# A 4E Comparative Study between BIPV and BIPVT Systems in Order to Achieve Zero-Energy Building in Cold Climate

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Literature Review

^{−2}, signifying a 76.6% energy saving rate and a 32.3% enhancement in energy efficiency compared to the benchmark building.

#### 1.2. Research Gap and Novelty

#### 1.3. Outline

## 2. Case Study

#### 2.1. The Investigated Building

#### 2.2. The Investigated City

#### 2.3. Electrical and Heating Load

## 3. Modeling

#### 3.1. Energy Analysis

#### 3.2. Exergy Analysis

#### 3.3. Economic Analysis

#### 3.4. Environmental Analysis

_{2}produced for the produced power process in the thermal power plant. Due to the use of the solar system, there is no need to produce power by the thermal power plant, and for that amount of energy produced, a certain amount of carbon dioxide in the environment is not published. According to reference [40], for electricity produced in a thermal power plant, $pc{d}_{elec}$ is equal to 0.598 kg per kilowatt hour of produced electrical energy.

#### 3.5. Calculation Procedure

## 4. Results

#### 4.1. Model Validation

#### 4.2. Modeling Results

#### 4.2.1. Energy Results

#### 4.2.2. Exergy Results

#### 4.2.3. Economic Results

#### 4.2.4. Environmental Results

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature and Abbreviation

Nomenclature | |

$A$ | $\mathrm{Area}\mathrm{of}\mathrm{PV}({\mathrm{m}}^{2})$ |

$Q$ | Rate of Heat (W) |

$c$ | Cost |

${c}_{p}$ | $\mathrm{Specific}\mathrm{capacity}(\mathrm{J}\xb7{\mathrm{kg}}^{-1}\xb7{\mathrm{K}}^{-1})$ |

$d$ | Interest rate ($\%$) |

${E}_{x}$ | Exergy ($\mathrm{W}$) |

$D$ | Diameter (m) |

$G$ | Radiation ($\mathrm{W}\xb7{\mathrm{m}}^{-2}$) |

$i$ | Inflation rate (%) |

$k$ | Thermal conductivity ($\mathrm{W}\xb7{\mathrm{m}}^{-1}\xb7{\mathrm{K}}^{-1}$) |

$P$ | Power ($\mathrm{W}$) |

$V$ | $\mathrm{speed}(\mathrm{m}\xb7{\mathrm{s}}^{-1})$ |

R | $\mathrm{Thermal}\mathrm{resistance}(\mathrm{K}\xb7{W}^{-1})$ |

$\dot{m}$ | $\mathrm{Flow}\mathrm{rate}(\mathrm{kg}\xb7{\mathrm{s}}^{-1})$ |

$T$ | Temperature (K) |

$t$ | Time (s) |

Greek symbols | |

$\alpha $ | Absorptivity |

$\tau $ | Transmissivity |

$\epsilon $ | Emissivity |

$\eta $ | Efficiency ($\%$) |

$\rho $ | $\mathrm{Density}(\mathrm{kg}\xb7{\mathrm{m}}^{-3})$ |

$\beta $ | $\mathrm{Temperature}\mathrm{coefficient}\mathrm{of}\mathrm{BIPV}(\%\xb7{\xb0\mathrm{C}}^{-1})$ |

$\delta $ | Thickness (m) |

$\sigma $ | $\mathrm{Stefan}\mathrm{Boltzmann}(\mathrm{W}\xb7{\mathrm{m}}^{-2}\xb7{\mathrm{K}}^{-4})$ |

