan, E. Epidemiology of Mediterranean Theileriosis in Extremadura Region, Spain. Parassitologia 1999, 41 (Suppl. S1), 47–51. [Google Scholar]
  157. Moraga-Fernández, A.; Ruiz-Fons, F.; Habela, M.A.; Royo-Hernández, L.; Calero-Bernal, R.; Gortazar, C.; de la Fuente, J.; de Mera, I.G.F. Detection of New Crimean–Congo Haemorrhagic Fever Virus Genotypes in Ticks Feeding on Deer and Wild Boar, Spain. Transbound. Emerg. Dis. 2021, 68, 993–1000. [Google Scholar] [CrossRef]
  158. Negredo, A.; Habela, M.Á.; Ramírez de Arellano, E.; Diez, F.; Lasala, F.; López, P.; Sarriá, A.; Labiod, N.; Calero-Bernal, R.; Arenas, M.; et al. Survey of Crimean-Congo Hemorrhagic Fever Enzootic Focus, Spain, 2011–2015. Emerg. Infect. Dis. 2019, 25, 1177–1184. [Google Scholar] [CrossRef]
  159. Chisu, V.; Loi, F.; Foxi, C.; Chessa, G.; Masu, G.; Rolesu, S.; Masala, G. Coexistence of Tick-Borne Pathogens in Ticks Collected from Their Hosts in Sardinia: An Update. Acta Parasitol. 2020, 65, 999–1004. [Google Scholar] [CrossRef]
  160. Toledo, A.; Olmeda, A.S.; Escudero, R.; Jado, I.; Valcárcel, F.; Casado-Nistal, M.A.; Rodríguez-Vargas, M.; Gil, H.; Anda, P. Tick-Borne Zoonotic Bacteria in Ticks Collected from Central Spain. Am. J. Trop. Med. Hyg. 2009, 81, 67–74. [Google Scholar] [CrossRef]
  161. Milhano, N.; de Carvalho, I.L.; Alves, A.S.; Arroube, S.; Soares, J.; Rodriguez, P.; Carolino, M.; Núncio, M.S.; Piesman, J.; de Sousa, R. Coinfections of Rickettsia slovaca and Rickettsia helvetica with Borrelia lusitaniae in Ticks Collected in a Safari Park, Portugal. Ticks Tick-Borne Dis. 2010, 1, 172–177. [Google Scholar] [CrossRef]
  162. Santos-Silva, M.M.; Vatansever, Z. Hyalomma marginatum Koch, 1844 (Figs. 139–141). In Ticks of Europe and North Africa: A Guide to Species Identification; Estrada-Peña, A., Mihalca, A.D., Petney, T.N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 349–354. ISBN 978-3-319-63760-0. [Google Scholar]
  163. Bolaños-Rivero, M.; Carranza-Rodríguez, C.; Rodríguez, N.F.; Gutiérrez, C.; Pérez-Arellano, J.-L. Detection of Coxiella burnetii DNA in Peridomestic and Wild Animals and Ticks in an Endemic Region (Canary Islands, Spain). Vector Borne Zoonotic Dis. Larchmt. 2017, 17, 630–634. [Google Scholar] [CrossRef] [PubMed]
  164. González, J.; González, M.G.; Valcárcel, F.; Sánchez, M.; Martín-Hernández, R.; Tercero, J.M.; Olmeda, A.S. Transstadial Transmission from Nymph to Adult of Coxiella burnetii by Naturally Infected Hyalomma lusitanicum. Pathogens 2020, 9, E884. [Google Scholar] [CrossRef] [PubMed]
  165. González, J.; González, M.G.; Valcárcel, F.; Sánchez, M.; Martín-Hernández, R.; Tercero, J.M.; Olmeda, A.S. Prevalence of Coxiella burnetii (Legionellales: Coxiellaceae) Infection Among Wildlife Species and the Tick Hyalomma lusitanicum (Acari: Ixodidae) in a Meso-Mediterranean Ecosystem. J. Med. Entomol. 2020, 57, 551–556. [Google Scholar] [CrossRef] [PubMed]
  166. Ionita, M.; Mitrea, I.L.; Pfister, K.; Hamel, D.; Silaghi, C. Molecular Evidence for Bacterial and Protozoan Pathogens in Hard Ticks from Romania. Vet. Parasitol. 2013, 196, 71–76. [Google Scholar] [CrossRef] [PubMed]
  167. Iori, A.; Gabrielli, S.; Calderini, P.; Moretti, A.; Pietrobelli, M.; Tampieri, M.P.; Galuppi, R.; Cancrini, G. Tick Reservoirs for Piroplasms in Central and Northern Italy. Vet. Parasitol. 2010, 170, 291–296. [Google Scholar] [CrossRef] [PubMed]
  168. Boularias, G.; Azzag, N.; Galon, C.; Šimo, L.; Boulouis, H.-J.; Moutailler, S. High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens 2021, 10, 362. [Google Scholar] [CrossRef] [PubMed]
  169. Köseoğlu, A.E.; Can, H.; Güvendi, M.; Erkunt Alak, S.; Kandemir, Ç.; Taşkın, T.; Demir, S.; Akgül, G.; Değirmenci Döşkaya, A.; Karakavuk, M.; et al. Molecular Investigation of Bacterial and Protozoal Pathogens in Ticks Collected from Different Hosts in Turkey. Parasit. Vectors 2021, 14, 270. [Google Scholar] [CrossRef]
  170. Mohammadi, S.M.; Esmaeilnejad, B.; Jalilzadeh-Amin, G. Molecular Detection, Infection Rate and Vectors of Theileria lestoquardi in Goats from West Azerbaijan Province, Iran. Vet. Res. Forum 2017, 8, 139–144. [Google Scholar]
  171. Razmi, G.R.; Naghibi, A.; Aslani, M.R.; Fathivand, M.; Dastjerdi, K. An epidemiological study on ovine babesiosis in the Mashhad suburb area, province of Khorasan, Iran. Vet. Parasitol. 2002, 108, 109–115. [Google Scholar] [CrossRef]
  172. Toma, L.; Di Luca, M.; Mancini, F.; Severini, F.; Mariano, C.; Nicolai, G.; Laghezza Masci, V.; Ciervo, A.; Fausto, A.M.; Cacciò, S.M. Molecular Characterization of Babesia and Theileria Species in Ticks Collected in the Outskirt of Monte Romano, Lazio Region, Central Italy. Ann. Ist. Super. Sanita 2017, 53, 30–34. [Google Scholar] [CrossRef]
  173. Aktas, M. A Survey of Ixodid Tick Species and Molecular Identification of Tick-Borne Pathogens. Vet. Parasitol. 2014, 200, 276–283. [Google Scholar] [CrossRef] [PubMed]
  174. Karasartova, D.; Gureser, A.S.; Gokce, T.; Celebi, B.; Yapar, D.; Keskin, A.; Celik, S.; Ece, Y.; Erenler, A.K.; Usluca, S.; et al. Bacterial and Protozoal Pathogens Found in Ticks Collected from Humans in Corum Province of Turkey. PLoS Negl. Trop. Dis. 2018, 12, e0006395. [Google Scholar] [CrossRef] [PubMed]
  175. Gray, J.S.; De Vos, A.J. Studies on a Bovine Babesia Transmitted by Hyalomma marginatum rufipes Koch, 1844. Onderstepoort J. Vet. Res. 1981, 48, 215–223. [Google Scholar]
  176. Dipeolu, O.O.; Amoo, A. The Presence of Kinetes of a Babesia Species in the Haemolymph Smears of Engorged Hyalomma Ticks in Nigeria. Vet. Parasitol. 1984, 17, 41–46. [Google Scholar] [CrossRef]
  177. Akyildiz, G.; Bente, D.; Keles, A.G.; Vatansever, Z.; Kar, S. High Prevalence and Different Genotypes of Crimean-Congo Hemorrhagic Fever Virus Genome in Questing Unfed Adult Hyalomma marginatum in Thrace, Turkey. Ticks Tick-Borne Dis. 2021, 12, 101622. [Google Scholar] [CrossRef]
  178. Gergova, I.; Kunchev, M.; Kamarinchev, B. Crimean-Congo Hemorrhagic Fever Virus-Tick Survey in Endemic Areas in Bulgaria. J. Med. Virol. 2012, 84, 608–614. [Google Scholar] [CrossRef] [PubMed]
  179. Gevorgyan, H.; Grigoryan, G.G.; Atoyan, H.A.; Rukhkyan, M.; Hakobyan, A.; Zakaryan, H.; Aghayan, S.A. Evidence of Crimean-Congo Haemorrhagic Fever Virus Occurrence in Ixodidae Ticks of Armenia. J. Arthropod-Borne Dis. 2019, 13, 9–16. [Google Scholar]
  180. Hoogstraal, H. Review Article1: The Epidemiology of Tick-Borne Crimean-Congo Hemorrhagic Fever in Asia, Europe, and Africa23. J. Med. Entomol. 1979, 15, 307–417. [Google Scholar] [CrossRef]
  181. Kondratenko, V.F. Importance of ixodid ticks in the transmission and preservation of the causative agent of Crimean hemorrhagic fever in foci of the infection. Parazitologiia 1976, 10, 297–302. [Google Scholar]
  182. Kondratenko, V.; Blagoveschchenskaya, N.; Butenko, A.; Vyshnivetskaya, L.; Zarubina, L.; Milyutin, V.; Kuchin, V.; Novikova, E.; Rabinovich, V.; Shevchenko, S.; et al. Results of virological investigation of ixodid ticks in Crimean hemorrhagic fever focus in Rostov Oblast. Mater 1970, 9, 29–35. [Google Scholar]
  183. Levi, V.; Vasilenko, S. Study of the Crimean Hemorrhagic Fever (CHF) Virus Transmission Mechanism in Hyalomma p. plumbeum Ticks; National Agricultural Library: Beltsville, MD, USA, 1972; pp. 182–185. [Google Scholar]
  184. Meissner, J.D.; Seregin, S.S.; Seregin, S.V.; Yakimenko, N.V.; Vyshemirskii, O.I.; Netesov, S.V.; Petrov, V.S. Complete L Segment Coding-Region Sequences of Crimean Congo Hemorrhagic Fever Virus Strains from the Russian Federation and Tajikistan. Arch. Virol. 2006, 151, 465–475. [Google Scholar] [CrossRef] [PubMed]
  185. Smirnova, S.E.; Karavanov, A.S.; Zimina, I.; Sedova, A.G. The virus carriage of ticks, vectors of the causative agent of Crimean hemorrhagic fever. Med. Parazitol. 1991, 1, 32–34. [Google Scholar]
  186. Yashina, L.; Petrova, I.; Seregin, S.; Vyshemirskii, O.; Lvov, D.; Aristova, V.; Kuhn, J.; Morzunov, S.; Gutorov, V.; Kuzina, I.; et al. Genetic Variability of Crimean-Congo Haemorrhagic Fever Virus in Russia and Central Asia. J. Gen. Virol. 2003, 84, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
  187. Yesilbag, K.; Aydin, L.; Dincer, E.; Alpay, G.; Girisgin, A.O.; Tuncer, P.; Ozkul, A. Tick Survey and Detection of Crimean-Congo Hemorrhagic Fever Virus in Tick Species from a Non-Endemic Area, South Marmara Region, Turkey. Exp. Appl. Acarol. 2013, 60, 253–261. [Google Scholar] [CrossRef] [PubMed]
  188. Zgurskaya, G.N.; Berezin, V.; Smirnova, S.; Chumakov, M. Investigation of the question of Crimean hemorrhagic fever virus transmission and interepidemic survival in the tick Hyalomma plumbeum plumbeum Panzer. Tr. Inst. Polio. Virus. Entsefalitov. Akad. Med. Nauk. 1971, 19, 217–220. [Google Scholar]
  189. Pascucci, I.; Di Domenico, M.; Capobianco Dondona, G.; Di Gennaro, A.; Polci, A.; Capobianco Dondona, A.; Mancuso, E.; Cammà, C.; Savini, G.; Cecere, J.G.; et al. Assessing the Role of Migratory Birds in the Introduction of Ticks and Tick-Borne Pathogens from African Countries: An Italian Experience. Ticks Tick-Borne Dis. 2019, 10, 101272. [Google Scholar] [CrossRef]
  190. Pereira, A.; Figueira, L.; Nunes, M.; Esteves, A.; Cotão, A.J.; Vieira, M.L.; Maia, C.; Campino, L.; Parreira, R. Multiple Phlebovirus (Bunyaviridae) Genetic Groups Detected in Rhipicephalus, Hyalomma and Dermacentor Ticks from Southern Portugal. Ticks Tick-Borne Dis. 2017, 8, 45–52. [Google Scholar] [CrossRef]
  191. Converse, J.D.; Hoogstraal, H.; Moussa, M.I.; Stek, M.; Kaiser, M.N. Bahig Virus (Tete Group) in Naturally- and Transovarially-Infected Hyalomma marginatum Ticks from Egypt and Italy. Arch. Für Gesamte Virusforsch. 1974, 46, 29–35. [Google Scholar] [CrossRef]
  192. Al’khovskiĭ, S.V.; L’vov, D.K.; Shchelkanov, M.I.; Shchetinin, A.M.; Deriabin, P.G.; L’vov, D.N.; L’vov, S.S.; Samokhvalov, E.I.; Gitel’man, A.K.; Botikov, A.G. Genetic characterization of the Batken virus (BKNV) (Orthomyxoviridae, Thogotovirus) isolated from the Ixodidae ticks Hyalomma marginatum Koch, 1844 and the mosquitoes Aedes caspius Pallas, 1771, as well as the Culex hortensis Ficalbi, 1889 in the Central Asia. Vopr. Virusol. 2014, 59, 33–37. [Google Scholar]
  193. Hubálek, Z. Biogeography of Tick-Borne Bhanja Virus (Bunyaviridae) in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 372691. [Google Scholar] [CrossRef] [Green Version]
  194. Filipe, A.R.; Casals, J. Isolation of Dhori Virus from Hyalomma marginatum Ticks in Portugal. Intervirology 1979, 11, 124–127. [Google Scholar] [CrossRef] [PubMed]
  195. Vakalova, E.V.; Butenko, A.M.; Vishnevskaya, T.V.; Dorofeeva, T.E.; Gitelman, A.K.; Kulikova, L.N.; Lvov, D.K.; Alkhovsky, S.V. Results of investigation of ticks in Volga river delta (Astrakhan region, 2017) for Crimean-Congo hemorrhagic fever virus (Nairoviridae, Orthonairovirus, CCHFV) and other tick-borne arboviruses. Vopr. Virusol. 2019, 64, 221–228. [Google Scholar] [CrossRef] [Green Version]
  196. Yurchenko, O.O.; Dubina, D.O.; Vynograd, N.O.; Gonzalez, J.-P. Partial Characterization of Tick-Borne Encephalitis Virus Isolates from Ticks of Southern Ukraine. Vector Borne Zoonotic Dis. 2017, 17, 550–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  197. Dinçer, E.; Hacıoğlu, S.; Kar, S.; Emanet, N.; Brinkmann, A.; Nitsche, A.; Özkul, A.; Linton, Y.-M.; Ergünay, K. Survey and Characterization of Jingmen Tick Virus Variants. Viruses 2019, 11, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  198. Moussa, M.I.; Imam, I.Z.; Converse, J.D.; El-Karamany, R.M. Isolation of Matruh Virus from Hyalomma marginatum Ticks in Egypt. J. Egypt. Public Health Assoc. 1974, 49, 341–348. [Google Scholar]
  199. Dandawate, C.N.; Shah, K.V.; D’Lima, L.V. Wanowrie Virus: A New Arbovirus Isolated from Hyalomma marginatum Isaaci. Indian J. Med. Res. 1970, 58, 985–989. [Google Scholar]
  200. L’vov, D.N.; Dzharkenov, A.F.; Aristova, V.A.; Kovtunov, A.I.; Gromashevskiĭ, V.L.; Vyshemirskiĭ, O.I.; Galkina, I.V.; Larichev, V.F.; Butenko, A.M.; L’vov, D.K. The isolation of Dhori viruses (Orthomyxoviridae, Thogotovirus) and Crimean-Congo hemorrhagic fever virus (Bunyaviridae, Nairovirus) from the hare (Lepus europaeus) and its ticks Hyalomma marginatum in the middle zone of the Volga delta, Astrakhan region, 2001. Vopr. Virusol. 2002, 47, 32–36. [Google Scholar]
  201. Formosinho, P.; Santos-Silva, M.M. Experimental Infection of Hyalomma marginatum Ticks with West Nile Virus. Acta Virol. 2006, 50, 175–180. [Google Scholar]
  202. Kolodziejek, J.; Marinov, M.; Kiss, B.J.; Alexe, V.; Nowotny, N. The Complete Sequence of a West Nile Virus Lineage 2 Strain Detected in a Hyalomma marginatum marginatum Tick Collected from a Song Thrush (Turdus philomelos) in Eastern Romania in 2013 Revealed Closest Genetic Relationship to Strain Volgograd 2007. PLoS ONE 2014, 9, e109905. [Google Scholar] [CrossRef] [Green Version]
  203. Beati, L.; Meskini, M.; Thiers, B.; Raoult, D. Rickettsia Aeschlimannii Sp. Nov., a New Spotted Fever Group Rickettsia Associated with Hyalomma marginatum Ticks. Int. J. Syst. Bacteriol. 1997, 47, 548–554. [Google Scholar] [CrossRef] [Green Version]
  204. Cicculli, V.; Capai, L.; Quilichini, Y.; Masse, S.; Fernández-Alvarez, A.; Minodier, L.; Bompard, P.; Charrel, R.; Falchi, A. Molecular Investigation of Tick-Borne Pathogens in Ixodid Ticks Infesting Domestic Animals (Cattle and Sheep) and Small Rodents (Black Rats) of Corsica, France. Ticks Tick-Borne Dis. 2019, 10, 606–613. [Google Scholar] [CrossRef] [PubMed]
  205. Grech-Angelini, S.; Stachurski, F.; Vayssier-Taussat, M.; Devillers, E.; Casabianca, F.; Lancelot, R.; Uilenberg, G.; Moutailler, S. Tick-Borne Pathogens in Ticks (Acari: Ixodidae) Collected from Various Domestic and Wild Hosts in Corsica (France), a Mediterranean Island Environment. Transbound. Emerg. Dis. 2020, 67, 745–757. [Google Scholar] [CrossRef]
  206. Cicculli, V.; de Lamballerie, X.; Charrel, R.; Falchi, A. First Molecular Detection of Rickettsia Africae in a Tropical Bont Tick, Amblyomma variegatum, Collected in Corsica, France. Exp. Appl. Acarol. 2019, 77, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  207. Sentausa, E.; El Karkouri, K.; Michelle, C.; Caputo, A.; Raoult, D.; Fournier, P.-E. Genome Sequence of Rickettsia tamurae, a Recently Detected Human Pathogen in Japan. Genome Announc. 2014, 2, e00838-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  208. Matsumoto, K.; Parola, P.; Brouqui, P.; Raoult, D. Rickettsia aeschlimannii in Hyalomma Ticks from Corsica. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2004, 23, 732–734. [Google Scholar] [CrossRef]
  209. Teshale, S.; Kumsa, B.; Menandro, M.L.; Cassini, R.; Martini, M. Anaplasma, Ehrlichia and Rickettsial Pathogens in Ixodid Ticks Infesting Cattle and Sheep in Western Oromia, Ethiopia. Exp. Appl. Acarol. 2016, 70, 231–237. [Google Scholar] [CrossRef]
  210. Wallménius, K.; Barboutis, C.; Fransson, T.; Jaenson, T.G.T.; Lindgren, P.-E.; Nyström, F.; Olsen, B.; Salaneck, E.; Nilsson, K. Spotted Fever Rickettsia Species in Hyalomma and Ixodes Ticks Infesting Migratory Birds in the European Mediterranean Area. Parasit. Vectors 2014, 7, 318. [Google Scholar] [CrossRef] [Green Version]
  211. Chisu, V.; Foxi, C.; Mannu, R.; Satta, G.; Masala, G. A Five-Year Survey of Tick Species and Identification of Tick-Borne Bacteria in Sardinia, Italy. Ticks Tick-Borne Dis. 2018, 9, 678–681. [Google Scholar] [CrossRef]
  212. Toma, L.; Mancini, F.; Di Luca, M.; Cecere, J.G.; Bianchi, R.; Khoury, C.; Quarchioni, E.; Manzia, F.; Rezza, G.; Ciervo, A. Detection of Microbial Agents in Ticks Collected from Migratory Birds in Central Italy. Vector Borne Zoonotic Dis. Larchmt. 2014, 14, 199–205. [Google Scholar] [CrossRef] [Green Version]
  213. Mancini, F.; Vescio, F.; Toma, L.; Di Luca, M.; Severini, F.; Cacciò, S.; Mariano, C.; Nicolai, G.; Laghezza Masci, V.; Fausto, A.; et al. Detection of Tick-Borne Pathogens in Ticks Collected in the Suburban Area of Monte Romano, Lazio Region, Central Italy. Ann. Ist. Super. Sanita 2019, 55, 143–150. [Google Scholar] [CrossRef]
  214. Pilipenko, V.G.; Derevianchenko, K.I. Detection of Hyalomma plumbeum Panz infected with Pasteurella tularensis on Lepus europaeus. J. Microbiol. Epidemiol. Immunobiol. 1955, 4, 63–67. [Google Scholar]
  215. Jongejan, F.; Morzaria, S.P.; Mustafa, O.E.H.; Latif, A.A. Infection Rates of Theileria annulata in the Salivary Glands of the Tick Hyalomma marginatum rufipes. Vet. Parasitol. 1983, 13, 121–126. [Google Scholar] [CrossRef] [PubMed]
  216. Zeller, H.G.; Cornet, J.P.; Camicas, J.L. Crimean-Congo Haemorrhagic Fever Virus Infection in Birds: Field Investigations in Senegal. Res. Virol. 1994, 145, 105–109. [Google Scholar] [CrossRef] [PubMed]
  217. Faye, O.; Cornet, J.P.; Camicas, J.L.; Fontenille, D.; Gonzalez, J.P. Transmission expérimentale du virus de la fièvre hémorragique de Crimée-Congo: Place de trois espèces vectrices dans les cycles de maintenance et de transmission au Sénégal. Parasite 1999, 6, 27–32. [Google Scholar] [CrossRef] [Green Version]
  218. Swanepoel, R.; Struthers, J.K.; Shepherd, A.J.; McGillivray, G.M.; Nel, M.J.; Jupp, P.G. Crimean-Congo Hemorrhagic Fever in South Africa. Am. J. Trop. Med. Hyg. 1983, 32, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
  219. Zeller, H.G.; Cornet, J.P.; Diop, A.; Camicas, J.L. Crimean-Congo Hemorrhagic Fever in Ticks (Acari: Ixodidae) and Ruminants: Field Observations of an Epizootic in Bandia, Senegal (1989–1992). J. Med. Entomol. 1997, 34, 511–516. [Google Scholar] [CrossRef]
  220. Shepherd, A.J.; Leman, P.A.; Swanepoel, R. Viremia and Antibody Response of Small African and Laboratory Animals to Crimean-Congo Hemorrhagic Fever Virus Infection. Am. J. Trop. Med. Hyg. 1989, 40, 541–547. [Google Scholar] [CrossRef]
  221. Zeller, H.G.; Cornet, J.P.; Camicas, J.L. Experimental Transmission of Crimean-Congo Hemorrhagic Fever Virus by West African Wild Ground-Feeding Birds to Hyalomma marginatum rufipes Ticks. Am. J. Trop. Med. Hyg. 1994, 50, 676–681. [Google Scholar] [CrossRef]
  222. Shepherd, A.J.; Swanepoel, R.; Shepherd, S.P.; Leman, P.A.; Mathee, O. Viraemic Transmission of Crimean-Congo Haemorrhagic Fever Virus to Ticks. Epidemiol. Infect. 1991, 106, 373–382. [Google Scholar] [CrossRef] [Green Version]
  223. Mancuso, E.; Toma, L.; Polci, A.; d’Alessio, S.G.; Luca, M.D.; Orsini, M.; Domenico, M.D.; Marcacci, M.; Mancini, G.; Spina, F.; et al. Crimean-Congo Hemorrhagic Fever Virus Genome in Tick from Migratory Bird, Italy. Emerg. Infect. Dis. 2019, 25, 1418–1420. [Google Scholar] [CrossRef] [Green Version]
  224. Okorie, T.G. Comparative Studies on the Vector Capacity of the Different Stages of Amblyomma variegatum fabricius and Hyalomma rufipes Koch for Congo Virus, after Intracoelomic Inoculation. Vet. Parasitol. 1991, 38, 215–223. [Google Scholar] [CrossRef] [PubMed]
  225. Msimang, V.; Weyer, J.; Roux, C.L.; Kemp, A.; Burt, F.J.; Tempia, S.; Grobbelaar, A.; Moolla, N.; Rostal, M.K.; Bagge, W.; et al. Risk Factors Associated with Exposure to Crimean-Congo Haemorrhagic Fever Virus in Animal Workers and Cattle, and Molecular Detection in Ticks, South Africa. PLoS Negl. Trop. Dis. 2021, 15, e0009384. [Google Scholar] [CrossRef]
  226. Okorie, T.G.; Fabiyi, A. The Multiplication of Dugbe Virus in the Ixodid Tick, Hyalomma rufipes Koch, after Experimental Infection. Tropenmed. Parasitol. 1979, 30, 439–442. [Google Scholar] [PubMed]
  227. Hoffman, T.; Lindeborg, M.; Barboutis, C.; Erciyas-Yavuz, K.; Evander, M.; Fransson, T.; Figuerola, J.; Jaenson, T.G.T.; Kiat, Y.; Lindgren, P.-E.; et al. Alkhurma Hemorrhagic Fever Virus RNA in Hyalomma rufipes Ticks Infesting Migratory Birds, Europe and Asia Minor. Emerg. Infect. Dis. 2018, 24, 879–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  228. Luo, J.; Liu, M.-X.; Ren, Q.-Y.; Chen, Z.; Tian, Z.-C.; Hao, J.-W.; Wu, F.; Liu, X.-C.; Luo, J.-X.; Yin, H.; et al. Micropathogen Community Analysis in Hyalomma rufipes via High-Throughput Sequencing of Small RNAs. Front. Cell. Infect. Microbiol. 2017, 7, 374. [Google Scholar] [CrossRef]
  229. Mathison, B.A.; Gerth, W.J.; Pritt, B.S.; Baugh, S. Introduction of the Exotic Tick Hyalomma truncatum on a Human with Travel to Ethiopia: A Case Report. Ticks Tick-Borne Dis. 2015, 6, 152–154. [Google Scholar] [CrossRef] [Green Version]
  230. Dahmani, M.; Davoust, B.; Sambou, M.; Bassene, H.; Scandola, P.; Ameur, T.; Raoult, D.; Fenollar, F.; Mediannikov, O. Molecular Investigation and Phylogeny of Species of the Anaplasmataceae Infecting Animals and Ticks in Senegal. Parasit. Vectors 2019, 12, 495. [Google Scholar] [CrossRef] [Green Version]
  231. Kumsa, B.; Socolovschi, C.; Almeras, L.; Raoult, D.; Parola, P. Occurrence and Genotyping of Coxiella burnetii in Ixodid Ticks in Oromia, Ethiopia. Am. J. Trop. Med. Hyg. 2015, 93, 1074–1081. [Google Scholar] [CrossRef] [Green Version]
  232. Diarra, A.Z.; Almeras, L.; Laroche, M.; Berenger, J.-M.; Koné, A.K.; Bocoum, Z.; Dabo, A.; Doumbo, O.; Raoult, D.; Parola, P. Molecular and MALDI-TOF Identification of Ticks and Tick-Associated Bacteria in Mali. PLoS Negl. Trop. Dis. 2017, 11, e0005762. [Google Scholar] [CrossRef]
  233. Rollins, R.E.; Schaper, S.; Kahlhofer, C.; Frangoulidis, D.; Strauß, A.F.; Cardinale, M.; Springer, A.; Strube, C.; Bakkes, D.K.; Becker, N.S.; et al. Ticks (Acari: Ixodidae) on birds migrating to the island of Ponza, Italy, and the tick-borne pathogens they carry. Ticks Tick-borne Dis. 2020, 12, 101590. [Google Scholar] [CrossRef]
  234. Knuth, P.; Behn, P.; Schulze, P. Experiments on Equine Piroplasmosis (Biliary Fever) in 1917; CABI: Wallingford, UK, 1918; pp. 241–264. [Google Scholar]
  235. Petunin, F. Hyalomma Scupense P Sch-a Vector of Nuttalliasis of Horses. Veterinariia 1948, 25, 14. [Google Scholar]
  236. Samish, M.; Pipano, E. Development of Infectivity in Hyalomma detritum (Schulze, 1919) Ticks Infected with Theileria annulata (Dchunkowsky and Luhs, 1904). Parasitology 1978, 77, 375–379. [Google Scholar] [CrossRef] [PubMed]
  237. Gharbi, M.; Darghouth, M.A. A Review of Hyalomma scupense (Acari, Ixodidae) in the Maghreb Region: From Biology to Control. Parasite 2014, 21, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  238. Gharbi, M.; Hayouni, M.E.; Sassi, L.; Dridi, W.; Darghouth, M.A. Hyalomma scupense (Acari, Ixodidae) in Northeast Tunisia: Seasonal Population Dynamics of Nymphs and Adults on Field Cattle. Parasite 2013, 20, 12. [Google Scholar] [CrossRef] [Green Version]
  239. Pandurov, S.; Zaprianov, M. Studies on the retention of R. burneti in Rh. bursa and H. detritum ticks. Vet.-Meditsinski Nauki 1975, 12, 43–48. [Google Scholar]
  240. Blouin, E.F.; De Waal, D.T. The Fine Structure of Developmental Stages of Babesia caballi in the Salivary Glands of Hyalomma truncatum. Onderstepoort J. Vet. Res. 1989, 56, 189–193. [Google Scholar]
  241. De Waal, D.T. The Transovarial Transmission of Babesia caballi by Hyalomma truncatum. Onderstepoort J. Vet. Res. 1990, 57, 99–100. [Google Scholar]
  242. Logan, T.M.; Linthicum, K.J.; Kondig, J.P.; Bailey, C.L. Biology of Hyalomma impeltatum (Acari: Ixodidae) Under Laboratory Conditions. J. Med. Entomol. 1989, 26, 479–483. [Google Scholar] [CrossRef]
  243. Wilson, M.L.; Gonzalez, J.-P.; LeGuenno, B.; Cornet, J.-P.; Guillaud, M.; Calvo, M.-A.; Digoutte, J.-P.; Camicas, J.-L. Epidemiology of Crimean-Congo Hemorrhagic Fever in Senegal: Temporal and Spatial Patterns. Arch. Virol. Suppl. 1990, 1, 323–340. [Google Scholar] [CrossRef]
  244. Gonzalez, J.P.; Camicas, J.L.; Cornet, J.P.; Faye, O.; Wilson, M.L. Sexual and Transovarian Transmission of Crimean-Congo Haemorrhagic Fever Virus in Hyalomma truncatum Ticks. Res. Virol. 1992, 143, 23–28. [Google Scholar] [CrossRef]
  245. Gonzalez, J.P.; Cornet, J.P.; Wilson, M.L.; Camicas, J.L. Crimean-Congo Haemorrhagic Fever Virus Replication in Adult Hyalomma truncatum and Amblyomma variegatum Ticks. Res. Virol. 1991, 142, 483–488. [Google Scholar] [CrossRef] [PubMed]
  246. Dickson, D.L.; Turell, M.J. Replication and Tissue Tropisms of Crimean-Congo Hemorrhagic Fever Virus in Experimentally Infected Adult Hyalomma truncatum (Acari: Ixodidae). J. Med. Entomol. 1992, 29, 767–773. [Google Scholar] [CrossRef] [PubMed]
  247. Lwande, O.W.; Lutomiah, J.; Obanda, V.; Gakuya, F.; Mutisya, J.; Mulwa, F.; Michuki, G.; Chepkorir, E.; Fischer, A.; Venter, M.; et al. Isolation of Tick and Mosquito-Borne Arboviruses from Ticks Sampled from Livestock and Wild Animal Hosts in Ijara District, Kenya. Vector-Borne Zoonotic Dis. 2013, 13, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  248. Lutomiah, J.; Musila, L.; Makio, A.; Ochieng, C.; Koka, H.; Chepkorir, E.; Mutisya, J.; Mulwa, F.; Khamadi, S.; Miller, B.R.; et al. Ticks and Tick-Borne Viruses from Livestock Hosts in Arid and Semiarid Regions of the Eastern and Northeastern Parts of Kenya. J. Med. Entomol. 2014, 51, 269–277. [Google Scholar] [CrossRef] [PubMed]
  249. Linthicum, K.J.; Logan, T.M. Laboratory Transmission of Venezuelan Equine Encephalomyelitis Virus by the Tick Hyalomma truncatum. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 126. [Google Scholar] [CrossRef] [Green Version]
  250. Capponi, M.; Chambon, L.; Camicas, J.L.; Dumas, N. 1st isolation of a strain of Rickettsia (Cocksiella) burneti from ticks (Hyalomma truncatum) in Senegal. Bull. Soc. Pathol. Exot. Filiales 1970, 63, 530–534. [Google Scholar]
Table 1. Bibliographic review of evidence in favor of the transmission of pathogens by ticks of the Hyalomma genus.
Table 1. Bibliographic review of evidence in favor of the transmission of pathogens by ticks of the Hyalomma genus.
Tick SpeciesNumber of References in PubMed/ScopusPathogen Transmitted/Suspected to Be TransmittedDetection of DNA/RNA/Antigen/Pathogen in TicksEpidemiological Arguments of Possible Transmission *Experimental Validation of Transmission **References
H. aegyptium96/110CCHFvRNAyes0[17]
Coxiella burnetiiDNAno2, 4[18,19]
Borrelia turcica
Borrelia spp.
DNA and RNAno2[20,21,22,23,24,25]
Bartonella bovisDNAno0[26]
Ehrlichia canis
Ehrlichia spp.
DNAyes0[18,25,26,27]
Anaplasma phagocytophilumDNAyes0[18]
Rickettsia africaeDNAno0[28]
Rickettsia aeschlimanniiDNAyes0[26,29,30]
Rickettsia sibirica mongolitimonaeDNAno0[30,31]
Rickettsia slovacaDNAno0[30]
Meram virusRNAno0[32]
Tamdy virusRNAno0[32]
H. anatolicum381/546Babesia caballiDNAno0[33]
Theileria equiDNA, pathogen yes2, 4[33,34,35,36,37]
Babesia occultansDNAno0[38,39,40]
Babesia bovisDNAno0[38,39,40,41]
Theileria annulataDNA, pathogen yes2, 4[35,39,41,42,43,44,45,46,47,48,49,50,51]
Theileria lestoquardiDNAyes2, 4[35,44,49,52,53,54,55,56]
Theileria ovisDNAyes2, 4[33,35,38,40,57,58]
Babesia ovisDNAno0[55]
CCHFvRNA, antigen, viral particleuncertain 1[59,60,61,62,63,64,65]
AlphavirusRNAno0[66]
Zahedan RhabdovirusRNAno0[67]
Tick Borne Encephalitis virusnono5[68]
Kadam virusRNAno0[66]
Karshi virusno no0, 1[69]
Karyana virusRNA, virus isolationyes0[70]
Kundal virusRNA, virus isolationyes0[70]
Sindbis virusRNAno0[71]
Coxiella burnetiiDNAno0[72,73,74]
Bartonella spp.DNAno0[38]
Borrelia spp.DNAno0[38]
Anaplasma marginale, Anaplasma phagocytophilum, Anaplasma ovis, Anaplasma centrale, Ehrlichia spp., Rickettsia massiliae, Rickettsia spp.,DNAno0[38,41,75]
H. asiaticum145/192Theileria annulataDNAno0[76,77,78]
Babesia occultansDNAno0[79]
Babesia caballiDNAno0[80,81]
Theileria equiDNAno0[80]
CCHFvRNA, viral particles yes1[65,82,83,84,85]
Chim virusRNAno0[86]
Syr-Darya valley fever virusRNAno0[86]
Karshi virusRNAno0, 1[69,87,88]
Tamdy virusVirus isolationyes 0[89,90,91,92]
Coxiella burnetiiDNAno2[74,93,94,95]
Rickettsia sibericaDNAno0[96]
Borrelia burgdorferi s.l.RNAno0[97]
Rickettsia sibirica mongolitimonaeisolationyes 0[98]
H. dromedarii232/344Theileria equiDNA, pathogen in ticksno1, 2, 4[99,100,101,102]
Theileria camelensisPathogen in ticksyes1, 2, 4[103,104,105]
Theileria annulataDNAyes2, 4 [48,106,107,108,109,110,111,112]
Theileria ovisDNAno0[40]
Babesia caballiDNAno0[101]
Babesia occultansDNAno0[101]
CCHFvRNA, antigen, viral particlesyes1, 2, 4[64,113,114]
AlphavirusRNAno0[66]
Chick Ross virusRNAno0[66]
Dera Ghazi Khan virusRNAno0[115]
Dhori virusRNAno0[116]
Kadam virusRNAno0[66,117]
African horse sickness virusno no2, 4 [118]
Quaranfil virusRNA no0[119]
Sindbis virusRNA no0[66]
Coxiella burnetiiDNA no0[101,120,121,122,123,124]
Francisella persicaDNA no0 [125]
Rickettsia aeschlimanniiDNA no0[121,126,127]
Rickettsia africaeDNA no0[128]
Anaplasma spp./Ehrlichia spp.DNA no0[101]
Bartonella bovis et Bartonella rochalimaeDNA no0[129]
H. excavatum149/211Theileria equiDNA, pathogen no2, 4[34,130,131]
Babesia bigeminaDNAno0[41]
Babesia bovisDNAno0[132]
Babesia occultansDNAno3 [30,132]
Theileria annulataDNAuncertain2, 4[31,41,51,76,78,132,133,134]
Theileria capreoliDNAno0[31]
Theileria ovisDNAno0[40,135]
Borrelia spp.DNAno0[136]
Coxiella burnetiiDNAno0[121,124,137,138,139]
Rickettsia africaeDNAno0[140]
Rickettsia aeschlimanniiDNAno0[140]
Anaplasma marginaleDNAyes4[141]
Anaplasma centraleDNAyes0[141]
Ehrlichia ruminantiumDNAno0[41]
Rickettsia sibirica mongolotimonaeDNAno0[142]
CCHFvRNA, antigenuncertain0[59,61,143]
H. hussaini4/7Coxiella burnetiiDNA no0[144]
Rickettsia massiliae, Rickettsia spp.DNA no0[38]
H. impeltatum62/88Theileria annulataDNAno2, 4 [41,108,112,145]
Theileria lestoquardi (Theileria hirci)no uncertain0[146]
Theileria ovisDNAno0[35]
Babesia occultansDNAno0[101]
Babesia bigeminaDNAno0[41]
Babesia bovisDNAno0[41]
Babesia pecorumDNAno0[35]
CCHFvRNA, antigen virus isolationyes1, 2, 4
cofeeding
[61,113,147,148,149]
Coxiella burnetiiDNAno0[123,124]
AlphavirusRNAno0[66]
Dhori virusRNAno0[66]
Sindbis virusRNAno0[66]
Rickettsia africaeDNAno0[140]
Rickettsia aeschlimanniiDNAno0[121,150,151]
H. impressum10/17CCHFvantigenuncertain 0[64]
Theileria annulataDNAno0[108]
Anaplasma/Ehrlichia spp.DNAno 0[101]
Rickettsia africaeDNAno0[152]
H. isaaci5/5Kyasanur forest virusRNA - 2, 4[153]
H. lusitanicum68/83Theileria equipathogen no1, 2, 4[99,100]
Babesia pecorum Noyes0[154]
Theileria annulata Noyes4 [107,155,156]
CCHFvRNA, antigen yes0[157,158]
Anaplasma phagocytophilumDNA no0[159]
Borrelia burgdorferiDNAno0[160]
Borrelia lusitaniaeDNAno0[161]
Coxiella burnetiiDNA no0[162,163,164,165]
H. marginatum451/620Theileria equiDNAyes0[130,131,166,167]
Theileria annulataDNAyes2 [41,51,111]
Theileria sergenti/orientalis/buffeliDNAno0[159,166,168]
Theileria ovisDNAno0[40,49,169]
Theileria lestoquardiDNAno0[170]
Babesia ovisDNA, pathogen in ticksno1[55,171]
Babesia caballiDNAyes 0[130,131,169,172]
Babesia bigeminaDNA no0[41,167]
Babesia bovisDNA no0[41,167]
Babesia occultansDNAyes2, 3 [30,31,130,134,136,166,173,174,175,176]
Babesia microtiDNAno0[174]
Babesia sp. Tavsan1DNAno0[31]
CCHFvRNA, antigenyes1, 2, 3, 4[64,65,143,158,177,178,179,180,181,182,183,184,185,186,187,188]
FlavivirusRNA no0[189]
PhlebovirusRNA no0[190]
Bahig virusRNA no0[191]
Batken virus (close to Dhori virus)RNA no0[192]
Bhanja virusRNA no0[193]
Dhori virusRNA no0[194,195]
Tick Borne Encephalitis virusRNA no0[196]
Jingmen virusRNA, virus isolationyes0
[197]
Matruh virusRNAno 0[198]
Tamdy virusRNA no0[89]
Wanowrie virusRNAyes0[153,199]
West Nile virusRNAno2, 3[189,200,201,202]
Rickettsia aeschlimanniiDNAyes3[31,136,151,203,204,205,206,207,208]
Rickettsia sibirica mongolitimonaeDNAno0[31]
Anaplasma marginaleDNAno0[31,209]
Rickettsia africaeDNAno 0[210]
Anaplasma phagocytophilumDNAno0[204,211]
Anaplasma platysDNAno 0[211]
Coxiella burnetiiDNAno0[139,142,211,212,213]
Francisella tularensisDNAno0[214]
Ehrlichia monacensis (minasensis)DNAno0[204]
Ehrlichia ruminantiumDNAno 0[41]
Bartonella spp.DNAno0[205,213]
Borrelia burgdoferi s.l.DNAno0[212,213]
Borrelia spp.DNAno0[136,152]
H. rufipes189/238Babesia occultansDNA, pathogen no2, 3, 4 [175,176]
Theileria ovisDNAno0[40]
Theileria annulataDNAno2, 4 [108,109,215]
CCHFvRNA, antigen, viral particlesyes1, 2, 3, 4[64,216,217,218,219,220,221,222,223,224,225]
FlavivirusRNA no0[189]
Dugbe virusRNA no2 [226]
Alkhurma hemorrhagic fever virusRNA no0[227]
St Croix River like virusRNA no0[228]
Rickettsia aeschlimanniiDNAno 0[35]
Rickettsia conoriiDNA no0[229]
Anaplasma marginale, centrale, platysDNAno 0[230]
Coxiella burnetiiDNA no0[74,212,231,232]
Borrelia burgdorferiRNA and DNAno0[212,233]
H. schulzei17/27Dhori virusRNAno 0[66]
H. scupense34/47

H. detritum: 61/90
Theileria equiNono4 [234,235]
Theileria annulata Noyes2, 4[107,236,237,238]
Babesia ovisDNAno0[40]
Theileria ovisDNAno0[40]
Rickettsia aeschlimanniiDNAno 0[14,205]
Rickettsia slovacaDNA no0[205]
Anaplasma phagocytophilumDNA no0[205]
Coxiella burnetiiDNA no2, 3[139,239]
CCHFvRNAuncertain0[83]
H. somalicum2/2R. conoriiDNAno 0[14]
H. truncatum142/193Theileria equiDNAno0[101]
Babesia caballiNono3, 4[240,241]
Theileria annulataDNAno0[108]
CCHFvRNA, viral particlesyes1, 2, 3, 4, 5
Cofeeding
[113,148,149,217,218,220,222,242,243,244,245,246]
Bunyamwera virusRNAno0[247]
Dugbe virusRNAno0[248]
Venezuelan Equine Encephalitis Virus no2, 4[249]
Kupe virusRNAno0[248]
Semliki forest virusRNAno0[247]
Coxiella burnetiiDNAno0[152,232,250]
Borrelia spp.DNAno0[152,232]
H. turanicum24/36CCHFvRNAno0[187]
Rickettsia sibirica mongolitimonaeDNAno0[140]
CCHFv: Crimean–Congo Hemorrhagic Fever Virus; * epidemiological arguments of possible transmission: for example co-occurrence of a given pathogen in a tick species and in infested vertebrate hosts of the same area, host co-infection with pathogens known to be transmitted by ticks, or the onset of a disease as a result of tick bites: YES, NO, uncertain. ** Experimental validation. 0: none; 1: pathogen reproduction/replication success in ticks; 2: transstadial transmission; 3: transovarial transmission; 4: transmission to a vertebrate host via a tick bite; 5: sexual transmission between male and female ticks.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bonnet, S.I.; Bertagnoli, S.; Falchi, A.; Figoni, J.; Fite, J.; Hoch, T.; Quillery, E.; Moutailler, S.; Raffetin, A.; René-Martellet, M.; et al. An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma. Pathogens 2023, 12, 513. https://doi.org/10.3390/pathogens12040513

AMA Style

Bonnet SI, Bertagnoli S, Falchi A, Figoni J, Fite J, Hoch T, Quillery E, Moutailler S, Raffetin A, René-Martellet M, et al. An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma. Pathogens. 2023; 12(4):513. https://doi.org/10.3390/pathogens12040513

Chicago/Turabian Style

Bonnet, Sarah I., Stéphane Bertagnoli, Alessandra Falchi, Julie Figoni, Johanna Fite, Thierry Hoch, Elsa Quillery, Sara Moutailler, Alice Raffetin, Magalie René-Martellet, and et al. 2023. "An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma" Pathogens 12, no. 4: 513. https://doi.org/10.3390/pathogens12040513

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop