Next Article in Journal
Genomics Analysis to Identify Multiple Genetic Determinants That Drive the Global Transmission of the Pandemic ST95 Lineage of Extraintestinal Pathogenic Escherichia coli (ExPEC)
Previous Article in Journal
Immunoprotective Analysis of the NFA49590 Protein from Nocardia farcinica IFM 10152 Demonstrates Its Potential as a Vaccine Candidate
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

First Molecular Identification of Trypanosomes and Absence of Babesia sp. DNA in Faeces of Non-Human Primates in the Ecuadorian Amazon

by
Gabriel Carrillo-Bilbao
1,2,3,
Juan-Carlos Navarro
4,
Sarah Martin-Solano
3,5,
María-Augusta Chávez-Larrea
1,5,
Cristina Cholota-Iza
5 and
Claude Saegerman
1,*
1
Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-Uliège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
2
Facultad de Filosofía y Letras y Ciencias de la Educación, Universidad Central del Ecuador, Quito 170521, Ecuador
3
Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
4
Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170134, Ecuador
5
Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Carrera Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, P.O. Box 171-5-231, Sangolquí 171103, Ecuador
*
Author to whom correspondence should be addressed.
Pathogens 2022, 11(12), 1490; https://doi.org/10.3390/pathogens11121490
Submission received: 23 October 2022 / Revised: 20 November 2022 / Accepted: 3 December 2022 / Published: 7 December 2022

Abstract

:
Trypanosomes are a group of pathogens distributed in the continents of Africa, America, Asia and Europe, and they affect all vertebrates including the neotropical primate group. Information about the trypanosome’s diversity, phylogeny, ecology and pathology in non-human primates (NHPs) from the neotropical region is scarce. The objective of the study was to identify Trypanosoma and Babesia molecularly in NHPs under the phylogenetic species concept. We extracted DNA from a total of 76 faecal samples collected between 2019 and 2021, from a total of 11 non-human primate species of which 46 are from captive NHPs and 30 are free-living NHPs in the Western Amazon region of Ecuador. We did not detect DNA of Babesia sp. by polymerase chain reaction test in any of the faecal samples. However, the nested-PCR-based method revealed Trypanosoma parasites by ITS gene amplification in two faecal samples; one for the species Leontocebus lagonotus (from the captive population) and a second one for Cebus albifrons (from the free-ranging population). Maximum parsimony and likelihood methods with the Kimura2+G+I model inferred the evolutionary history of the two records, which showed an evolutionary relationship with the genus Trypanosoma. Two sequences are monophyletic with Trypanosoma. However, the number of sequences available in GenBank for their species identification is limited. The two samples present different molecular identifications and evolutionary origins in the tree topology. We are most likely referring to two different species, and two different localities of infection. We suggest that health management protocols should be implemented to prevent the transmission of blood-borne pathogens such as Trypanosoma sp. among captive populations. In addition, these protocols also protect the personnel of wildlife rehabilitation centers working in close proximity to NHPs and vice versa.

1. Introduction

Neotropical non-human primates (NHPs) are threatened by habitat loss or habitat fragmentation (agricultural activities, logging, oil drilling, new road networks), hunting and the wildlife trade [1,2,3,4]. These activities increase contact between people and NHPs (increase the human–wildlife interface), but also enhance the prevalence of pathogens [5,6,7,8]. Captive and free-ranging neotropical NHPs harbour a large diversity of pathogens [9]. Several factors influence the richness, prevalence, and transmission of pathogens in NHPs. Some individuals are more susceptible than others depending on their sex, age, NHP species, behaviour and social status, population density and geographic location.
Trypanosomes are a widespread group of pathogens that infect all kinds of vertebrates across America, Africa, Asia and Europe [10,11,12,13,14,15]. Trypanosomes are intracellular or extracellular pathogens found in blood, lymph and tissues [16,17,18,19]. Although trypanosomatids are widespread pathogens of mammals in the Americas, their biology, taxonomy and pathology are not well known for neotropical NHPs [20]. Natural infections of trypanosomes are common in neotropical NHPs. The prevalence of trypanosomes among NHPs can vary from one species to another [21]. According to Aysanoa et al. [22], prevalence was higher in free-ranging NHPs than in captive NHPs [23]. Some species such as Trypanosoma cruzi are common among NHPs’ trypanosomes and can cause myocarditis, haemorrhage, and encephalitis to NHPs [24,25,26]. In addition to Trypanosoma cruzi, NHPs can be infected by 12 more species (Appendix A). Some species are non-pathogenic to the host such as Trypanosoma minasense [27]. T. minasense does not infect blood-sucking triatomines such as other species of trypanosomes [28], and information of vector is scarce [29]. However, it is suggested that some species of Trypanosoma sp. can be transmitted by oral contamination [30,31]. Trypanosoma minasense, T. devei and T. lambrechti are considered the most primitive species infecting neotropical mammals among the other species belonging to the genus Trypanosoma [32].
Babesia is the genus of several species of tick-borne pathogens affecting the red cells of several mammals and birds [33,34,35,36,37,38,39,40]. Three species of Babesia sp. are zoonotic: B. divergens, B. duncani and B. microti. Babesia microti in America is a blood pathogen, this apicomplexan can infect humans (serve as accidental host) and causes babesiosis. Rodents are natural reservoirs [41], and ticks of the family Ixodidae that infect deer are the primary vectors of Babesia microti [42,43,44]. In old-world NHPs, Babesia microti has been observed in several species of NHPs [45,46]. In neotropical NHPs, Babesia sp. can be found at least in five different NHP species [47,48]. However, the species of Babesia sp. are uncharacterised [49].
The internal transcribed spacers (ITS) are widely used for molecular characterization and phylogenetic studies [50,51,52,53]. The ITS region includes the ITS1 and the ITS2. These ITS vary in size between species and subspecies [54] and show more variation than the ribosomal coding region, with high evolutionary rates [55]. This gene was used to molecularly characterize trypanosomes and to study the phylogenetic of trypanosomes [56,57,58,59,60,61,62]. The Cathepsin L-like (CatL-like) protein is a cysteine protease important in the life cycle and pathogenicity of trypanosomes, involved in mechanisms such as tissue damage, invasion, and recovery of metabolites from host proteins [63,64,65,66]. The active site sequence of the gene encoding this protein, being a conserved, multi-copy gene, has been widely used as a targetable marker for Trypanosoma spp. diagnosis, in some cases in combination with other molecular markers such as ITS and 18S [67,68,69,70,71].
Molecular genetic analysis has had its limitations in wild populations due to the difficult access to blood or tissue samples for DNA extraction [72], which is why non-invasive sampling has been chosen worldwide. The main drawback is mainly due to the low amount of genetic material obtained [72]. However, in 1990, Boom et al. [73] presented the first study that succeeded in isolating DNA from epithelial cells that were mixed with faeces. Since then, with improvements included in their protocols, conservation genetics studies use faecal samples for DNA extraction [74,75,76]. Molecular analysis of faecal samples has already been used to decipher the origins of major pathogens in human and non-human primates [77,78,79,80,81,82,83,84,85,86,87], even in blood pathogens [61,88,89]. Successful amplification of Trypanosoma sp. [90] and Babesia sp. DNA in previous studies from stool samples in mice, dogs, and foxes [91] offers a non-invasive option as a valid alternative to traditional sampling methods.
In Ecuador, information regarding blood pathogens in NHPs is scarce. Therefore, this study aimed for the first time to detect Trypanosoma and Babesia in captive and free-ranging NHPs from the Ecuadorian Amazon through molecular techniques (PCR and sequencing).

2. Materials and Methods

2.1. Sampling Location

This study was performed in Puyo (1°2′9′1.3′ S 78°0.154′ W) and Mera (0°10′0″ S and 78°28′0″ W), Tena (Napo) (0.9938° S 77.8129° W), and Macas (Morona Santiago) (2.3087° S 78.1114° W), four cities in the Western Amazon region. We collected samples from a free-ranging population in Misahualli, Tena (1°2′7.0′ S, 77°39′59.4″ W) and from captive individuals located in 5 different wildlife rehabilitation centers of Ecuador. Captive NHPs have been donated by families or confiscated by the police during roadside checks; individual information such as location origin is uncertain (Figure 1).

2.2. Sample Collection and Ethics Statement

We collected a total of 76 fecal samples of 11 species of NHPs (Table 1) between 2019 and 2021. The sample collection and ethical procedures were approved by the local authorities, the Ministerio del Ambiente, Agua y Transición Ecológica, MAATE (No. MAE-DNB-CM-2015-0028-M-002). Individuals were followed daily from 08:00 h to 18:00 h to avoid multiple sampling. In addition, all animals were individually identified to avoid confusion between individuals and to facilitate species, sex and age association [92]. Finally, we collected the faecal samples immediately after defecation to avoid a possible contamination from the environment and were taken at least 24 h without disturbing the animals. In primatology, when birth dates are unknown, age as well as sex, is generally assigned in categories based on physical characteristics including body size, dentition and gland development in species where these are evident, and behavioral characteristics [93,94,95]. All samples were processed at the International Centre of Zoonoses at the Central University of Ecuador and examined at the Biotechnology Animal Lab at the Universidad de las Fuerzas Armadas ESPE.

2.3. Storage and DNA Isolation Protocol

For the molecular evaluation, samples were stored in 50 mL Falcon tubes in 99% alcohol at −20 °C to prevent the degradation of DNA. In addition, 600 μL of faeces suspension (1:3; 1 part of faecal sample and 3 parts of ethanol 96–100%) was centrifuged for 2 min at 239 g and the pellet was washed with 1 mL of PBS Buffer (Oxoid, Hampshire, England). This solution (pellet + PBS) was centrifuged for 5 min and the supernatant was discarded. This washing step was repeated three times. Next, the pellet was resuspended in 600 μL of 2% PVPP (polyvinylpolypyrolidone—Sigma), and frozen overnight at −20 °C to facilitate the capture of phenols in the sample. DNA extraction was performed twice on different days using the QIAamp Stool FAST Mini Kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s instructions. To prevent cross-contamination, sample preparation, DNA extraction, and the polymerase chain reaction (PCR) were performed in completely different and separate rooms.