Scripts | |

$a$ | Ambient |

$ac$ | Air Channel |

c | Concrete |

$cond$ | Conduction |

$conv$ | Convection |

db | Dry bulb |

ele | electricity |

EVA1 | Top EVA |

EVA2 | Bottom EVA |

$g$ | Glass |

h | Hydraulic |

$inlet$ | Inlet |

NG | Natural gas |

$outlet$ | Outlet |

$om$ | Operating and maintenance |

$rad$ | Radiation |

$ref$ | Reference |

Re | Reynolds Number |

si | Silicon |

sky | sky |

sun | Sun |

$Td$ | Tedlar |

th | thermal |

w | wind |

wb | Wet bulb |

Abbreviation | |

$AGE$ | Annual Generated Electricity |

$AGH$ | Annual Generated Heat |

$BIPV$ | Building integrated Photovoltaic |

$EU$ | Europe |

$EVA$ | Ethylene Vinyl Acetate |

$GE$ | Generated Electricity |

$HR$ | Heat Recovery |

$BIPVT$ | Building integrated Photovoltaic thermal |

$IC$ | Initial Cost |

$LCA$ | Life Cycle Assessment |

$LHV$ | Low Heat Value |

$PBT$ | Payback Time |

$pcd$ | Produced carbon dioxide |

$PV$ | Photovoltaic |

$TE$ | Thermoelectric |

## References

- Hoseinzadeh, S.; Groppi, D.; Sferra, A.S.; Di Matteo, U.; Astiaso Garcia, D. The PRISMI plus toolkit application to a grid-connected mediterranean island. Energies
**2022**, 15, 8652. [Google Scholar] [CrossRef] - Behrang, M.A.; Assareh, E.; Assari, M.R.; Ghanbarzadeh, A. Assessment of electricity demand in Iran’s industrial sector using different intelligent optimization techniques. Appl. Artif. Intell.
**2011**, 25, 292–304. [Google Scholar] [CrossRef] - Maleki, Y.; Pourfayaz, F.; Mehrpooya, M. Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials. Renew. Energy
**2022**, 201, 202–215. [Google Scholar] [CrossRef] - Azizimehr, B.; Assareh, E.; Moltames, R. Thermoeconomic analysis and optimization of a solar micro CCHP by using TLBO algorithm for domestic application. Energy Sources Part A Recovery Util. Environ. Eff.
**2020**, 42, 1747–1761. [Google Scholar] [CrossRef] - Hoseinzadeh, S.; Nastasi, B.; Groppi, D.; Astiaso Garcia, D. Exploring the penetration of renewable energy at increasing the boundaries of the urban energy system—The PRISMI plus toolkit application to Monachil, Spain. Sustain. Energy Technol. Assess.
**2022**, 54, 102908. [Google Scholar] [CrossRef] - Khodayar Sahebi, H.; Hoseinzadeh, S.; Ghadamian, H.; Ghasemi, M.H.; Esmaeilion, F.; Garcia, D.A. Techno-economic analysis and new design of a photovoltaic power plant by a direct radiation amplification system. Sustainability
**2021**, 13, 11493. [Google Scholar] [CrossRef] - Groppi, D.; de Santoli, L.; Cumo, F.; Astiaso Garcia, D. A GIS-based model to assess buildings energy consumption and usable solar energy potential in urban areas. Sustain. Cities Soc.
**2018**, 40, 546–558. [Google Scholar] [CrossRef] - Karami, M.; Jalalizadeh, M. Performance comparison and risk assessment of BIPVT-based trigeneration systems using vapor compression and absorption chillers. J. Build. Eng.
**2023**, 69, 106244. [Google Scholar] [CrossRef] - Debbarma, M.; Sudhakar, K.; Baredar, P. Comparison of BIPV and BIPVT: A review. Resour. Effic. Technol.
**2017**, 3, 263–271. [Google Scholar] [CrossRef] - Debbarma, M.; Sudhakar, K.; Baredar, P. Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review. Renew. Sustain. Energy Rev.
**2017**, 73, 1276–1288. [Google Scholar] [CrossRef] - Gao, W.; Moayedi, H.; Shahsavar, A. The feasibility of genetic programming and ANFIS in prediction energetic performance of a building integrated photovoltaic thermal (BIPVT) system. Sol. Energy
**2019**, 183, 293–305. [Google Scholar] [CrossRef] - Jalalizadeh, M.; Fayaz, R.; Delfani, S.; Mosleh, H.J.; Karami, M. Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors. J. Build. Eng.
**2021**, 43, 102482. [Google Scholar] [CrossRef] - Groppi, D.; Pfeifer, A.; Garcia, D.A.; Krajačić, G.; Duić, N. A review on energy storage and demand side management solutions in smart energy islands. Renew. Sustain. Energy Rev.
**2021**, 135, 110183. [Google Scholar] [CrossRef] - Cucumo, M.; Ferraro, V.; Kaliakatsos, D.; Nicoletti, F.; Gigliotti, A. A calculation model to estimate the electrical performance of a photovoltaic panel. Tec. Ital.
**2021**, 65, 256–263. [Google Scholar] [CrossRef] - Azam, M.W.; Chaudhary, G.Q.; Sajjad, U.; Abbas, N.; Yan, W.-M. Performance investigation of solar assisted desiccant integrated Maisotsenko cycle cooler in subtropical climate conditions. Case Stud. Therm. Eng.
**2023**, 44, 102864. [Google Scholar] [CrossRef] - Khanegah, M.R.; Ashrafizadeh, A.; Borooghani, D.; Torabi, F. Performance Evaluation of a Concentrated Photovoltaic/thermal System based on Water and Phase Change Material: Numerical Study and Experimental Validation. Appl. Therm. Eng.
**2023**, 232, 120936. [Google Scholar] [CrossRef] - Lamnatou, C.; Smyth, M.; Chemisana, D. Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a façade-integrated prototype and issues about human health, ecosystems, resources. Sci. Total Environ.
**2019**, 660, 1576–1592. [Google Scholar] [CrossRef] [PubMed] - Liu, Z.; Zhang, Y.; Yuan, X.; Liu, Y.; Xu, J.; Zhang, S.; He, B.-j. A comprehensive study of feasibility and applicability of building integrated photovoltaic (BIPV) systems in regions with high solar irradiance. J. Clean. Prod.
**2021**, 307, 127240. [Google Scholar] [CrossRef] - Rahmati Dehkordi, S.; Jahangiri, M. Sensitivity analysis for 3E assessment of BIPV system performance in Abadan in southwestern Iran. J. Renew. Energy Environ.
**2022**, 9, 1–12. [Google Scholar] - Gholami, H.; Nils Røstvik, H.; Steemers, K. The contribution of building-integrated photovoltaics (BIPV) to the concept of nearly zero-energy cities in Europe: Potential and challenges ahead. Energies
**2021**, 14, 6015. [Google Scholar] [CrossRef] - Shirazi, A.M.; Zomorodian, Z.S.; Tahsildoost, M. Techno-economic BIPV evaluation method in urban areas. Renew. Energy
**2019**, 143, 1235–1246. [Google Scholar] [CrossRef] - Kurz, D.; Głuchy, D.; Filipiak, M.; Ostrowski, D. Technical and Economic Analysis of the Use of Electricity Generated by a BIPV System for an Educational Establishment in Poland. Energies
**2023**, 16, 6603. [Google Scholar] [CrossRef] - Shakouri, M.; Ghadamian, H.; Noorpoor, A. Quasi-dynamic energy performance analysis of building integrated photovoltaic thermal double skin façade for middle eastern climate case. Appl. Therm. Eng.
**2020**, 179, 115724. [Google Scholar] [CrossRef] - Ibrahim, A.; Fudholi, A.; Sopian, K.; Othman, M.Y.; Ruslan, M.H. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system. Energy Convers. Manag.
**2014**, 77, 527–534. [Google Scholar] [CrossRef] - Dash, A.K.; Agrawal, S.; Gairola, S.; Shukla, S. Exergoeconomic and Envirnoeconomic Analysis of Building Integrated photovoltaic Thermal (BIPVT) System and its Optimization. IOP Conf. Ser. Mater. Sci. Eng.
**2019**, 691, 012078. [Google Scholar] [CrossRef] - Zhao, Y.; Li, W.; Zhang, G.; Li, Y.; Ge, M.; Wang, S. Experimental performance of air-type BIPVT systems under different climate conditions. Sustain. Energy Technol. Assess.
**2023**, 60, 103458. [Google Scholar] [CrossRef] - Shahsavar, A.; Talebizadehsardari, P.; Arıcı, M. Comparative energy, exergy, environmental, exergoeconomic, and enviroeconomic analysis of building integrated photovoltaic/thermal, earth-air heat exchanger, and hybrid systems. J. Clean. Prod.
**2022**, 362, 132510. [Google Scholar] [CrossRef] - Dash, A.K.; Agrawal, S.; Gairola, S.; Shukla, S. Analysis, Design, and Comparison of Different Building-Integrated Photovoltaic Thermal (BIPVT) System for Indian Meteorological Condition. In Advances in Energy and Built Environment: Select Proceedings of TRACE 2018; Springer: Singapore, 2020; pp. 145–157. [Google Scholar]
- Ren, H.; Quan, Z.; Wang, Z.; Wang, L.; Jing, H.; Zhao, Y. Performance simulation and analysis of a multi-energy complementary energy supply system for a novel BIPVT nearly zero energy building. Energy Convers. Manag.
**2023**, 282, 116879. [Google Scholar] [CrossRef] - Bot, K.; Aelenei, L.; Gonçalves, H.; Gomes, M.d.G.; Silva, C.S. Performance assessment of a building-integrated photovoltaic thermal system in a mediterranean climate—An experimental analysis approach. Energies
**2021**, 14, 2191. [Google Scholar] [CrossRef] - Luo, Y.; Cheng, N.; Zhang, S.; Tian, Z.; Xu, G.; Yang, X.; Fan, J. Comprehensive energy, economic, environmental assessment of a building integrated photovoltaic-thermoelectric system with battery storage for net zero energy building. In Building Simulation; Tsinghua University Press: Beijing, China, 2022; pp. 1923–1941. [Google Scholar]
- Shakouri, M.; Ghadamian, H.; Hoseinzadeh, S.; Sohani, A. Multi-objective 4E analysis for a building integrated photovoltaic thermal double skin Façade system. Sol. Energy
**2022**, 233, 408–420. [Google Scholar] [CrossRef] - Karami, R.; Sayyaadi, H. Optimal sizing of Stirling-CCHP systems for residential buildings at diverse climatic conditions. Appl. Therm. Eng.
**2015**, 89, 377–393. [Google Scholar] [CrossRef] - Shahverdian, M.H.; Sohani, A.; Pedram, M.Z.; Sayyaadi, H. An optimal strategy for application of photovoltaic-wind turbine with PEMEC-PEMFC hydrogen storage system based on techno-economic, environmental, and availability indicators. J. Clean. Prod.
**2023**, 384, 135499. [Google Scholar] [CrossRef] - Sohel, M.I.; Ma, Z.; Cooper, P.; Adams, J.; Scott, R. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions. Appl. Energy
**2014**, 132, 216–225. [Google Scholar] [CrossRef] - Gu, W.; Ma, T.; Li, M.; Shen, L.; Zhang, Y. A coupled optical-electrical-thermal model of the bifacial photovoltaic module. Appl. Energy
**2020**, 258, 114075. [Google Scholar] [CrossRef] - Xu, L.; Luo, K.; Ji, J.; Yu, B.; Li, Z.; Huang, S. Study of a hybrid BIPV/T solar wall system. Energy
**2020**, 193, 116578. [Google Scholar] [CrossRef] - Nazri, N.S.; Fudholi, A.; Mustafa, W.; Yen, C.H.; Mohammad, M.; Ruslan, M.H.; Sopian, K. Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector. Renew. Sustain. Energy Rev.
**2019**, 111, 132–144. [Google Scholar] [CrossRef] - Shahsavar, A.; Rajabi, Y. Exergoeconomic and enviroeconomic study of an air based building integrated photovoltaic/thermal (BIPV/T) system. Energy
**2018**, 144, 877–886. [Google Scholar] [CrossRef] - Sohani, A.; Sayyaadi, H.; Miremadi, S.R.; Yang, X.; Doranehgard, M.H.; Nizetic, S. Determination of the best air space value for installation of a PV façade technology based on 4E characteristics. Energy
**2023**, 262, 125386. [Google Scholar] [CrossRef] - Gu, W.; Ma, T.; Shen, L.; Li, M.; Zhang, Y.; Zhang, W. Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions. Energy
**2019**, 188, 116043. [Google Scholar] [CrossRef] - Shahsavar, A.; Arıcı, M. Effect of glass cover on the energy and exergy performance of a combined system including a building integrated photovoltaic/thermal system and a sensible rotary heat exchanger. Int. J. Energy Res.
**2022**, 46, 5050–5066. [Google Scholar] [CrossRef] - Li, Z.X.; Shahsavar, A.; Al-Rashed, A.A.A.A.; Kalbasi, R.; Afrand, M.; Talebizadehsardari, P. Multi-objective energy and exergy optimization of different configurations of hybrid earth-air heat exchanger and building integrated photovoltaic/thermal system. Energy Convers. Manag.
**2019**, 195, 1098–1110. [Google Scholar] [CrossRef] - Amirhaeri, Y.; Pourfayaz, F.; Hadavi, H.; Kasaeian, A. Energy and exergy analysis-based monthly co-optimization of a poly-generation system for power, heating, cooling, and hydrogen production. J. Therm. Anal. Calorim.
**2023**, 148, 8195–8221. [Google Scholar] [CrossRef] - Buonomano, A.; Calise, F.; Palombo, A.; Vicidomini, M. Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors. Renew. Energy
**2019**, 137, 109–126. [Google Scholar] [CrossRef] - Ramadhani, F.; Hussain, M.A.; Mokhlis, H.; Illias, H.A. Optimal heat recovery using photovoltaic thermal and thermoelectric generator for solid oxide fuel cell-based polygeneration system: Techno-economic and environmental assessments. Appl. Therm. Eng.
**2020**, 181, 116015. [Google Scholar] [CrossRef]

Item | Description |
---|---|

Internal Wall | 1.42 |

External wall | 1.01 |

Windows | 2.8 |

Roof | 0.6 |

Floor | 0.67 |

**Table 2.**Information on Tabriz [33].

City | Summer Category | Summer | Winter Category | Winter | Lat (°N) | Lon (°E) | |
---|---|---|---|---|---|---|---|

Tdb (°C) | Twb (°C) | Tdb (°C) | |||||

Tabriz | Temperate | 34.0 | 18.0 | Relative cold | −10.8 | 37.8 | 46.3 |

Parameters | Unit | Value | |
---|---|---|---|

Efficiency at Reference | $\%$ | 14 | |

Reference Temperature | $\xb0\mathrm{C}$ | 25 | |

Temperature Coefficient of PV | $\%\xb7{\left(\xb0\mathrm{C}\right)}^{-1}$ | 0.43 | |

Thickness of | Glass | $\mathrm{mm}$ | 3.2 |

Top EVA | $\mathrm{mm}$ | 0.5 | |

Silicon | $\mathrm{mm}$ | 0.4 | |

Bottom EVA | $\mathrm{mm}$ | 0.5 | |

Tedlar | $\mathrm{mm}$ | 0.33 | |

Wall | $\mathrm{mm}$ | 0.3 |

Symbol | Unit | Value |
---|---|---|

${c}_{elec}$ | $\$\xb7{\left(\mathrm{kWh}\right)}^{-1}$ | 0.28 |

${i}_{elec}$ | $\%$ | 7 |

${c}_{NG}$ | $\$\xb7{\mathrm{m}}^{-3}$ | 0.07 |

${i}_{NG}$ | $\%$ | 3 |

${\eta}_{heating\hspace{0.33em}system}$ | $\%$ | 60 |

${i}_{OM}$ | $\%$ | 2 |

$d$ | $\%$ | 2 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Javadijam, R.; Shahverdian, M.H.; Sohani, A.; Sayyaadi, H.
A 4E Comparative Study between BIPV and BIPVT Systems in Order to Achieve Zero-Energy Building in Cold Climate. *Buildings* **2023**, *13*, 3028.
https://doi.org/10.3390/buildings13123028

**AMA Style**

Javadijam R, Shahverdian MH, Sohani A, Sayyaadi H.
A 4E Comparative Study between BIPV and BIPVT Systems in Order to Achieve Zero-Energy Building in Cold Climate. *Buildings*. 2023; 13(12):3028.
https://doi.org/10.3390/buildings13123028

**Chicago/Turabian Style**

Javadijam, Ramtin, Mohammad Hassan Shahverdian, Ali Sohani, and Hoseyn Sayyaadi.
2023. "A 4E Comparative Study between BIPV and BIPVT Systems in Order to Achieve Zero-Energy Building in Cold Climate" *Buildings* 13, no. 12: 3028.
https://doi.org/10.3390/buildings13123028