2.4. Molecular Amplification and Sequencing of Trypanosoma sp.

The molecular identification was performed with two PCR assays: (i) A CatL-PCR, according to reaction conditions by Cortez et al. [70] (Table 2), with adaptations in the reaction mixture, that consisted of a final volume of 25 μL with 1× of Buffer, 1 μM of each primer DTO154 and DTO155 (Table 3), 1.5 mM of MgCl 2 , 0.2 mM of dDNT Mix, 1.25 U of Taq Platinum Polymerase (Invitrogen) and 2 μL of DNA. (ii) A nested ITS-PCR as described by [96,97], the reaction mixture consisted of 1× of Buffer, 1 μM of each primer (ITS1 and ITS2 in the first reaction, ITS3 and ITS4 in the second reaction) (Table 3), 2.5 mM of MgCl 2 , 0.2 mM of dDNT Mix, 1.25 U of Tap Platinum Polymerase (Invitrogen) and 2 μL of DNA in the first reaction and 1uL of first reaction PCR product in the second reaction; the amplification consisted of an initial denaturation of 95 °C for 7 min; 35 cycles of 95 °C for 1 min, 59 °C for 1 min, 72 °C for 2 min in the first reaction and 1.5 min in the second reaction; and a final extension step at 72 °C for 10 min (Table 4). The final PCR products of the CatL-PCR and ITS-PCR were observed using the electrophoresis of an agarose gel under UV light. ITS-PCR amplicons were cut, extracted using the Wizard® SV Gel and PCR Clean-Up System (Promega) and sequenced (Sanger sequencing) by Macrogen (South Korea). Every PCR reaction contained a negative (nuclease-free water) and a positive control. A positive control for CatL-PCR was a positive DNA sample of Trypanosoma vivax [98] and for ITS-PCR a positive DNA sample of Trypanosoma theileri, available in the Laboratorio de Biotecnología Animal of the Universidad de las Fuerzas Armadas ESPE. Two sequences belonging to the 5.8S and ITS-2 were recovered from Sanger sequencing Macrogen Korea.

2.5. Molecular Amplification and Sequencing of Babesia sp.

The molecular identification by PCR was performed with the primers designed by Olmeda et al. [99] and using the reaction condition described by Medina Naranjo et al. [100], which consisted of: 1× of Buffer, 0.25 μM of each primer Piro A and Piro B (Table 3), 1.5 mM of MgCl 2 , 0.2 mM of dDNT Mix, 0.5 U of Tap Platinum Polymerase (Invitrogen) and 2 μL of DNA; the amplification of an initial denaturation of 94 °C for 5 min; 35 cycles of 94 °C for 1 min, 55 °C for 1 min, 72 °C for 30 sec; and a final extension step at 72 °C for 5 min (Table 5). The PCR products were observed using the electrophoresis of an agarose gel under UV light. Every PCR reaction contained a negative and a positive control. A positive control for Babesia sp. was a DNA sample obtained from the study performed by Chávez-Larrea et al. [101].

2.6. Molecular Analysis: Sequence Assembled, Alignments and Phylogenetic Analyses

Sequences were uploaded to GenBank under the accession number OP683488.1 for Trypanosoma sp. detected in Leontocebus lagonotus and OP683532.1 for Trypanosoma sp. detected in Cebus albifrons. Our two 5.8S-ITS-2 sequences of 400 bp length were contig assembly and consensus sequences of ITS-2 were performed and edited using Assembler by MacVector software 18.2.5 [9], then the sequence identity was confirmed by BLAST in NCBI resources. The two sequences were first aligned with the unique complete sequence 18S-ITS1-5.8S-ITS2-28S available in GenBank that included ITS2 (T. minansense AB362411.1 by Sato et al. [102], recovered from new-world NHPs from South American tamarins) to corroborate the portion of rDNA and matching or sequences (from 2636 bp to 3019 bp). The 5.8S-ITS-2 sequences deposited in GenBank NCBI from other species of Trypanosoma were included as sister groups and Leishmania was selected as the outgroup sensu [103] to get a wide geographic diversity and taxonomic representative and to test the phylogenetic species monophyly.
A phylogenetic analysis was performed using a total of 23 ITS-2 sequences from 13 species of Trypanosoma that were retrieved from GenBank and included two species of Leishmania as outgroup to corroborate the Blast identity close to Trypanosomatidae and to search the evolutionary relationships with other trypanosomes (Table 6).
The DNA sequences were aligned using MacVector 18.2.5 by the ClustalW algorithm with high gap creation and extension penalties by 30.0 and 10.0, respectively, searching for a strong positional homology.
The evolutionary history was inferred by using the maximum parsimony and likelihood methods with the Kimura2+G+I model. Maximum Parsimony analyses were implemented in PAUP 4.0a (169 build) [104] using the heuristic search option with a Tree Bisection Reconnection branch-swapping algorithm with at-random stepwise addition of 10 replicates for each search and 100–1000 replications per analysis. Gaps were treated both as missing data. The characters were treated as unordered, and equally weighted, after the characters were weighted by consistency index. The robustness of the trees was estimated using parsimony bootstrap with 1000 pseudoreplicates after excluding uninformative characters [105]. We also performed a Maximum Likelihood (ML, and substitution model estimated on MEGAX).

3. Results

We have performed a PCR and a Nested PCR to detect the gene Trypanosoma from faecal samples of 11 species of NHPs. The PCR with the Catepsine L-Like gene failed to amplify DNA from Trypanosoma sp., although this gene can be easily amplified in other samples from wild mammals [106]. On the other hand, the Nested PCR of 35 cycles successfully amplified the ITS1 gene.
The nested PCR results showed a total of 8/76 (10.53%) samples positive for Trypanosoma sp. Positive samples belong to Alouatta seniculus (n = 1), Ateles belzebuth (n = 1), Cebus albifrons (two captive and two free-ranging individuals), Lagothrix lagotricha (n = 1) and Leontocebus lagonotus (n = 1). Among these positive samples, two (2.63%) yielded amplicons for trypanosomes species in Leontocebus lagonotus (from the captive population) and Cebus albifrons (from the free-ranging population). The sequences presented a first Blast identity with Trypanosomatidae.
We did not observe positive samples for Babesia sp. for any of the samples.
From the 458 Trypanosoma sequences in GenBank that partially or completely included ITS-2 belonging to 16 species, we aligned the two ITS sequences amplified from the faecal samples with 21 ITS sequences from 13 species (Table 3) (three species from Russia were not included) to elaborate the cladogram.
The cladogram showed that our two sequences belong to the trypanosomes genus. Our results revealed two unexpected novel sequences. The topology of the cladogram (Figure 2A) shows two clades (A and B). The clade shows subclades A.1 with T. cruzi as a sister group of the Trypanosoma group of Leontocebus lagonotus ME001 Ecuador + T. brucei, T. evansi and T. equiperdum in derived position and subclade A.2 with T. rangeli + [minasense (cf.cervi + theileri)]. However, there is no sequence available with which to identify monophyly.
Clade B shows the sequence of Cebus albifrons PM020 from Ecuador, internally and closely related to T. congolense and basal to T. vivax + [(Trypanosmatidae sp (T. godfreyi + T. simiae)], showing its close relationship with these species. Likewise, there is no ITS-2 sequence in GenBank that shows monophyly with our sequence for a specific identification.
The topologies using maximum parsimony (MP) and maximum likelihood (ML) under the Kimura2+G+I model showed identical relationships (Figure 2B), the two Leishmania species as outgroup allow corroborating the monophyly of Trypanosoma (100% bootstrap), as well as our sequences showing their evolutionary relationship within the genus.

4. Discussion

The present study is the first at the national level and one of the few at the regional level to identify two species of Trypanosoma sp. using non-invasive techniques. Although the ITS region was successfully amplified in wild gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) for trypanosomes, this is the first study in the neotropical region to use the ITS region to amplify trypanosomes in faecal samples. We identified the first record of Trypanosoma for the NHP species Leontocebus lagonotus and the first report for Ecuador of Trypanosoma in Cebus albifrons. We detected 10.53% of positive samples, whereas only 2.63% yielded a positive sequence. This prevalence is lower than other studies [107,108]. In Aysanoa et al. [22], they found a lower prevalence in captive NHP individuals than in wild individuals. Captive animals may be subject to liberation projects, and they can introduce new trypanosomatids to liberation sites. Triatomines were found in a Brazilian zoo, infesting neotropical NHPs. This indicates that the same pattern could be possible in Ecuadorian wildlife rehabilitation centers where vegetation could facilitate the presence of trypanosomes vectors. Common vectors of trypanosomes like triatomine bugs (Panstrongylus geniculatus, Triatoma dimidiata, Rhodnius pictipes and Rhodnius robustus) can be found in the Ecuadorian Amazon [17,109] and the proximity of the forests to the centers would facilitate the maintenance of the forest cycle.
Previous studies have suggested that trypanosomes tend to have harmful effects on the health of infected hosts [110,111,112,113,114]. However, information on the effect of triatomines in NHPs is scarce. The individuals who tested positive had no obvious symptoms that would allow us to make a statement about their health condition, noting that trypanosome records have been made in healthy individuals as well as in sick individuals.
After phylogenetic reconstruction, we identified two large groups: the first, in which we found the sample of Leontocebus lagonotus within the same cladogram as the species of T. brucei, T. equiperdum, T. evansi, T. cruzi, T. minasense and T. theileri. In the second cladogram, we found the sample of Cebus albifrons together with the species of: T. simiae, T. godfreyi, T. vivax and T. congolense. This distribution coincides with several authors [102]. The two samples show different molecular identifications and evolutionary origins, certainly two species, and two localities of infection.
The use of molecular tools for the detection of Trypanosoma spp. is crucial because of the unreliability of detection methods based on the observation of their morphology [115,116]. The two sequences are shown to be in monophyly with Trypanosoma; however, there are not enough sequences available in GenBank for their specific identification.
As mentioned before, the gene from the Cathepsin L-like protein failed to amplify in the faecal samples. However, past studies diagnosed T. rangeli, T. cruzi and T. theileri with this gene [71,106,117,118]. This protein is a lysosomal cysteine proteinase. The Cathepsin L-like protein is found in several stages of cell multiplication and differentiation as well as cell metabolism and virulence (host cell invasion, immune evasion) in protozoan parasites such as trypanosomes [119,120]. However, according to Cortez et al. [70], this gene has a different number of copies depending on the trypanosome species and therefore is species-specific, and because we were surveying trypanosomes in general, the protocol failed to amplify for all trypanosome species and specifically for neotropical NHPs’ trypanosomes, given what was observed with the amplification of the ITS gene.
Based on the findings, the ITS gene is a useful molecular marker to detect trypanosomes; however, for further studies, it is suggested to amplify with 18S-ITS-1 (higher availability); this combination would support us in defining in more specific detail the molecular characterization of these two records. Unfortunately, only T. simiae, T. rangeli, T. cruzi and T. minasense (included) of the NHPs-associated Trypanosoma have ITS2 sequences available in GenBank from the list in Appendix A.
We did not record the presence of Babesia sp., a protozoan pathogen with a worldwide distribution restricted to tropical and subtropical areas [101]. Non-human primates are a group of mammals that have generated strategies to prevent pathogens [121,122,123]. One of these strategies is grooming. Grooming is a behaviour that directly supports health-related aspects of different primate species, including the removal of ectopathogens such as leeches in Macaca fuscata [124] and ticks [125,126]. For Papio cynocephalus (Africa), it was recorded that the amount of grooming received, sex, age and hierarchical level affected the tick load of an individual. However, the primary function of grooming contributes to social aspects in different old=world primate species [127], whereas, in new-world primates, it is suggested that the main function of grooming is hygienic [128]. For this reason, this type of grooming can explain the absence of Babesia sp. in our study. It is important to conduct long-term studies that allow us to relate the presence of ticks to the prevalence/absence of tick-borne diseases in non-human primates.

5. Conclusions

This is the first study to amplify trypanosomes in Ecuadorian NHP species.
Even if the prevalence was low, we suggest the implementation of health management protocols to avoid the transmission of blood-borne pathogens such as Trypanosoma sp. among captive populations. In addition, these protocols protect the personnel of wildlife rehabilitation centers working in close proximity to NHPs and vice versa. Socioecological aspects are of utmost importance to understand pathogen–vector–host relationships in different species of NHPs. In Ecuador, research activities should be focused on blood pathogens to fill the gap of information and to implement surveillance programs with regular and effective monitoring protocols adapted to NHPs. We suggest to increase the monitoring of free-ranging groups across Ecuador to clarify the role of NHPs as reservoir hosts of novel trypanosomes.

Author Contributions

Conceptualization, C.S. and G.C.-B.; methodology, G.C.-B., J.-C.N., S.M.-S. and C.C.-I.; software, J.-C.N.; validation, C.S., S.M.-S., G.C.-B. and J.-C.N.; formal analysis, G.C.-B., J.-C.N. and S.M.-S.; investigation, G.C.-B. and C.S.; resources, G.C.-B. and S.M.-S.; data curation, G.C.-B. and S.M.-S.; writing—original draft preparation, G.C.-B.; writing—review and editing, C.S., S.M.-S., J.-C.N. and M.-A.C.-L.; visualization, G.C.-B. and S.M.-S.; supervision, C.S.; project administration, G.C.-B.; funding acquisition, G.C.-B. and C.S. All authors have read and agreed to the published version of the manuscript.

Funding

This work was funded the Academy of Research and Higher Education (ARES) through an institutional support program entitled “Hemoparasites and arboviruses in non-human primates of the Ecuadorian Amazon using non-invasive techniques”, which involves the Universidad Central del Ecuador and the University of Liège in Belgium. We also had a grant from UISEK number: DII-UISEK-P011617-2 (J.-C.N.).

Institutional Review Board Statement

Sample collection procedures were approved by the Ministerio del Ambiente, Agua y Transición Ecológica, MAATE (MAE-DNB-CM-2015-0028-M-002).

Informed Consent Statement

Not applicable.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Appendix A

Trypanosomes in neotropical non-human primate species (updated from Carrillo-Bilbao et al. [129]).
TrypanosomeNon-Human Primate SpeciesReference
Leishmania sp.
Leishmania (Viannia)
Alouatta guariba
Atelidae (unknown species)
Aoutus azarai azarai
Aotus nigriceps
Callicebus nigrifrons
Callithrix jacchus
Callithrix penicillata
Cebus macrocephalus
Lagothrix cana
Leontopithecus crysomelas
Pithecia sp.
Pithecia irrorata
Saguinus imperator
Saimiri ustus madeirae
Sapajus apella
Sapajus xanthosternos
[130,131,132,133,134]
Leishmania amazonensisAteles paniscus[135]
Leishmania braziliensisSaguinus geoffroyi[136]
Leishmania chagasi
Leishmania infantum
Callicebus nigrifrons
Callithrix jacchus
[133]
[137]
Leishmania mexicanaAlouatta palliata
Alouatta pigra
[138]
Leishmania (Viannia) shawiChiropotes satanus
Sapajus apella
[139]
Trypanosoma sp. Alouatta palliata
Alouatta seniculus
Ateles paniscus
Pithecia pithecia
Saguinus leucopus
Saimiri sciureus
[27,140]
Trypanosoma cruziAlouatta palliata
Alouatta pigra
Alouatta caraya
Alouatta seniculus
Ateles belzebuth
Ateles chamek
Ateles geoffroyi
Ateles fusciceps
Ateles paniscus
Aotus sp.
Aotus azarai
Aotus nigriceps
Cacajao calvus
Callicebus personatus
Callicebus nigrifrons
Callithrix geoffroyi
Callithrix jacchus
Callithrix penicillata
Cebuella pygmaea
Cebus albifrons
Cebus capucinus
Cebus olivaceus
Cheracebus torquatus
Chiropotes satanas
Lagothrix lagotricha
Lagothrix cana
Leontopithecus chrysopygus
Leontopithecus chrysomelas
Leontopithecus rosalia
Leontocebus fuscicollis
Leontocebus fuscicollis weddelli
Leontocebus nigricollis
Mico chrysoleucus
Mico argentatus
Mico emiliae
Pithecia irrorata
Pithecia chrysocephala
Plecturocebus brunneus
Saguinus niger
Saguinus geoffroyi
Saguinus bicolorbicolor
Saguinus imperator imperator
Saguinus labiatus
Saguinus leucopus
Saguinus midas
Saguinus mystax
Saguinus ustus
Saimiri boliviensis
Saimiri sciureus
Saimiri ustus
Sapajus apella
Sapajus flavus
Sapajus libidinosus
Sapajus robustus
Sapajus xanthosternos
[21,26,31,32,58,107,108,136,138,141,142,143,144,145,146,147,148]
Trypanosoma deveiCebuella pygmaea
Callimico goeldii
Leontocebus fuscicollis weddelli
Leontocebus tamarin
Saguinus imperator
[108,149,150]
Trypanosoma diasiAlouatta palliata
Sapajus apella apella
[27,149]
Trypanosoma forestaliAlouatta guariba
Alouatta caraya
[32]
Trypanosoma hippicumAlouatta guariba
Alouatta seniculus
[151]
Trypanosoma lambrechtiAlouatta seniculus
Cebus albifrons
Cheracebus torquatus
Chiropotes satanas
Pithecia pithecia
Sapajus apella
[32,136,151]
Trypanosoma lesourdiAteles paniscus[32]
Trypanosoma mycetaeAlouatta belzebul
Alouatta belzebul belzebul
Alouatta palliata
Alouatta caraya
Alouatta seniculus
Chiropotes satanas
[32,144,148,149,150,151]
Trypanosoma minasenseAlouatta belzebul
Alouatta caraya
Alouatta guariba
Alouatta palliata
Alouatta seniculus
Aotus trivirgatus
Ateles fusciceps
Ateles geoffroyi griscescens Callithrix jacchus
Callithrix penicillata
Cebus albifrons
Cebus capucinus
Leontocebus weddelli
Leontocebus fuscicollis weddelli
Plecturocebus ornatus
Saguinus geoffroyi
Saguinus imperator imperator
Saguinus midas
Saimiri sciureus
Saimiri sciureus macrodon
Saimiri ustus
Sapajus apella
[21,27,32,102,108,136,141,144,148,149,152,153]
Trypanosoma rangeli likeAlouatta seniculus
Alouatta belzebul
Alouatta caraya
Cebuella pygmaea
Cebus albifrons unicolor
Cebus capucinus
Callimico goeldii
Leontocebus fuscicollis weddelli
Pithecia pithecia
Saguinus bicolor
Saguinus bicolor bicolor
Saimiri boliviensis
Saimiri ustus
Saimiri sciureus
Saguinus geoffroyi
Saguinus imperator imperator
Saguinus midas
Saimiri boliviensis
Sapajus apella Sapajus libidinosus
[21,30,108,141,144,148,154,155]
Trypanosoma saimiriSaimiri sciureus sciureus[150]
Trypanosoma venezuelensisAlouatta guariba
Alouatta seniculus
[151]

References

  1. Santa Cruz, A.C.M.; Borda, J.T.; Patiño, E.M.; Gomez, L.; Zunino, G.E. Habitat fragmentation and parasitism in howler monkeys (Alouatta caraya). Neotrop. Primates 2000, 8, 146–148. [Google Scholar]
  2. Klaus, A.; Strube, C.; Röper, K.M.; Radespiel, U.; Schaarschmidt, F.; Nathan, S.; Goossens, B.; Zimmermann, E. Fecal parasite risk in the endangered proboscis monkey is higher in an anthropogenically managed forest environment compared to a riparian rain forest in Sabah, Borneo. PLoS ONE 2018, 13, e0195584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Estrada, A.; Garber, P.A.; Mittermeier, R.A.; Wich, S.; Gouveia, S.; Dobrovolski, R.; Nekaris, K.A.I.; Nijman, V.; Rylands, A.B.; Maisels, F.; et al. Primates in peril: The significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ 2018, 6, e4869. [Google Scholar] [CrossRef] [Green Version]
  4. Estrada, A.; Garber, P.A.; Rylands, A.B.; Roos, C.; Fernandez-Duque, E.; Fiore, A.D.; Nekaris, K.A.-I.; Nijman, V.; Heymann, E.W.; Lambert, J.E.; et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 2017, 3, e1600946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Hussain, S.; Ram, M.S.; Kumar, A.; Shivaji, S.; Umapathy, G. Human Presence Increases Parasitic Load in Endangered Lion-Tailed Macaques (Macaca silenus) in Its Fragmented Rainforest Habitats in Southern India. PLoS ONE 2013, 8, e63685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Chapman, C.A.; Speirs, M.L.; Gillespie, T.R.; Holland, T.; Austad, K.M. Life on the edge: Gastrointestinal parasites from the forest edge and interior primate groups. Am. J. Primatol. 2006, 68, 397–409. [Google Scholar] [CrossRef] [PubMed]
  7. Rondón, S.; Cavallero, S.; Renzi, E.; Link, A.; González, C.; D’Amelio, S. Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms 2021, 9, 2546. [Google Scholar] [CrossRef] [PubMed]
  8. Solórzano-García, B.; Pérez-Ponce de León, G. Parasites of Neotropical Primates: A Review. Int. J. Primatol. 2018, 39, 155–182. [Google Scholar] [CrossRef]
  9. Carrillo Bilbao, G.A.; Navarro, J.-C.; Garigliany, M.-M.; Martin-Solano, S.; Minda, E.; Benítez-Ortiz, W.; Saegerman, C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens 2021, 10, 791. [Google Scholar] [CrossRef]
  10. Fermino, B.R.; Paiva, F.; Viola, L.B.; Rodrigues, C.M.F.; Garcia, H.A.; Campaner, M.; Takata, C.S.A.; Sheferaw, D.; Kisakye, J.J.; Kato, A.; et al. Shared species of crocodilian trypanosomes carried by tabanid flies in Africa and South America, including the description of a new species from caimans, Trypanosoma kaiowa n. sp. Parasites Vectors 2019, 12, 225. [Google Scholar] [CrossRef] [PubMed]
  11. Dvořáková, N.; Čepička, I.; Qablan, M.A.; Gibson, W.; Blažek, R.; Široký, P. Phylogeny and Morphological Variability of Trypanosomes from African Pelomedusid Turtles with Redescription of Trypanosoma mocambicum Pienaar, 1962. Protist 2015, 166, 599–608. [Google Scholar] [CrossRef] [PubMed]
  12. Desquesnes, M.; Gonzatti, M.; Sazmand, A.; Thévenon, S.; Bossard, G.; Boulangé, A.; Gimonneau, G.; Truc, P.; Herder, S.; Ravel, S.; et al. A review on the diagnosis of animal trypanosomoses. Parasites Vectors 2022, 15, 64. [Google Scholar] [CrossRef] [PubMed]
  13. Pornpanom, P.; Salakij, C.; Prasopsom, P.; Lertwatcharasarakul, P.; Kasorndorkbua, C.; Santavakul, M. Morphological and molecular characterization of avian trypanosomes in raptors from Thailand. Parasitol. Res. 2019, 118, 2419–2429. [Google Scholar] [CrossRef]
  14. Ortiz-Baez, A.S.; Cousins, K.; Eden, J.S.; Chang, W.S.; Harvey, E.; Pettersson, J.H.; Carver, S.; Polkinghorne, A.; Šlapeta, J.; Rose, K.; et al. Meta-transcriptomic identification of Trypanosoma spp. in native wildlife species from Australia. Parasites Vectors 2020, 13, 447. [Google Scholar] [CrossRef] [PubMed]
  15. Magri, A.; Galuppi, R.; Fioravanti, M. Autochthonous Trypanosoma spp. in European Mammals: A Brief Journey amongst the Neglected Trypanosomes. Pathogens 2021, 10, 334. [Google Scholar] [CrossRef] [PubMed]
  16. da, S.F.J.I.; da Costa, A.P.; Ramirez, D.; Roldan, J.A.; Saraiva, D.; da, S.F.G.F.; Sue, A.; Zambelli, E.R.; Minervino, A.H.; Verdade, V.K.; et al. Anuran trypanosomes: Phylogenetic evidence for new clades in Brazil. Syst. Parasitol. 2015, 91, 63–70. [Google Scholar] [CrossRef]
  17. Amunárriz, M.; Chico, M.E.; Guderian, R.H. Chagas disease in Ecuador: A sylvatic focus in the Amazon region. J. Trop. Med. Hyg. 1991, 94, 145–149. [Google Scholar] [PubMed]
  18. Magez, S.; Pinto Torres, J.E.; Obishakin, E.; Radwanska, M. Infections with Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Front. Immunol. 2020, 11, 382. [Google Scholar] [CrossRef] [Green Version]
  19. Alfituri, O.A.; Bradford, B.M.; Paxton, E.; Morrison, L.J.; Mabbott, N.A. Influence of the Draining Lymph Nodes and Organized Lymphoid Tissue Microarchitecture on Susceptibility to Intradermal Trypanosoma brucei Infection. Front. Immunol. 2020, 11, 1118. [Google Scholar] [CrossRef]
  20. Dario, M.A.; Lisboa, C.V.; Xavier, S.; D’Andrea, P.S.; Roque, A.L.R.; Jansen, A.M. Trypanosoma Species in Small Nonflying Mammals in an Area with a Single Previous Chagas Disease Case. Front. Cell. Infect. Microbiol. 2022, 12, 812708. [Google Scholar] [CrossRef] [PubMed]
  21. Ziccardi, M.; Lourenço-de-Oliveira, R. The infection rates of trypanosomes in squirrel monkeys at two sites in the Brazilian Amazon. Mem. Inst. Oswaldo Cruz 1997, 92, 465–470. [Google Scholar] [CrossRef] [PubMed]
  22. Aysanoa, E.; Mayor, P.; Mendoza, A.P.; Zariquiey, C.M.; Morales, E.A.; Pérez, J.G.; Bowler, M.; Ventocilla, J.A.; González, C.; Baldeviano, G.C.; et al. Molecular Epidemiology of Trypanosomatids and Trypanosoma cruzi in Primates from Peru. Ecohealth 2017, 14, 732–742. [Google Scholar] [CrossRef] [PubMed]
  23. Dorn, P.L.; Daigle, M.E.; Combe, C.L.; Tate, A.H.; Stevens, L.; Phillippi-Falkenstein, K.M. Low prevalence of Chagas parasite infection in a nonhuman primate colony in Louisiana. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 443–447, PMCID:PMC3400692. [Google Scholar] [PubMed]
  24. Jansen, A.M.; Xavier, S.C.d.C.; Roque, A.L.R. Trypanosoma cruzi transmission in the wild and its most important reservoir hosts in Brazil. Parasites Vectors 2018, 11, 502. [Google Scholar] [CrossRef] [PubMed]
  25. Lisboa, C.V.; Mangia, R.H.; Luz, S.L.B.; Kluczkovski, A.; Ferreira, L.F.; Ribeiro, C.T.; Fernandes, O.; Jansen, A.M. Stable infection of primates with Trypanosoma cruzi I and II. Parasitology 2006, 133, 603–611. [Google Scholar] [CrossRef] [PubMed]
  26. Bahia, M.; de Nazaré Leite Barros, F.; Magalhães-Matos, P.C.; de Souza Gonçalves, T.; Chiesorin Neto, L.; Oliveira Faria, D.C.; Aparecida Romeiro, S.; Barros Monteiro, F.O.; Góes-Cavalcante, G.; Scofield, A. Trypanosoma cruzi infection in captive Neotropical primates in the Brazilian Amazon. Am. J. Primatol. 2017, 79, e22590–6. [Google Scholar] [CrossRef] [PubMed]
  27. Chinchilla, M.; Troyo, A.; Guerrero, O.M.; Gutiérrez-Espeleta, G.A.; Sánchez, R. Presencia de Trypanosoma minasense (Kinetoplastida: Trypanosomatidae) en Alouatta palliata (Primates: Cebidae) de Costa Rica. Parasitol. latinoam. 2005, 60, 90–92. [Google Scholar] [CrossRef] [Green Version]
  28. Luquetti, A.; Schmuñis, G. 28—Diagnosis of Trypanosoma cruzi Infection. In American Trypanosomiasis; Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, UK, 2010; pp. 743–792. [Google Scholar]
  29. Ziccardi, M.; Lourenço-de-Oliveira, R.; Nogueira, R. The haemoculture of Trypanosoma minasense Chagas, 1908. Mem. Inst. Oswaldo Cruz 1996, 91, 501–505. [Google Scholar] [CrossRef] [Green Version]
  30. Dario, M.A.; Pavan, M.G.; Rodrigues, M.S.; Lisboa, C.V.; Kluyber, D.; Desbiez, A.L.J.; Herrera, H.M.; Roque, A.L.; Lima, L.; Teixeira, M.M.G.; et al. Trypanosoma rangeli Genetic, Mammalian Hosts, and Geographical Diversity from Five Brazilian Biomes. Pathogens 2021, 10, 736. [Google Scholar] [CrossRef]
  31. Bueno, M.G.; Catão-Dias, J.L.; de Oliveira Laroque, P.; Arruda Vasconcellos, S.; Ferreira Neto, J.S.; Gennari, S.M.; Ferreira, F.; Laurenti, M.D.; Umezawa, E.S.; Kesper, N.; et al. Infectious Diseases in Free-Ranging Blonde Capuchins, Sapajus flavius, in Brazil. Int. J. Primatol. 2017, 38, 1017–1031. [Google Scholar] [CrossRef]
  32. Hoare, C.A. The Trypanosomes of Mammals: A Zoological Monograph; Blackwell Scientific Publications: Oxford, UK, 1972. [Google Scholar]
  33. Wilhelmsson, P.; Pawełczyk, O.; Jaenson, T.G.T.; Waldenström, J.; Olsen, B.; Forsberg, P.; Lindgren, P.E. Three Babesia species in Ixodes ricinus ticks from migratory birds in Sweden. Parasites Vectors 2021, 14, 183. [Google Scholar] [CrossRef] [PubMed]
  34. Montero, E.; González, L.M.; Chaparro, A.; Benzal, J.; Bertellotti, M.; Masero, J.A.; Colominas-Ciuró, R.; Vidal, V.; Barbosa, A. First record of Babesia sp. in Antarctic penguins. Ticks Tick Borne Dis. 2016, 7, 498–501. [Google Scholar] [CrossRef] [PubMed]
  35. de Marco, M.; Hernández-Triana, L.M.; Phipps, L.P.; Hansford, K.; Mitchell, E.S.; Cull, B.; Swainsbury, C.S.; Fooks, A.R.; Medlock, J.M.; Johnson, N. Emergence of Babesia canis in southern England. Parasites Vectors 2017, 10, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Zhang, X.L.; Li, X.W.; Li, W.J.; Huang, H.L.; Huang, S.J.; Shao, J.W. Molecular evidence of Babesia in pet cats in mainland China. BMC Vet. Res. 2019, 15, 476. [Google Scholar] [CrossRef] [Green Version]
  37. Paulauskas, A.; Aleksandravičienė, A.; Lipatova, I.; Griciuvienė, L.; Kibiša, A.; Žukauskienė, J.; Radzijevskaja, J. Molecular detection of Babesia spp. in European bison (Bison bonasus) and their ticks. Ticks Tick Borne Dis. 2021, 12, 101807. [Google Scholar] [CrossRef] [PubMed]
  38. Gao, Z.H.; Huang, T.H.; Jiang, B.G.; Jia, N.; Liu, Z.X.; Shao, Z.T.; Jiang, R.R.; Liu, H.B.; Wei, R.; Li, Y.Q.; et al. Wide Distribution and Genetic Diversity of Babesia microti in Small Mammals from Yunnan Province, Southwestern China. PLoS Negl. Trop. Dis. 2017, 11, e0005898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  39. Hamšíková, Z.; Kazimírová, M.; Haruštiaková, D.; Mahríková, L.; Slovák, M.; Berthová, L.; Kocianová, E.; Schnittger, L. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasites Vectors 2016, 9, 292. [Google Scholar] [CrossRef] [Green Version]
  40. de Sousa, K.C.M.; Fernandes, M.P.; Herrera, H.M.; Freschi, C.R.; Machado, R.Z.; André, M.R. Diversity of piroplasmids among wild and domestic mammals and ectoparasites in Pantanal wetland, Brazil. Ticks Tick Borne Dis. 2018, 9, 245–253. [Google Scholar] [CrossRef] [Green Version]
  41. Santodomingo, A.M.; Thomas, R.S.; Quintero-Galvis, J.F.; Echeverry-Berrio, D.M.; la Fuente, M.C.S.; Moreno-Salas, L.; Muñoz-Leal, S. Apicomplexans in small mammals from Chile, with the first report of the Babesia microti group in South American rodents. Parasitol. Res. 2022, 121, 1009–1020. [Google Scholar] [CrossRef]
  42. Gray, J.S.; Ogden, N.H. Ticks, Human Babesiosis and Climate Change. Pathogens 2021, 10, 1430. [Google Scholar] [CrossRef]
  43. Young, K.M.; Corrin, T.; Wilhelm, B.; Uhland, C.; Greig, J.; Mascarenhas, M.; Waddell, L.A. Zoonotic Babesia: A scoping review of the global evidence. PLoS ONE 2019, 14, e0226781. [Google Scholar] [CrossRef]
  44. Armstrong, P.M.; Katavolos, P.; Caporale, D.A.; Smith, R.P.; Spielman, A.; Telford, S.R., III. Diversity of Babesia infecting deer ticks (Ixodes dammini). Am. J. Trop. Med. Hyg. 1998, 58, 739–742. [Google Scholar] [CrossRef]
  45. Moore, J.A.; Kuntz, R.E. Babesia microti infections in nonhuman primates. J. Parasitol. 1981, 67, 454–456. [Google Scholar] [CrossRef]
  46. Maamun, J.M.; Suleman, M.A.; Akinyi, M.; Ozwara, H.; Kariuki, T.; Carlsson, H.-E. Prevalence of Babesia microti in Free-Ranging Baboons and African Green Monkeys. J. Parasitol. 2011, 97, 63–67. [Google Scholar] [CrossRef] [PubMed]
  47. de Thoisy, B.; Michel, J.-C.; Vogel, I.; Vié, J.-C. A survey of hemoparasite infections in free-ranging mammals and reptiles in french Guiana. J. Parasitol. 2000, 86, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
  48. Osman Hill, W.C. Report of the Society’s Prosector for the year 1952. Proc. Zool. Soc. Lond. 1953, 123, 227.e251. [Google Scholar] [CrossRef]
  49. Thompson, C.S.; Mangold, A.J.; Félix, M.L.; Carvalho, L.; Armúa-Fernández, M.T.; Venzal, J.M. Molecular evidence of Babesia species in Procyon cancrivorus (Carnivora, Procyonidae) in Uruguay. Vet. Parasitol. Reg. Stud. Rep. 2018, 13, 230–233. [Google Scholar] [CrossRef] [PubMed]
  50. Coleman, A.W. Analysis of Mammalian rDNA Internal Transcribed Spacers. PLoS ONE 2013, 8, e79122. [Google Scholar] [CrossRef] [PubMed]
  51. Joseph, N.; Krauskopf, E.; Vera, M.I.; Michot, B. Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucleic Acids Res. 1999, 27, 4533–4540. [Google Scholar] [CrossRef]
  52. Alvarez, J.M.; Hoy, M.A. Evaluation of the Ribosomal ITS2 DNA Sequences in Separating Closely Related Populations of the Parasitoid Ageniaspis (Hymenoptera: Encyrtidae). Ann. Entomol. Soc. Am. 2002, 95, 250–256. [Google Scholar] [CrossRef] [Green Version]
  53. Zagoskin, M.V.; Lazareva, V.I.; Grishanin, A.K.; Mukha, D.V. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact. BioMed. Res. Int. 2014, 2014, 926342. [Google Scholar] [CrossRef] [PubMed]
  54. Khodadadi, H.; Karimi, L.; Jalalizand, N.; Adin, H.; Mirhendi, H. Utilization of size polymorphism in ITS1 and ITS2 regions for identification of pathogenic yeast species. J. Med. Microbiol. 2017, 66, 126–133. [Google Scholar] [CrossRef]
  55. Simas, P.V.M.; Bassetto, C.C.; Giglioti, R.; Okino, C.H.; de Oliveira, H.N.; de Sena Oliveira, M.C. Use of molecular markers can help to understand the genetic diversity of Babesia bovis. Infect. Genet. Evol. 2020, 79, 104161. [Google Scholar] [CrossRef] [PubMed]
  56. Sarkhel, S.P.; Gupta, S.K.; Kaushik, J.; Singh, J.; Gaur, D.K.; Kumar, S.; Kumar, R. Molecular characterization of internal transcribed spacer 1 (ITS 1) region of different Trypanosoma evansi isolates of India. J. Parasit. Dis. 2017, 41, 527–533. [Google Scholar] [CrossRef] [PubMed]
  57. Salim, B.; Bakheit, M.A.; Kamau, J.; Nakamura, I.; Sugimoto, C. Molecular epidemiology of camel trypanosomiasis based on ITS1 rDNA and RoTat 1.2 VSG gene in the Sudan. Parasites Vectors 2011, 4, 31. [Google Scholar] [CrossRef] [PubMed]
  58. Marcili, A.; Lima, L.; Cavazzana, M.; Junqueira, A.C.V.; Veludo, H.H.; Maia Da Silva, F.; Campaner, M.; Paiva, F.; Nunes, V.L.B.; Teixeira, M.M.G. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology 2009, 136, 641–655. [Google Scholar] [CrossRef]
  59. Da Silva, F.M.; Noyes, H.; Campaner, M.; Junqueira, A.C.; Coura, J.R.; Añez, N.; Shaw, J.J.; Stevens, J.R.; Teixeira, M.M. Phylogeny, taxonomy and grouping of Trypanosoma rangeli isolates from man, triatomines and sylvatic mammals from widespread geographical origin based on SSU and ITS ribosomal sequences. Parasitology 2004, 129, 549–561. [Google Scholar] [CrossRef] [Green Version]
  60. Rodrigues, A.C.; Paiva, F.; Campaner, M.; Stevens, J.R.; Noyes, H.A.; Teixeira, M.M. Phylogeny of Trypanosoma (Megatrypanum) theileri and related trypanosomes reveals lineages of isolates associated with artiodactyl hosts diverging on SSU and ITS ribosomal sequences. Parasitology 2006, 132, 215–224. [Google Scholar] [CrossRef]
  61. Jirků, M.; Votýpka, J.; Petrželková, K.J.; Jirků-Pomajbíková, K.; Kriegová, E.; Vodička, R.; Lankester, F.; Leendertz, S.A.J.; Wittig, R.M.; Boesch, C.; et al. Wild chimpanzees are infected by Trypanosoma brucei. Int. J. Parasitol. Parasites Wildl. 2015, 4, 277–282. [Google Scholar] [CrossRef] [Green Version]
  62. Votýpka, J.; Pafčo, B.; Modrý, D.; Mbohli, D.; Tagg, N.; Petrželková, K.J. An unexpected diversity of trypanosomatids in fecal samples of great apes. Int. J. Parasitol. Parasites Wildl. 2018, 7, 322–325. [Google Scholar] [CrossRef]
  63. Eakin, A.E.; Mills, A.A.; Harth, G.; McKerrow, J.H.; Craik, C.S. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J. Biol. Chem. 1992, 267, 7411–7420. [Google Scholar] [CrossRef] [PubMed]
  64. Sajid, M.; McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 2002, 120, 1–21. [Google Scholar] [CrossRef] [PubMed]
  65. Steverding, D.; Sexton, D.W.; Wang, X.; Gehrke, S.S.; Wagner, G.K.; Caffrey, C.R. Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int. J. Parasitol. 2012, 42, 481–488. [Google Scholar] [CrossRef]
  66. Steverding, D.; Rushworth, S.A.; Florea, B.I.; Overkleeft, H.S. Trypanosoma brucei: Inhibition of cathepsin L is sufficient to kill bloodstream forms. Mol. Biochem. Parasitol. 2020, 235, 111246. [Google Scholar] [CrossRef]
  67. Jaimes-Dueñez, J.; Triana-Chávez, O.; Mejía-Jaramillo, A.M. Spatial-temporal and phylogeographic characterization of Trypanosoma spp. in cattle (Bos taurus) and buffaloes (Bubalus bubalis) reveals transmission dynamics of these parasites in Colombia. Vet. Parasitol. 2018, 249, 30–42. [Google Scholar] [CrossRef] [PubMed]
  68. Lima, A.P.; Tessier, D.C.; Thomas, D.Y.; Scharfstein, J.; Storer, A.C.; Vernet, T. Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Mol. Biochem. Parasitol. 1994, 67, 333–338. [Google Scholar] [CrossRef]
  69. Hughes, A.L. Evolution of cysteine proteinases in eukaryotes. Mol. Phylogenetics Evol. 1994, 3, 310–321. [Google Scholar] [CrossRef]
  70. Cortez, A.P.; Rodrigues, A.C.; Garcia, H.A.; Neves, L.; Batista, J.S.; Bengaly, Z.; Paiva, F.; Teixeira, M.M. Cathepsin L-like genes of Trypanosoma vivax from Africa and South America--characterization, relationships and diagnostic implications. Mol. Cell. Probes 2009, 23, 44–51. [Google Scholar] [CrossRef]
  71. Rodrigues, A.C.; Garcia, H.A.; Ortiz, P.A.; Cortez, A.P.; Martinkovic, F.; Paiva, F.; Batista, J.S.; Minervino, A.H.; Campaner, M.; Pral, E.M.; et al. Cysteine proteases of Trypanosoma (Megatrypanum) theileri: Cathepsin L-like gene sequences as targets for phylogenetic analysis, genotyping diagnosis. Parasitol. Int. 2010, 59, 318–325. [Google Scholar] [CrossRef] [PubMed]
  72. Chaves, P.B.; Paes, M.F.; Mendes, S.; Strier, K.; Louro, I.D.; Fagundes, V. Noninvasive genetic sampling of endangered muriqui (Primates, Atelidae): Efficiency of fecal DNA extraction. Genet. Mol. Biol. 2006, 29, 750–754. [Google Scholar] [CrossRef]
  73. Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Wertheim-van Dillen, P.M.; van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef] [PubMed]
  74. Taberlet, P.; Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 1999, 68, 41–55. [Google Scholar] [CrossRef]
  75. Creel, S.; Spong, G.; Sands, J.L.; Rotella, J.; Zeigle, J.; Joe, L.; Murphy, K.M.; Smith, D. Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol. Ecol. 2003, 12, 2003–2009. [Google Scholar] [CrossRef]
  76. Mathay, C.; Hamot, G.; Henry, E.; Georges, L.; Bellora, C.; Lebrun, L.; de Witt, B.; Ammerlaan, W.; Buschart, A.; Wilmes, P.; et al. Method optimization for fecal sample collection and fecal DNA extraction. Biopreservation Biobanking 2015, 13, 79–93. [Google Scholar] [CrossRef] [PubMed]
  77. Bairami, A.; Rezaei, S.; Rezaeian, M. Synchronous Identification of Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium spp. in Stool Samples Using a Multiplex PCR Assay. Iran. J. Parasitol. 2018, 13, 24–30. [Google Scholar] [PubMed]
  78. Bezjian, M.; Gillespie, T.R.; Chapman, C.A.; Greiner, E.C. Coprologic evidence of gastrointestinal helminths of Forest baboons, Papio anubis, in Kibale National Park, Uganda. J. Wildl. Dis. 2008, 44, 878–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  79. Carozzi, F.M.; Sani, C. Fecal Collection and Stabilization Methods for Improved Fecal DNA Test for Colorectal Cancer in a Screening Setting. J. Cancer Res. 2013, 2013, 818675. [Google Scholar] [CrossRef]
  80. Cerda-Molina, A.L.; Hernández-López, L.; Páez-Ponce, D.L.; Rojas-Maya, S.; Mondragón-Ceballos, R. Seasonal variations of fecal progesterone and 17β-estradiol in captive female black-handed spider monkeys (Ateles geoffroyi). Theriogenology 2006, 66, 1985–1993. [Google Scholar] [CrossRef]
  81. Chinchilla, M.; Guerrero, O.M.; Gutierrez-Espeleta, G.A.; Sánchez, R.; Valerio Campos, I. Parásitos en monos carablanca Cebus capucinus (Primates: Cebidae) de Costa Rica. Parasitol. latinoam. 2007, 62, 170–175. [Google Scholar] [CrossRef]
  82. Conga, D.F.; Bowler, M.; Tantalean, M.; Montes, D.; Serra-Freire, N.M.; Mayor, P. Intestinal helminths in wild Peruvian red uakari monkeys (Cacajao calvus ucayalii) in the northeastern Peruvian Amazon. J. Med. Primatol. 2014, 43, 130–133. [Google Scholar] [CrossRef]
  83. Strier, K.B.; Ziegler, T.E.; Wittwer, D.J. Seasonal and Social Correlates of Fecal Testosterone and Cortisol Levels in Wild Male Muriquis (Brachyteles arachnoides). Horm. Behav. 1999, 35, 125–134. [Google Scholar] [CrossRef] [PubMed]
  84. Ziegler, T.E.; Santos, C.V.; Pissinatti, A.; Strier, K.B. Steroid excretion during the ovarian cycle in captive and wild muriquis, Brachyteles arachnoides. Am. J. Primatol. 1997, 42, 311–321. [Google Scholar] [CrossRef]
  85. Acharya, K.R.; Dhand, N.K.; Whittington, R.J.; Plain, K.M. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions. Front. Microbiol. 2017, 8, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Al-Areeqi, M.A.; Sady, H.; Al-Mekhlafi, H.M.; Anuar, T.S.; Al-Adhroey, A.H.; Atroosh, W.M.; Dawaki, S.; Elyana, F.N.; Nasr, N.A.; Ithoi, I.; et al. First molecular epidemiology of Entamoeba histolytica, E. dispar and E. moshkovskii infections in Yemen: Different species-specific associated risk factors. Trop. Med. Int. Health 2017, 22, 493–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Yasuda, K.; Oh, K.; Ren, B.; Tickle, T.; Franzosa, E.; Wachtman, L.; Miller, A.; Westmoreland, S.; Mansfield, K.; Vallender, E.; et al. Biogeography of the Intestinal Mucosal and Lumenal Microbiome in the Rhesus Macaque. Cell Host Microbe 2015, 17, 385–391. [Google Scholar] [CrossRef] [Green Version]
  88. De Nys, H.M.; Calvignac-Spencer, S.; Boesch, C.; Dorny, P.; Wittig, R.M.; Mundry, R.; Leendertz, F.H. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 2014, 13, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Jirků, M.; Pomajbíková, K.; Petrželková, K.J.; Hůzová, Z.; Modrý, D.; Lukeš, J. Detection of Plasmodium spp. in Human Feces. Emerg. Infect. Dis. 2012, 18, 634–636. [Google Scholar] [CrossRef]
  90. Sereno, D.; Akhoundi, M.; Sayehmri, K.; Mirzaei, A.; Holzmuller, P.; Lejon, V.; Waleckx, E. Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  91. Bajer, A.; Dwużnik, D.; Tołkacz, K.; Alsarraf, M.; Mierzejewska, E.J. Comparison of the detection efficiency of haemoparasite DNA in blood and faecal samples—The way to eco-epidemiological studies. Ann. Agric. Environ. Med. 2019, 26, 538–543. [Google Scholar] [CrossRef]
  92. Martin-Solano, S.; Carrillo-Bilbao, G.A.; Ramirez, W.; Celi-Erazo, M.; Huynen, M.C.; Levecke, B.; Benitez-Ortiz, W.; Losson, B. Gastrointestinal parasites in captive and free-ranging Cebus albifrons in the Western Amazon, Ecuador. Int. J. Parasitol. Parasites Wildl. 2017, 6, 209–218. [Google Scholar] [CrossRef]
  93. Balcells, C.D.; Veà Baró, J.J. Developmental Stages in the Howler Monkey, Subspecies Alouatta Palliata Mexicana: A New Classification Using Age-Sex Categories. Neotrop. Primates 2009, 16, 1–8. [Google Scholar] [CrossRef]
  94. Huck, M.; Rotundo, M.; Fernandez-Duque, E. Growth and Development in Wild Owl Monkeys (Aotus azarai) of Argentina. Int. J. Primatol. 2011, 32, 1133. [Google Scholar] [CrossRef]
  95. Sato, A.; Koda, H.; Lemasson, A.; Nagumo, S.; Masataka, N. Visual Recognition of Age Class and Preference for Infantile Features: Implications for Species-Specific vs Universal Cognitive Traits in Primates. PLoS ONE 2012, 7, e38387. [Google Scholar] [CrossRef] [PubMed]
  96. dos Santos, L.C.; Curotto, S.M.R.; de Moraes, W.; Cubas, Z.S.; Costa-Nascimento, M.d.J.; Filho, I.R.d.B.; Biondo, A.W.; Kirchgatter, K. Detection of Plasmodium sp. in capybara. Vet. Parasitol. 2009, 163, 148–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Cox, A.; Tilley, A.; McOdimba, F.; Fyfe, J.; Eisler, M.; Hide, G.; Welburn, S. A PCR based assay for detection and differentiation of African trypanosome species in blood. Exp. Parasitol. 2005, 111, 24–29. [Google Scholar] [CrossRef]
  98. Chávez-Larrea, M.A.; Medina-Pozo, M.L.; Cholota-Iza, C.E.; Jumbo-Moreira, J.R.; Saegerman, C.; Proaño-Pérez, F.; Ron-Román, J.; Reyna-Bello, A. First report and molecular identification of Trypanosoma (Duttonella) vivax outbreak in cattle population from Ecuador. Transbound. Emerg. Dis. 2021, 68, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
  99. Olmeda, A.S.; Armstrong, P.M.; Rosenthal, B.M.; Valladares, B.; del Castillo, A.; de Armas, F.; Miguelez, M.; González, A.; Rodríguez Rodríguez, J.A.; Spielman, A.; et al. A subtropical case of human babesiosis. Acta Trop. 1997, 67, 229–234. [Google Scholar] [CrossRef] [PubMed]
  100. Medina Naranjo, V.L.; Reyna Bello, A.; Tavares-Marques, L.M.; Campos, A.M.; Ron Román, J.W.; Moyano, J.C.; Jarrín Porras, E.C.; Sandoval Morejón, E.D.; Chávez Larrea, M.A. Diagnóstico de los hemotrópicos Anaplasma marginale, Trypanosoma spp. y Babesia spp. mediante las técnicas de ELISAI y PCR en tres fincas ganaderas de la provincia de Pastaza, Ecuador. Rev. Cient. 2017, 27, 162–171. [Google Scholar]
  101. Chávez-Larrea, M.A.; Cholota-Iza, C.; Medina-Naranjo, V.; Yugcha-Díaz, M.; Ron-Román, J.; Martin-Solano, S.; Gómez-Mendoza, G.; Saegerman, C.; Reyna-Bello, A. Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions. Pathogens 2021, 10, 1593. [Google Scholar] [CrossRef]
  102. Sato, H.; Leo, N.; Katakai, Y.; Takano, J.; Akari, H.; Nakamura, S.; Une, Y. Prevalence and molecular phylogenetic characterization of Trypanosoma (Megatrypanum) minasense in the peripheral blood of small neotropical primates after a quarantine period. J. Parasitol. 2008, 94, 1128–1138. [Google Scholar] [CrossRef]
  103. Nixon, K.C.; Carpenter, J.M. On outgroups. Cladistics 1993, 9, 413–426. [Google Scholar] [CrossRef]
  104. Swofford, D.L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods), 4th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2002. [Google Scholar]
  105. Carpenter, J.M. Uniformative bootstrapping. Cladistics 1996, 12, 177–181. [Google Scholar] [CrossRef] [PubMed]
  106. Ortiz, P.A.; Maia da Silva, F.; Cortez, A.P.; Lima, L.; Campaner, M.; Pral, E.M.; Alfieri, S.C.; Teixeira, M.M. Genes of cathepsin L-like proteases in Trypanosoma rangeli isolates: Markers for diagnosis, genotyping and phylogenetic relationships. Acta Trop. 2009, 112, 249–259. [Google Scholar] [CrossRef]
  107. Martínez, M.F.; Kowalewski, M.M.; Salomón, O.D.; Schijman, A.G. Molecular characterization of trypanosomatid infections in wild howler monkeys (Alouatta caraya) in northeastern Argentina. Int. J. Parasitol. Parasites Wildl. 2016, 5, 198–206. [Google Scholar] [CrossRef] [Green Version]
  108. Ziccardi, M.; Lourenço-De-Oliveira, R.; Lainson, R.; Brígido, M.C.; Muniz, J.A. Trypanosomes of non-human primates from the National Centre of Primates, Ananindeua, State of Pará, brazil. Mem. Inst. Oswaldo Cruz 2000, 95, 157–159. [Google Scholar] [CrossRef]
  109. Quinde-Calderón, L.; Rios-Quituizaca, P.; Solorzano, L.; Dumonteil, E. Ten years (2004-2014) of Chagas disease surveillance and vector control in Ecuador: Successes and challenges. Trop. Med. Int. Health 2016, 21, 84–92. [Google Scholar] [CrossRef]
  110. Holmes, P. Tsetse-transmitted trypanosomes--their biology, disease impact and control. J. Invertebr. Pathol. 2013, 112 (Suppl. S11–S4). [Google Scholar] [CrossRef] [PubMed]
  111. Crilly, N.P.; Mugnier, M.R. Thinking outside the blood: Perspectives on tissue-resident Trypanosoma brucei. PLoS Pathog. 2021, 17, e1009866. [Google Scholar] [CrossRef]
  112. Habila, N.; Inuwa, M.H.; Aimola, I.A.; Udeh, M.U.; Haruna, E. Pathogenic mechanisms of Trypanosoma evansi infections. Res. Vet. Sci. 2012, 93, 13–17. [Google Scholar] [CrossRef]
  113. Talevi, A.; Carrillo, C.; Comini, M. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr. Med. Chem. 2019, 26, 6614–6635. [Google Scholar] [CrossRef]
  114. Teixeira, A.R.; Gomes, C.; Lozzi, S.P.; Hecht, M.M.; Rosa Ade, C.; Monteiro, P.S.; Bussacos, A.C.; Nitz, N.; McManus, C. Environment, interactions between Trypanosoma cruzi and its host, and health. Cad. Saude Publica 2009, 25 (Suppl. 1), S32–S44. [Google Scholar] [CrossRef] [Green Version]
  115. Lainson, R.; Da Silva, F.M.; Franco, C.M. Trypanosoma (Megatrypanum) saloboense n. sp. (Kinetoplastida: Trypanosomatidae) parasite of Monodelphis emiliae (Marsupiala: Didelphidae) from Amazonian Brazil. Parasite 2008, 15, 99–103. [Google Scholar] [CrossRef]
  116. Ziccardi, M.; Lourenco-de-Oliveira, R. Polymorphism in trypomastigotes of Trypanosoma (Megatrypanum) minasense in the blood of experimentally infected squirrel monkey and marmosets. Mem. Inst. Oswaldo Cruz 1999, 94, 649–653. [Google Scholar] [CrossRef] [Green Version]
  117. Lima, L.; Ortiz, P.A.; da Silva, F.M.; Alves, J.M.P.; Serrano, M.G.; Cortez, A.P.; Alfieri, S.C.; Buck, G.A.; Teixeira, M.M.G. Repertoire, Genealogy and Genomic Organization of Cruzipain and Homologous Genes in Trypanosoma cruzi, T. cruzi-Like and Other Trypanosome Species. PLoS ONE 2012, 7, e38385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  118. Bento, E.C.; Gómez-Hernández, C.; Batista, L.R.; Anversa, L.; Pedrosa, A.L.; Lages-Silva, E.; Ramírez, J.D.; Ramirez, L.E. Identification of bat trypanosomes from Minas Gerais state, Brazil, based on 18S rDNA and Cathepsin-L-like targets. Parasitol. Res. 2018, 117, 737–746. [Google Scholar] [CrossRef]
  119. Doyle, P.S.; Zhou, Y.M.; Hsieh, I.; Greenbaum, D.C.; McKerrow, J.H.; Engel, J.C. The Trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog. 2011, 7, e1002139. [Google Scholar] [CrossRef] [Green Version]
  120. McKerrow, J.H.; Caffrey, C.; Kelly, B.; Loke, P.; Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol. 2006, 1, 497–536. [Google Scholar] [CrossRef] [PubMed]
  121. Hart, B.L.; Hart, L.A. How mammals stay healthy in nature: The evolution of behaviours to avoid parasites and pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Poirotte, C.; Massol, F.; Herbert, A.; Willaume, E.; Bomo, P.M.; Kappeler, P.M.; Charpentier, M.J.E. Mandrills use olfaction to socially avoid parasitized conspecifics. Sci. Adv. 2017, 3, e1601721. [Google Scholar] [CrossRef] [Green Version]
  123. Sarabian, C.; Curtis, V.; McMullan, R. Evolution of pathogen and parasite avoidance behaviours. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Tanaka, I.; Takefushi, H. Elimination of External Parasites (Lice) Is the Primary Function of Grooming in Free-ranging Japanese Macaques. Anthr. Sci. 1993, 101, 187–193. [Google Scholar] [CrossRef] [Green Version]
  125. Hart, B.L. Role of grooming in biological control of ticks. Ann. N. Y. Acad. Sci. 2000, 916, 565–569. [Google Scholar] [CrossRef] [PubMed]
  126. Saunders, C.D.; Hausfater, G. The Functional Significance of Baboon Grooming Behavior. Ann. N. Y. Acad. Sci. 1988, 525, 430–432. [Google Scholar] [CrossRef]
  127. Akinyi, M.Y.; Tung, J.; Jeneby, M.; Patel, N.B.; Altmann, J.; Alberts, S.C. Role of Grooming in Reducing Tick Load in Wild Baboons (Papio cynocephalus). Anim. Behav. 2013, 85, 559–568. [Google Scholar] [CrossRef] [Green Version]
  128. Dunbar, R.I.M. Functional Significance of Social Grooming in Primates. Folia Primatol. 1991, 57, 121–131. [Google Scholar] [CrossRef]
  129. Carrillo-Bilbao, G.; Martin-Solano, S.; Saegerman, C. Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review. Pathogens 2021, 10, 1009. [Google Scholar] [CrossRef] [PubMed]
  130. Cuba-Cuba, C.A.; Marsden, P.D. Marmosets in New World leishmaniasis research. Medicina 1993, 53, 419–423. [Google Scholar] [PubMed]
  131. Bueno, M.G. Pesquisa de Leishmania spp. e Plasmodium spp. em Primatas Neotropicais Provenientes de Regiões de Mata Atlântica e Amazônia Impactadas por Ações Antrópicas: Investigação In Situ e Ex Situ; Universidad de Sao Paulo: Sao Paulo, Brazil, 2012. [Google Scholar]
  132. Voltarelli, E.M.; Arraes, S.; Perles; Lonardoni, M.V.C.; Teodoro, U.; Silveira, T.G.V. Serological survey for Leishmania sp. infection in wild animals from the municipality of Maringá, Paraná state, Brazil. J. Venom. Anim. Toxins incl. Trop. Dis. 2009, 15, 732–744. [Google Scholar] [CrossRef]
  133. Malta, M.C.C.; Tinoco, H.P.; Xavier, M.N.; Vieira, A.L.S.; Costa, É.A.; Santos, R.L. Naturally acquired visceral leishmaniasis in non-human primates in Brazil. Vet. Parasitol. 2010, 169, 193–197. [Google Scholar] [CrossRef]
  134. Acardi, S.A.; Rago, M.V.; Liotta, D.J.; Fernandez-Duque, E.; Salomón, O.D. Leishmania (Viannia) DNA detection by PCR-RFLP and sequencing in free-ranging owl monkeys (Aotus azarai azarai) from Formosa, Argentina. Vet. Parasitol. 2013, 193, 256–259. [Google Scholar] [CrossRef]
  135. Lima, V.M.; Santiago, M.E.; Sanches Lda, C.; Lima, B.D. Molecular diagnosis of Leishmania amazonensis in a captive spider monkey in Bauru, São Paulo, Brazil. J. Zoo Wildl. Med. 2012, 43, 943–945. [Google Scholar] [CrossRef] [PubMed]
  136. Baker, J.R. Protozoa of Tissues and Blood (Other than the Haemosporina). In Pathology of Simian Primates Part II: Infectious and Parasitic Diseases; Fiennes, R., Ed.; Karger: Basel, Switzerland, 1972; pp. 29–56. [Google Scholar]
  137. Paiz, L.M.; Fornazari, F.; Menozzi, B.D.; Oliveira, G.C.; Coiro, C.J.; Teixeira, C.R.; da Silva, V.M.; Donalisio, M.R.; Langoni, H. Serological Evidence of Infection by Leishmania (Leishmania) infantum (Synonym: Leishmania (Leishmania) chagasi) in Free-Ranging Wild Mammals in a Nonendemic Region of the State of São Paulo, Brazil. Vector Borne Zoonotic Dis. 2015, 15, 667–673. [Google Scholar] [CrossRef] [PubMed]
  138. Rovirosa-Hernández Mde, J.; Cortes-Ortíz, L.; García-Orduña, F.; Guzmán-Gómez, D.; López-Monteon, A.; Caba, M.; Ramos-Ligonio, A. Seroprevalence of Trypanosoma cruzi and Leishmania mexicana in free-ranging howler monkeys in southeastern Mexico. Am. J. Primatol. 2013, 75, 161–169. [Google Scholar] [CrossRef] [PubMed]
  139. Lainson, R.; Braga, R.R.; De Souza, A.A.; Povoa, M.M.; Ishikawa, E.A.; Silveira, F.T. Leishmania (Viannia) shawi sp. n., a parasite of monkeys, sloths and procyonids in Amazonian Brazil. Ann. Parasitol. Hum. Comp. 1989, 64, 200–207. [Google Scholar] [CrossRef] [Green Version]
  140. Soto-Calderón, I.D.; Acevedo-Garcés, Y.A.; Álvarez-Cardona, J.; Hernández-Castro, C.; García-Montoya, G.M. Physiological and parasitological implications of living in a city: The case of the white-footed tamarin (Saguinus leucopus). Am. J. Primatol. 2016, 78, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
  141. de Thoisy, B.; Vogel, I.; Reynes, J.-M.; Pouliquen, J.-F.; Carme, B.; Kazanji, M.; Vié, J.-C. Health evaluation of translocated free-ranging primates in French Guiana. Am. J. Primatol. 2001, 54, 1–16. [Google Scholar] [CrossRef]
  142. Jose dos Santos, W.; Maisa Guiraldi, L.; dos Santos Paixão Marques, M.; Fernanda Alves-Martin, M.; Pacheco Sanchez, G.; Barbosa da Silva, D.; Bodelao Richini-Pereira, V.; Suemi Kurokawa, C.; Baldini Lucheis, S. Trypanosoma spp. in captive primates in a brazilian zoo. J. Trop. Pathol. 2021, 50, 121–134. [Google Scholar] [CrossRef]
  143. Minuzzi-Souza, T.T.; Nitz, N.; Knox, M.B.; Reis, F.; Hagström, L.; Cuba, C.A.; Hecht, M.M.; Gurgel-Gonçalves, R. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo. Parasites Vectors 2016, 9, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  144. Sousa, O.E.; Rossan, R.N.; Baerg, D.C. The prevalence of trypanosomes and microfilariae in Panamanian monkeys. Am. J. Trop. Med. Hyg. 1974, 23, 862–868. [Google Scholar] [CrossRef] [PubMed]
  145. Lisboa, C.V.; Mangia, R.H.; Rubião, E.; de Lima, N.R.; das Chagas Xavier, S.C.; Picinatti, A.; Ferreira, L.F.; Fernandes, O.; Jansen, A.M. Trypanosoma cruzi transmission in a captive primate unit, Rio de Janeiro, Brazil. Acta Trop. 2004, 90, 97–106. [Google Scholar] [CrossRef]
  146. Kerr, C.L.; Bhattacharyya, T.; Xavier, S.C.; Barros, J.H.; Lima, V.S.; Jansen, A.M.; Miles, M.A. Lineage-specific serology confirms Brazilian Atlantic forest lion tamarins, Leontopithecus chrysomelas and Leontopithecus rosalia, as reservoir hosts of Trypanosoma cruzi II (TcII). Parasites Vectors 2016, 9, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  147. Monteiro, R.V.; Dietz, J.M.; Jansen, A.M. The impact of concomitant infections by Trypanosoma cruzi and intestinal helminths on the health of wild golden and golden-headed lion tamarins. Res. Vet. Sci. 2010, 89, 27–35. [Google Scholar] [CrossRef] [PubMed]
  148. Dunn, F.L.; Lambrecht, F.L.; Duplessis, R. Trypanosomes of south american monkeys and marmosets. Am. J. Trop. Med. Hyg. 1963, 12, 524–534. [Google Scholar] [CrossRef] [PubMed]
  149. Deane, L.M. Tripanosomídeos de mamíferos da região amazônica. IV. Hemoscopia e xenodiagnóstico de animais silvestres da estrada Belém-Brasília. Rev. Inst. Med. Trop. S. Paulo. 1967, 9, 143–148. [Google Scholar] [PubMed]
  150. Deane, L.M.; Damasceno, R.G. Tripanosomideos de mamíferos da regiao amazonica. Rev. Inst. Med. Trop. S. Paulo. 1961, 3, 61–70. [Google Scholar] [PubMed]
  151. Stuart, M.D.; Pendergast, V.; Rumfelt, S.; Pierberg, S.; Greenspan, L.L.; Glander, K.E.; Clarke, M.R. Parasites of wild howlers (Alouatta spp.). Int. J. Primatol. 1998, 19, 493–512. [Google Scholar] [CrossRef]
  152. Erkenswick, G.A.; Watsa, M.; Gozalo, A.S.; Dmytryk, N.; Parker, P.G. Temporal and demographic blood parasite dynamics in two free-ranging neotropical primates. Int. J. Parasitol. Parasites Wildl. 2017, 6, 59–68. [Google Scholar] [CrossRef]
  153. Tenório, M.S.; Oliveira e Sousa, L.; Alves-Martin, M.F.; Paixão, M.S.; Rodrigues, M.V.; Starke-Buzetti, W.A.; Araújo Junior, J.P.; Lucheis, S.B. Molecular identification of trypanosomatids in wild animals. Vet. Parasitol. 2014, 203, 203–206. [Google Scholar] [CrossRef]
  154. Ayala, F. Presencia de un hemoflagelado semejante al Trypanosoma rangeli Tejera 1920, en el mono Saimiri boliviensis, en la Región Amazona, Peru. Rev. Inst. Med. Trop. S. Paulo. 1964, 6, 47–50. [Google Scholar] [PubMed]
  155. Maia da Silva, F.; Naiff, R.D.; Marcili, A.; Gordo, M.; D’Affonseca Neto, J.A.; Naiff, M.F.; Franco, A.M.; Campaner, M.; Valente, V.; Valente, S.A.; et al. Infection rates and genotypes of Trypanosoma rangeli and T. cruzi infecting free-ranging Saguinus bicolor (Callitrichidae), a critically endangered primate of the Amazon Rainforest. Acta Trop. 2008, 107, 168–173. [Google Scholar] [CrossRef]
Figure 1. Sampling location of wildlife rehabilitation centers with non-human primates in Ecuador.
Figure 1. Sampling location of wildlife rehabilitation centers with non-human primates in Ecuador.
Pathogens 11 01490 g001
Figure 2. (A). Cladogram of the two species of trypanosomes found in NHPs and (B). Bootstrap Consensus Tree. Legend: Numbers are percentages of homology. The circled samples are from the study. For (A), A and B are clades; B.1 and B.2 are subclades.
Figure 2. (A). Cladogram of the two species of trypanosomes found in NHPs and (B). Bootstrap Consensus Tree. Legend: Numbers are percentages of homology. The circled samples are from the study. For (A), A and B are clades; B.1 and B.2 are subclades.
Pathogens 11 01490 g002aPathogens 11 01490 g002b
Table 1. Non-human primate’s species screened for Trypanosoma sp. and Babesia sp.
Table 1. Non-human primate’s species screened for Trypanosoma sp. and Babesia sp.
HabitatNon-Human Primate SpeciesnSexAge
MaleFemaleJuvenileSubadultAdult
Free-rangingCebus albifrons18810747
CaptiveAlouatta seniculus404211
Ateles belzebuth440211
Aotus vociferans101001
Cebuella pygmaea211101
Cebus apella101001
Cebus albifrons1091316
Lagothrix lagotricha187110611
Leontocebus lagonotus945009
Plecturocebus discolor431301
Saimiri sciureus330111
Sapajus apella211101
Table 2. Three steps CatL-PCR cycles, temperature, and time for Trypanosoma sp.
Table 2. Three steps CatL-PCR cycles, temperature, and time for Trypanosoma sp.
StepTemperatureTimeNumber of Cycles
Step 1Pre-denaturation94 °C5 min1 cycle
Step 2Denaturation94 °C1 min35 cycles
Annealing56 °C1 min
Extension72 °C1 min
Step 3Final extension72 °C5 min1 cycle
Table 3. Sequences of the primers for Trypanosoma sp. and Babesia sp.
Table 3. Sequences of the primers for Trypanosoma sp. and Babesia sp.
ReactionPrimer Oligonucleotide Sequence
TrypanosomaCatL-PCRDTO1545′-ACAGAATTCCAGGGCCAATGCGGCTCGTGCTGG-3′ Forward
DTO1555′-TTAAAGCTTCCACGAGTTCTTGATGATCCAGTA-3′ Reverse
ITS-PCR
First Reaction
ITS15′-GATTACGTCCCTGCCATTTG-3′ Forward
ITS25′-TTGTTCGCTATCGGTCTTCC-3′ Reverse
ITS-PCR
Second Reaction
ITS35′-GGAAGCAAAAGTCGTAACAAGG-3′ Forward
Reverse
ITS45′-TGTTTTCTTTTCCTCCGCTG-3′
Babesia Piro A 5′-AATACCCAATCCTGACACACAGGG-3′ Forward
Reverse
Piro B5′-TTAAATACACGAATGCCCCCCCAAC-3′
Table 4. Three steps nested ITS-PCR cycles, temperature, and time for Trypanosoma sp.
Table 4. Three steps nested ITS-PCR cycles, temperature, and time for Trypanosoma sp.
StepTemperatureTimeNumber of Cycles
Step 1Pre-denaturation95 °C7 min1 cycle
Step 2Denaturation95 °C1 min35 cycles
Annealing59 °C1 min
Extension72 °C2 min (first reaction)
1.5 min (second reaction)
Step 3Final extension72 °C10 min1 cycle
Table 5. Three steps PCR cycles, temperature, and time for Babesia sp.
Table 5. Three steps PCR cycles, temperature, and time for Babesia sp.
StepTemperatureTimeNumber of Cycles
Step 1Pre-denaturation94 °C5 min1 cycle
Step 2Denaturation94 °C1 min35 cycles
Annealing55 °C1 min
Extension72 °C30 s
Step 3Final extension72 °C5 min1 cycle
Table 6. Sequences obtained from GenBank to elaborate the cladograms.
Table 6. Sequences obtained from GenBank to elaborate the cladograms.
Species/SequencesGenBank ID
Leishmania infantum (outgroup)LC459327.1
Leishmania donovani (outgroup)LC459329
Trypanosoma vivaxKX584847.1; KX584884.1
T evansiLC199490.1; KY014244
T theileriKY412803.1; JX178183.1
T congolenseJN673388.1
T simiaeJN673382.1; JN673379.1
T cruziJN673388.1; GU991802.1
T minasenseAB362411.1
T bruceiKU552340.1
T godfreyiJN673383.1
T equiperdumKU552342.1
T rangeliAY230233.1; AY230240.1
Trypanosomatidae sp.JN673400
T cf. cerviJX178169.1
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Carrillo-Bilbao, G.; Navarro, J.-C.; Martin-Solano, S.; Chávez-Larrea, M.-A.; Cholota-Iza, C.; Saegerman, C. First Molecular Identification of Trypanosomes and Absence of Babesia sp. DNA in Faeces of Non-Human Primates in the Ecuadorian Amazon. Pathogens 2022, 11, 1490. https://doi.org/10.3390/pathogens11121490

AMA Style

Carrillo-Bilbao G, Navarro J-C, Martin-Solano S, Chávez-Larrea M-A, Cholota-Iza C, Saegerman C. First Molecular Identification of Trypanosomes and Absence of Babesia sp. DNA in Faeces of Non-Human Primates in the Ecuadorian Amazon. Pathogens. 2022; 11(12):1490. https://doi.org/10.3390/pathogens11121490

Chicago/Turabian Style

Carrillo-Bilbao, Gabriel, Juan-Carlos Navarro, Sarah Martin-Solano, María-Augusta Chávez-Larrea, Cristina Cholota-Iza, and Claude Saegerman. 2022. "First Molecular Identification of Trypanosomes and Absence of Babesia sp. DNA in Faeces of Non-Human Primates in the Ecuadorian Amazon" Pathogens 11, no. 12: 1490. https://doi.org/10.3390/pathogens11121490

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop