Next Article in Journal
Thermo-Optical Measurements and Simulation in a Fibre-Optic Circuit Using an Extrinsic Fabry–Pérot Interferometer under Pulsed Laser Heating
Previous Article in Journal
Statistical Evaluations and Applications for IER Parameters from Generalized Progressively Type-II Hybrid Censored Data
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A New Class of Accretive Mappings in Semi-Inner Product Space with an Application to Solve Variational Inclusion

by
Sanjeev Gupta
1,* and
Nifeen Hussain Altaweel
2
1
Department of Mathematics, GLA University, Mathura 281406, India
2
Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(6), 567; https://doi.org/10.3390/axioms12060567
Submission received: 1 April 2023 / Revised: 20 May 2023 / Accepted: 27 May 2023 / Published: 7 June 2023
(This article belongs to the Section Mathematical Analysis)

Abstract

:
This work aims to develop a new class of accretive mappings and investigate its associated class of proximal mappings. This new class of accretive mappings is known as generalized ( H k , φ ) - η -accretive mappings. Further, the research work includes a discussion of its application, leading to set-valued variational-like inclusions (SVVLI, in short) in the semi-inner product spaces. The corresponding fixed point problem for SVVLI is given. This fixed point problem is used to provide an iterative scheme for solving SVVLI. Furthermore, we study the convergence analysis of the suggested iterative method. An illustration is built in support of our result.

1. Introduction and Preliminaries

In recent years, the interpolation theory for nonlinear operators between Banach spaces has seen significant progress. Although it has been emphasised, a similar development of interpolation theorems for specific kinds of nonlinear operators is far less widely known. In this continuation, the idea of accretive mapping is extremely significant because it enables the treatment of a large number of functional differential equations and partial differential equations, e.g., heat and wave equations from mathematical physics, (see [1,2,3,4,5]). The development in the theory of accretive mappings has been shown to be quite useful in the theory of variational inequalities and variational inclusion.
Variational inclusion theory includes a multitude of new ideas and approaches that may be considered as a novel extension and generalization of a variational inequality. It is outstanding that a wide range of unrelated problems can be studied in the cohesive structure of variational inclusions. An efficient and workable iterative technique is developed through the investigation of variational inclusions. To determine the solutions for variational inclusions, a variety of iterative techniques have been proposed and debated. Researchers frequently employ the proximal approach, one of the most intriguing and significant tools, to resolve variational inclusions. Detailed research results can be found in the relevant references [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33].
In 2014, Sahu et al. [6] introduced a class of nonlinear implicit variational inclusions with A-monotone mapping and discussed its existence of solutions in semi-inner product spaces. In 2017, Bhat and Zahoor [7] introduced a new system of variational inclusions with ( H , φ ) - η -monotone mapping and discussed its approximate solution in the semi-inner product spaces. Their outcomes are an extension and improvement of the results of Sahu et al. [34]. Moreover, they developed the iterative methods by using the resolvent operator approaches to discover an approximate solution to variational inclusion problems.
Recently, Luo and Huang [35] introduced ( H , φ ) - η -monotone mappings in Banach spaces, which provided a cohesive framework for the various classes of monotone (accretive) operators. As applications, they solved the various classes of variational inclusions and showed the convergence of iterative schemes involving proximal mappings (resolvent operators). See the references for further applications [6,7,8,13,14,17,20,21,22,23,29,31,32,33,35].
This work provides further insight into existing research. This research aims to develop a new class of accretive mappings known as generalized ( H k , φ ) - η -accretive mappings and investigates its associated class of proximal mappings. This class of accretive mappings is a representation of an addition of two η -symmetric mappings. It can be viewed as an extension of the class of accretive mappings, which are the generalized α i β j - H p ( . , . , ) -accretive mapping [36,37,38] and generalized H ( . , . ) -accretive mapping [8]. Some characteristics of the proximal mapping related to generalized ( H k , φ ) - η -accretive mappings are studied.
Application of the proximal mapping linked with the generalized ( H k , φ ) - η -accretive mapping leads to set-valued variational-like inclusions (SVVLI, in short) in the semi-inner product spaces. Further, the equivalent fixed point problem for SVVLI is given. With the help of this alternative problem, we provide an iterative scheme for solving SVVLI. Furthermore, we study the convergence analysis of the suggested iterative method. An illustration is built in support of our result. For detailed studies, see the related references [8,10,11,15,16,20,22,36].
Before giving necessary definitions for the presentation of this research work, we provide the following well-known definitions and results.
Definition 1
([6,39]). Let B be a vector space over the field K of real or complex numbers. A functional . , . : B × B K is called a semi-inner product if:
(i) 
z + z , z = z , z + z , z , z , z , z B ,
(ii) 
γ z , z = γ [ z , z ] , γ K , z , z B ,
(iii) 
z , z > 0 , f o r z 0 ,
(iv) 
| z , z | 2 z , z z , z , z , z B .
Then, the pair B , . , . is known as a semi-inner product space.
Since z = z , z 1 / 2 is a norm on vector space B , each semi-inner product space becomes a normed linear space. A semi-inner product in a normed linear space can be generated in infinitely many ways. Giles [40] proved that the semi-inner product can be obtained uniquely if the considered space B becomes a uniform convex smooth Banach space. A comprehensive analysis and key findings on semi-inner product spaces may be found in [39,40,41].
Example 1
([6,40]). Let L p ˜ ( B , α ) , where p ( 1 , ) is a real Banach space. Then, L p ˜ ( B , α ) is a semi-inner product space whose semi-inner product is given by
g 1 , g 2 = 1 g 2 p ˜ p ˜ 2 B g 1 ( t ) | g 2 ( t ) | p ˜ 1 s g n ( g 2 ( t ) ) d α , g 1 , g 2 L p ˜ .
Definition 2
([6,42]). Let B be a real Banach space.
(i) 
Then, the modulus of smoothness of Banach space B is a function ρ B : [ 0 , ) [ 0 , ) , given as
ρ B ( u ) = sup z + z + z z 2 1 : z = 1 , z = u , u > 0 ;
(ii) 
If lim u 0 ρ B ( u ) u = 0 , then B is called uniformly smooth;
(iii) 
If there exists non-negative constant c as ρ B ( u ) c u q , q > 1 , then B is called q-uniformly smooth;
(iv) 
If there exists non-negative constant c as ρ B ( u ) c u 2 , then B is called 2-uniformly smooth.
Lemma 1
([6,42]). Let p ¯ > 1 be a real number and B be a smooth Banach space. Then, the following statements are equivalent:
(i) 
B is 2-uniformly smooth;
(ii) 
There is a non-negative constant c such that for each z , z B , the following inequality holds:
z + z 2 z 2 + 2 z , f z + c z 2 ;
where f z J ( z ) and J ( z ) = { z * B * : z , z * = z 2 and z * = z } is the normalized duality mapping.
Each normed linear space B is a semi-inner product space (see [39]). In fact, by the Hahn–Banach theorem, for each z B , there exists at least one functional f z B * such that z , f z = z 2 .
Given any such mapping f : B B * , we can verify that z , z = z , f z defines a semi-inner product. Consequently, we may express the inequality (1) as
z + z 2 z 2 + 2 z , f z + c z 2 , z , z B ,
where the constant c is taken as the best minimum value and known as the smoothness constant.
Example 2
([6]). The functional spaces L p ˜ is 2-uniformly smooth for p ˜ 2 and is p ˜ -uniformly smooth for p ˜ ( 1 , 2 ) . If p ˜ [ 2 , ) , then we have for all z , z L p ˜ :
z + z 2 z 2 + 2 z , f z + ( p ˜ 1 ) z 2 , z , z L p ˜ ,
where p ˜ 1 is the smoothness constant.
It is important to remember the fact that the function space L p ˜ , where p ˜ > 1 , is a uniformly convex smooth Banach space, which allows us to provide a unique semi-inner product on the L p ˜ space.
Elsewhere in the paper, unless otherwise indicated, we consider that B is a 2-uniformly smooth Banach space and B k = B × B × × B k t i m e s .
We remind some prerequisites which will be used throughout this paper.
Definition 3.
Let A : B B and η : B × B B be single-valued mappings. Then, A is called
(i) 
Accretive if
A ( w ) A ( v ) , w v 0 , v , w B ;
(ii) 
μ-strongly accretive if there exists μ > 0 as
A ( w ) A ( v ) , w v μ w v 2 , v , w B ;
(iii) 
γ-relaxed accretive if there exists γ > 0 as
A ( w ) A ( v ) , w v γ w v 2 , v , w B ;
(iv) 
η-accretive if
A ( w ) A ( v ) , η ( w , v ) 0 v , w B ;
(v) 
( μ ˜ , η ) -strongly accretive if there exists μ ˜ > 0 as
A ( w ) A ( v ) , η ( w , v ) μ ˜ w v 2 v , w B ;
(vi) 
( γ ˜ , η ) -relaxed accretive if there exists   γ ˜ > 0 as
A ( w ) A ( v ) , η ( w , v ) γ ˜ w v 2 v , w B ;
(vii) 
 λ-Lipschitz continuous if there exists  λ > 0 as
A ( w ) A ( v ) λ w v , v , w B .
Lemma 2
([9]). Let { p n } and { q n } be non-negative real sequences, satisfying p n + 1 r p n + q n with q n 0 and 0 < r < 1 . Then, p n 0 as n .
Definition 4.
For every r { 1 , 2 , , k } , k 3 , let H k : B k B , K r : B B and η : B × B B be the single-valued mappings. Then, H k is called
(i) 
( α r , η ) -strongly accretive with K r if there exists α r > 0 as
H k ( , K r w , ) H k ( , K r v , ) , η ( w , v ) α r w v 2 , v , w B ;
(ii) 
( β r , η ) -relaxed accretive with K r if there exists β r > 0 as
H k ( , K r w , ) H k ( , K r v , ) , η ( w , v ) β r w v 2 , v , w B ;
(iii) 
ν r -Lipschitz continuous with K r if there exists q r > 0 as
H k ( , K r w ˜ , ) H k ( , K r v ˜ , ) q r w v , v , w B ;
(iv) 
( α 1 β 2 α 3 β 4 α k 1 β k , η ) -symmetric accretive with K 1 , K 2 , , K k iff for r { 1 , 3 , , k 1 } , H k ( , K r , ) is ( α r , η ) -strongly accretive with K r and for r { 2 , 4 , , k } , H k ( , K r , ) is ( β r , η ) -relaxed accretive with K r , when k is even, satisfying
α 1 + α 3 + + α k 1 β 2 + β 4 + + β k
and α 1 + α 3 + + α k 1 = β 2 + β 4 + + β k iff  w = v .
(v) 
( α 1 β 2 α 3 β 4 , β k 1 , α k , η ) -symmetric accretive with K 1 , K 2 , , K k iff for r { 1 , 3 , , p } , H k ( , K r , ) is ( α r , η ) -strongly accretive with K r and for r { 2 , 4 , , k 1 } , H k ( , K r , ) is ( β r , η ) -relaxed accretive with K r when k is odd, satisfying
α 1 + α 3 + + α k β 2 + β 4 + + β k 1
and α 1 + α 3 + + α k β 2 + β 4 + + β k 1  iff  w = v .
Definition 5
([7]). Let A : B B be a mapping and R , S : B 2 B be the set-valued mappings, then:
(i) 
Graph of R is given as:
Gr ( R ) = { ( w , z ) : z R ( w ) } ;
(ii) 
Domain of R is given as:
D ( R ) = { w B : z B : ( w , z ) R } ;
(iii) 
Range of R is given as:
RG ( R ) = { z B : w B : ( w , z ) R } ;
(iv) 
Inverse of R is given as:
R 1 = { ( z , w ) : ( w , z ) R } ;
(v) 
Set S + R , A + R and β S for any real number β are given as:
S + R = { ( u , w + z ) : ( u , w ) S , ( u , z ) R } ,
A + R = { ( u , w + z ) : A u = w , ( u , z ) R } ,
β S = { ( w , β z ) : ( w , z ) R } .
Definition 6.
For every r { 1 , 2 , , k } , k 3 , let g r : B B , η : B × B B be single-valued mappings and M : B k 2 B be a set-valued mapping. Then, M is called
(i) 
( μ ¯ r , η ) -strongly accretive with g r if there exists μ ¯ r > 0 as
w ˜ r v ˜ r , η ( w , v ) μ ¯ r w v 2 , v , w B , v ˜ r M ( . , , g r ( v ) , , . ) , w ˜ r M ( . , , g r ( w ) , , . ) ;
(ii) 
( γ ¯ r , η ) -relaxed accretive with g r if there exists γ ¯ r > 0 as
w ˜ r v ˜ r , η ( w , v ) γ ¯ r w v 2 , v , w B , v ˜ r M ( . , , g r ( v ) , , . ) , w ˜ r M ( . , , g r ( w ) , , . ) ;
(iii) 
( μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 μ ¯ k 1 γ ¯ k , η ) -symmetric accretive with g 1 , g 2 , , g k iff for r { 1 , 3 , , k 1 } , M ( , g r , ) is ( μ ¯ r , η ) -strongly accretive with g r and for r { 2 , 4 , , k } , M ( , g r , ) is ( γ ¯ r , η ) -relaxed accretive with g r , when k is even, satisfying
μ ¯ 1 + μ ¯ 3 + + μ ¯ k 1 γ ¯ 2 + γ ¯ 4 + + γ ¯ k
and  μ ¯ 1 + μ ¯ 3 + + μ ¯ k 1 = γ ¯ 2 + γ ¯ 4 + + γ ¯ k iff w = v .
(iv) 
( μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 , μ ¯ k , γ ¯ k 1 , η ) -symmetric accretive with g 1 , g 2 , , g k iff for r { 1 , 3 , , k } , M ( , g r , ) is ( μ ¯ r , η ) -strongly accretive with g r and for r { 2 , 4 , , k 1 } , M ( , g r , ) is ( γ ¯ r , η ) -relaxed accretive with g r , when k is odd, satisfying
μ ¯ 1 + μ ¯ 3 + + μ ¯ k γ ¯ 2 + γ ¯ 4 + + γ ¯ k 1
and  μ ¯ 1 + μ ¯ 3 + + μ ¯ k = γ ¯ 2 + γ ¯ 4 + + γ ¯ k 1  iff  w = v .
Definition 7.
A single-valued mapping K : B k B is called λ r -Lipschitz continuous in the r t h -component if there exists λ r > 0 as
K ( , w , ) K ( , v , ) λ r w v , v , w B .

2. Generalized ( H k , φ ) - η -Accretive Mappings

For every r { 1 , 2 , , k } , k 3 , let M : B k 2 B be a set-valued mapping and η : B × B B , H k : B k B , K r , g r : B B and φ : B B be single-valued mappings. Now, we present and study the following new class of accretive mappings.
Definition 8.
Let r { 1 , 2 , , k } , k 3 , then M is called generalized ( H k , φ ) -η-accretive mapping with mappings ( K 1 , K 2 , , K k ) and ( g 1 , g 2 , , g k )
(i) 
Iff φ M is ( μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 μ ¯ k 1 γ ¯ k , η ) -symmetric accretive with g 1 , g 2 , , g k and [ H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ] ( B ) = B  if k is even;
 
(ii) 
Iff φ M is ( μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 γ ¯ k 1 μ ¯ k , η ) -symmetric accretive with g 1 , g 2 , , g k and [ H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ] ( B ) = B if k is odd.
Remark 1.
(i)   Let η ( w , v ) = w v and φ ( u ) = ρ u , where ρ > 0 .
Then, Definition 8 coincides with the definition of the generalized H k ( . , . , , . ) -accretive mapping considered by Gupta and Khan [36,37,38].
(ii) 
In addition to the above case (i), let H k ( K 1 , K 2 , , K k ) = H ( K 1 , K 2 ) and M ( g 1 , g 2 , , g k ) = M ( g 1 , g 2 ) .
Then, Definition 8 coincides with the definition of the generalized H ( . , . ) -accretive mapping considered by Kazmi et al. [8].
(iii) 
In addition to the above case (ii), let M ( . , . , ) = M ( . ) .
Then, Definition 8 coincides with the definition of H ( . , . ) -accretive considered by Zou and Huang [10].
(iv) 
In addition to the above case (iii) except η ( w , v ) = w v .
Then, Definition 8 coincides with the definition of the ( H ( . , . ) - η ) -accretive mapping considered by Zou and Huang [43].
(v) 
In addition to the above case (iv) except φ ( u ) = ρ u .
Then, Definition 8 coincides with the definition of the generalized H ( . , . ) -accretive mapping considered by Ahmad and Dilshad and Mishra and Diwan [11,12].
(vi) 
In addition to the case (i) excluding η ( w , v ) = w v and φ ( u ) = ρ u , let M ( . , . , ) = M , H k ( . , . , . . , . ) = H .
Then, Definition 8 coincides with the definition of the ( H , φ ) -η-accretive mapping considered by Bhat and Zahoor [7] and Lou and Huang [35].
(vii) 
Let H k ( K 1 u , K 2 u , . , . . , K k u ) = A u , u B and M ( . , . , ) = M .
Then, Definition 8 coincides with the definition of the ( A , η ) -accretive mapping considered in [13,14]. Thus, the class of ( H k , φ ) -η-accretive mapping in Banach spaces is given a unifying framework for the various classes of accretive mappings (monotone operators). For details, see [6,18,19,20,21,22,23,29,31,32,33].
Now, we are illustrating an example to show that M is an ( H k , φ ) - η -accretive mapping with ( K 1 , K 2 , , K k ) and ( g 1 , g 2 , , g k ) .
Example 3.
Let B = R 2 and r { 1 , 2 , , k } with the usual semi-inner product
( y 1 , y 2 ) , ( x 1 , x 2 ) = y 1 x 1 + y 2 x 2 .
Let mapping K r for each  r { 1 , 2 , , k } be defined as
K 1 ( y ) = y 1 3 y 2 2 , K 3 ( y ) = y 1 3 y 2 2 , . , K k 1 ( y ) = y 1 3 y 2 2 , K 2 ( y ) = y 1 2 y 2 3 , K 4 ( y ) = y 1 2 y 2 3 , . , K k ( y ) = y 1 2 y 2 3 .
Assume that mapping H k is defined by
H ( K 1 , K 2 , , K k 1 , K k ) ( y ) = K 1 ( y ) K 2 ( y ) + + K k 1 ( y ) K k ( y ) .
Let for any u 2 , u 3 , . u k R 2 ,
H k ( K 1 ( y ) , u 2 , , u k 1 ) H k ( K 1 ( x ) , u 2 , , u k 1 ) , η ( y , x ) = ( K 1 ( y ) u 2 + u k ) ( K 1 ( x ) u 2 + u k ) , y x = K 1 ( y ) K 1 ( x ) , y x = y 1 x 1 3 ( y 2 x 2 ) 2 , y 1 x 1 y 2 x 2 = ( y 1 x 1 ) 2 + 3 2 ( y 2 x 2 ) 2 1 y x 2 .
Thus, H k is ( 1 , η ) -strongly accretive with K 1 . Similarly, we can check for each r { 1 , 3 , , k 1 } .
Let for any u 1 , u 3 , . u k R 2 ,
H k ( u 1 , K 2 ( y ) , , u k 1 ) H k ( u 1 , K 2 ( x ) , , u k 1 ) , η ( y , x ) = ( u 1 K 2 ( y ) + u k ) ( u 1 K 2 ( x ) + u k ) , y x = K 2 ( y ) K 2 ( x ) , y x = ( y 1 x 1 ) 2 ( y 2 x 2 ) 3 , y 1 x 1 y 2 x 2 = 1 2 ( y 1 x 1 ) 2 + 1 3 ( y 2 x 2 ) 2 1 2 y x 2 .
Thus, H k is ( 1 2 , η ) -relaxed accretive with K 2 . Similarly, we can check for each r { 2 , 4 , , k } .
Assume that the mapping g r  for each r { 1 , 2 , , k } is given as
g 1 ( y ) = y 1 2 + y 2 2 y 1 2 + y 2 3 , g 3 ( y ) = y 1 2 + y 2 2 y 1 2 + y 2 3 , . , g k 1 ( y ) = y 1 2 + y 2 2 y 1 2 + y 2 3 , g 2 ( y ) = y 1 3 y 2 y 1 + y 2 4 , g 4 ( y ) = y 1 3 y 2 y 1 + y 2 4 , . , g k ( y ) = y 1 3 y 2 y 1 + y 2 2 .
Let set-valued mapping M be defined as
M ( g 1 , g 2 , , g k 1 , g k ) ( y ) = g 1 ( y ) g 2 ( y ) + + g k 1 ( y ) g k ( y ) .
Let for any v 2 , v 3 , . v k R 2 :
φ M ( g 1 ( y ) , v 2 , , v k 1 ) φ M ( g 1 ( x ) , v 2 , , v k 1 ) , η ( y , x ) = ( g 1 ( y ) v 2 + v k ) ( g 1 ( x ) y 2 + y k ) , y x = g 1 ( y ) g 1 ( x ) , y x = y 1 2 + y 2 2 y 1 2 + y 2 3 x 1 2 + x 2 2 x 1 2 + x 2 3 , y 1 y 2 x 1 x 2 = 1 2 ( y 1 x 1 ) 2 + 1 3 ( y 2 x 2 ) 2 1 3 y x 2 .
Thus, φ M is ( 1 3 , η ) -strongly accretive with g 1 . Similarly, we can check for each r { 1 , 3 , , k 1 } .
Let for any v 1 , v 3 , . v k R 2 :
φ M ( v 1 , g 2 ( y ) , , v k 1 ) φ M ( ( v 1 , g 2 ( x ) , , v k 1 ) , η ( y , x ) = ( v 1 g 2 ( y ) + v k ) ( v 1 g 2 ( x ) + y k ) , y x = g 2 ( y ) g 2 ( x ) , y x = y 1 3 y 2 y 1 + y 2 4 x 1 3 x 2 x 1 + x 2 4 , y 1 y 2 x 1 x 2 = ( y 1 x 1 ) 3 ( y 2 x 2 ) ( y 1 x 1 ) + ( y 2 x 2 ) 4 , y 1 x 1 y 2 x 2 = 1 3 ( y 1 x 1 ) 2 + 1 4 ( y 2 x 2 ) 2 1 3 y x 2 .
Thus, φ M is ( 1 3 , η ) -accretive with g 2 . Similarly, we can check for each r { 2 , 4 , , k } :
[ H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ] ( y ) = [ H k ( K 1 ( y ) , K 2 ( y ) , , K k ( y ) ) + φ M ( g 1 ( y ) , g 2 ( y ) , , g k ( y ) ) ] = [ K 1 ( y ) K 2 ( y ) + K k ( y ) ) + φ ( g 1 ( y ) g 2 ( y ) + g k ( y ) ) ] = [ K 1 ( y ) K 2 ( y ) + K k ( y ) ) + λ ( g 1 ( y ) g 2 ( y ) + g k ( y ) ) ] = y 1 3 y 2 2 y 1 2 y 2 3 + + y 1 3 y 2 2 y 1 2 y 2 3 + λ y 1 2 + y 2 2 y 1 2 + y 2 3 y 1 3 y 2 y 1 + y 2 4 + + y 1 2 + y 2 2 y 1 2 + y 2 3 y 1 3 y 2 y 1 + y 2 4 = k 2 y 1 3 y 2 2 y 1 2 y 2 3 + k λ 2 y 1 2 + y 2 2 z 1 2 + y 2 3 y 1 3 y 2 y 1 + z 2 4 = k 2 ( 3 + λ 6 ) y 1 + 3 λ 2 y 2 3 λ 2 y 1 + 14 + λ 12 y 2
It is easy to show that the whole R 2 is generated by the right-hand side of (3).
[ H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ] ( R 2 ) = R 2 .
To discuss various aspects of generalized ( H k , φ ) - η -accretive mappings and move on to the subsequent sections, let us take into account the following assumptions I 1 I 5
  • If k is even:
  • I 1 : Mapping H k is ( α 1 β 2 α 3 β 4 α k 1 β k , η ) -symmetric accretive with K 1 , K 2 , , K k .
  • I 2 : Mapping φ M is ( μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 μ ¯ k 1 γ ¯ k , η ) -symmetric accretive with g 1 , g 2 , , g k .
  • If k is odd:
  • I 3 : Mapping H k is ( α 1 β 2 α 3 β 4 β k 1 α k , η ) -symmetric accretive with K 1 , K 2 , , K k .
  • I 4 : Mapping φ M is ( μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 γ ¯ k 1 μ ¯ k , η ) -symmetric accretive with g 1 , g 2 , , g k .
  • I 5 : Let η be -Lipschitz continuous.
Theorem 1.
If assumptions I 1 I 4 are true for r { 1 , 2 , k } , k 3 , and M : B k 2 B is a generalized ( H k , φ ) -η-accretive mapping with mappings ( K 1 , K 2 , , K k ) and ( g 1 , g 2 , , g k ) , then   [ H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ] 1 is single-valued.
Proof. 
For any given u B , let x , y [ H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ] 1 ( u ) . It follows that
H k ( K 1 x , K 2 x , , K k x ) + u φ M ( g 1 , g 2 , , g k ) x , H k ( K 1 y , K 2 y , , K k y ) + u φ M ( g 1 , g 2 , , g k ) y .
If k is even: Since φ M is ( μ ¯ 1 γ ¯ 2 μ ¯ 3 γ ¯ 4 μ ¯ k 1 γ ¯ k , η ) -symmetric accretive with g 1 , g 2 , , g k and H k is ( α 1 β 2 α 3 β 4 α k 1 β k , η ) -symmetric accretive with K 1 , K 2 , , K k , we obtain:
( μ ¯ 1 γ ¯ 1 + + μ ¯ k 1 γ ¯ k ) x y 2 [ H k ( K 1 x , K 2 x , , K k x ) + u ( H k ( K 1 y , K 2 y , , K k y ) + u ) , η ( x , y ) ] H k ( K 1 x , K 2 x , , K k x ) H k ( K 1 y , K 2 y , , K k y ) , η ( x , y ) = H k ( K 1 x , K 2 x , , K k x ) H k ( K 1 y , K 2 x , , K k x ) , η ( x , y ) H k ( K 1 y , K 2 x , , K k x ) H k ( K 1 y , K 2 y , , K k x ) , η ( x , y ) : : H k ( K 1 y , K 2 y , , K k x ) H k ( K 1 y , K 2 y , , K k y ) , η ( x , y ) α 1 β 2 + α 3 β 4 + + α k 1 β k x y 2 .
It implies that
α r β r + μ ¯ r γ ¯ r x y 2 0 .
Since μ ¯ r > γ ¯ r , α r > β r , we have x y 0 . It implies that x = y . Thus, ( H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ) 1 is single-valued. Similarly, if k is odd, we can demonstrate the outcome.    □
Next, we use the Theorem 1 to define the following proximal mapping R φ , M ( . , . , . . , . ) η , H k ( . , . , . . , . ) .
Definition 9.
If assumptions I 1 I 4 are true for r { 1 , 2 , k } , k 3 , and M : B k 2 B is a generalized ( H k , φ ) -η-accretive mapping with mappings ( K 1 , K 2 , , K k ) and ( g 1 , g 2 , , g k ) , then a proximal mapping R φ , M ( . , . , . . , . ) η , H k ( . , . , . . , . ) : B B is defined as
R φ , M ( . , . , ) η , H k ( . , . , ) ( x ) = [ H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ] 1 ( x ) , x B .
Now, we discuss the Lipschitz continuity.
Theorem 2.
If assumptions I 1 I 4 are true for r { 1 , 2 , k } , k 3 , and M : B k 2 B is a generalized ( H k , φ ) -η-accretive mapping with mappings ( K 1 , K 2 , , K k ) and ( g 1 , g 2 , , g k ) , then, the proximal mapping R φ , M ( . , . , . . , . ) η , H k ( . , . , . . , . ) : B B is α r β r + μ ¯ r γ ¯ r -Lipschitz continuous,  where
α r β r = α 1 β 2 + α 3 β 4 + α k 1 + β k , μ ¯ r γ ¯ r = μ ¯ 1 γ ¯ 2 + μ ¯ 3 γ ¯ 4 + μ ¯ k 1 + γ ¯ k , i f k i s e v e n ,
and
α r β r = α 1 β 2 + α 3 β 4 + β k 1 + α k , μ ¯ r γ ¯ r = μ ¯ 1 γ ¯ 2 + μ ¯ 3 γ ¯ 4 + γ ¯ k 1 + μ ¯ k , i f k i s o d d .
Proof. 
Let x , y B and from (5), we have
R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) ( y ) = ( H k ( K 1 , K 2 , . . . , K k ) + φ M ( g 1 , g 2 , . . . , g k ) ) 1 ( z ) , R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) ( z ) = ( H k ( K 1 , K 2 , . . . , K k ) + φ M ( g 1 , g 2 , . . . , g k ) ) 1 ( z ) .
It follows that
y H k ( K 1 ( R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) ( y ) ) , K 2 ( R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) ( y ) ) , , K k ( R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) ( y ) ) ) φ M R φ , M ( . , . , ) η , H k ( . , . , ) ( y ) , z H k ( K 1 ( R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) ( z ) ) , K 2 ( R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) ( z ) ) , , K k ( R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) ( z ) ) ) φ M R φ , M ( . , . , ) η , H k ( . , . , ) ( z ) .
Let y ^ = R φ , M ( . , . , ) η , H k ( . , . , ) ( y ) and z ^ = R φ , M ( . , . , ) η , H k ( . , . , ) ( z ) .
If k is even: Since φ M is ( μ ¯ 1 γ ¯ 2 μ ¯ k 1 γ ¯ k , η ) -symmetric accretive with g 1 , g 2 , , g k , we have
( μ ¯ 1 γ ¯ 1 + + μ ¯ k 1 γ ¯ k ) y ^ z ^ 2 y ^ z ^ ( H k ( K 1 , K 2 , , K k ) ( y ^ ) H k ( K 1 , K 2 , , K k ) ( z ^ ) ) , η ( y ^ , z ^ ) .
Using the fact that H k is ( α 1 β 2 α 3 β 4 α k 1 β k , η ) -symmetric accretive with K 1 , K 2 , , K k and η ( . , . ) is Lipschitz continuous in the above inequality, we have
y z y ^ z ^ y ^ z ^ η y ^ , z ^ y ^ z ^ , η y ^ , z ^ H k ( K 1 , K 2 , , K k ) ( y ^ ) H k ( K 1 , K 2 , , K k ) ( z ^ ) , η y ^ , z ^ + μ ¯ r γ ¯ r y ^ z ^ 2 α 1 y ^ z ^ 2 β 2 y ^ z ^ 2 + α 3 y ^ z ^ 2 β k y ^ z ^ 2 + μ ¯ r γ ¯ r y ^ z ^ 2 = α r β r + μ ¯ r γ ¯ r y ^ z ^ 2
or
y z y ^ z ^ α r β r + μ ¯ r γ ¯ r y ^ z ^ 2 .
That is,
R φ , M ( . , . , ) η , H k ( . , . , ) ( y ) R φ , M ( . , . , ) η , H k ( . , . , ) ( z ) α r β r + μ ¯ r γ ¯ r y z , y , z B .
If k is odd: Similarly, we can demonstrate that R φ , M ( . , . , ) η , H k ( . , . , ) is α r β r + μ ¯ r γ ¯ r -Lipschitz continuous, where
α r β r = α 1 β 2 + α 3 β 4 + β k 1 + α k , μ ¯ r γ ¯ r = μ ¯ 1 γ ¯ 2 + μ ¯ 3 γ ¯ 4 + γ ¯ k 1 + μ ¯ k .
   □

3. An Application

For every r { 1 , 2 , , k } , k 3 , let H k , K : B k B , η : B × B B , and A , K r , g r , p , φ : B B be single-valued mappings, N r : B 2 B be set-valued mappings. Let set-valued mapping M : B k 2 B be a generalized ( H k , φ ) - η -accretive mapping with mappings ( K 1 , K 2 , , K k ) and ( g 1 , g 2 , , g k ) .
We study the set-valued variational-like inclusions problem (SVVLIP, in short): for any a B , find t B , v ˜ 1 N 1 ( t ) , v ˜ 2 N 2 ( t ) , , v ˜ k N k ( t ) such that
a A ( t p ( t ) ) + M ( g 1 ( t ) , g 2 ( t ) , , g k ( t ) ) K ( v ˜ 1 , v ˜ 2 , , v ˜ k ) .
SVVLIP (6) coincides with the following general variational inclusion (GVIP): find t B , v N ( t ) such that
0 A ( t ) + M ( v ) ,
when a = 0 , K , p = 0 , M ( g 1 ( t ) , g 2 ( t ) , , g k ( t ) ) = M , N 1 = = N k = N , φ ( u ) = ρ u , ρ > 0 , η ( u , v ) = u v for each u , v B .
GVIP (7) was studied by Zou and Huang [10] if M is a H ( . , . ) -accretive mapping in Banach spaces.
In addition to the above case, let B be a Hilbert space X and M is a H-monotone mapping, then GVIP (7) was studied by Fang and Huang in [15]. GVIP (7) contains complementarity problems and some variational inclusions (inequalities) as special cases; see the references [44,45].
Note: For a given appropriate selection of K r , g r , N r , M φ , η , r { 1 , 2 , , k } , and the spaces B , the SGVLIP (6) coincides with different classes of variational inclusions and variational inequalities. See the relevant references [13,16,36].
Definition 10.
A set-valued mapping N : B C B ( B ) is called H ˜ -Lipschitz continuous with ζ > 0 , if
H ˜ ( N y , N z ) ζ y z , y , z B .
Lemma 3.
Let φ : B B be a mapping with φ ( u ˜ 1 + u ˜ 2 ) = φ ( u ˜ 1 ) + φ ( u ˜ 2 ) and K e r n e l ( φ ) = { 0 } , where K e r n e l ( φ ) = { w ˜ B : φ ( w ˜ ) = 0 } . For any ( t , v ˜ 1 , v ˜ 2 , , v ˜ k ) , where t B , v ˜ 1 N 1 ( t ) , v ˜ 2 N 2 ( t ) , , v ˜ k N k ( t ) is a solution of SVVLIP (6) iff ( t , v ˜ 1 , v ˜ 2 , , v ˜ k ) satisfies:
t = R φ , M ( . , . , ) η , H k ( . , . , ) [ H k ( K 1 , K 2 , , K k ) ( t ) A ( t p ( t ) ) + a + φ K ( v ˜ 1 , v ˜ 2 , , v ˜ k ) ] ,
where R φ , M ( . , . , ) η , H k ( . , . , ) ( t ) = [ H k ( K 1 , K 2 , , K k ) + φ M ( g 1 , g 2 , , g k ) ] 1 ( t ) , t B .
Proof. 
The proof of the above lemma is a direct consequence of the generalized ( H k , φ ) - η -accretive mapping; therefore, the proof is omitted.    □
In order to obtain an approximate solution to the SVVLIP (6), we now propose the iterative scheme based on Lemma 3.
Here, we provide sufficient convergence criteria for iterative sequences developed by Algorithm 1.
Algorithm 1 
  • For any given t 0 B , select v ˜ 0 1 N 1 ( t 0 ) , v ˜ 0 2 N 2 ( t 0 ) , , v ˜ 0 k N k ( t 0 ) and obtain { t n } , { v ˜ n 1 } , { v ˜ n 2 } ,..., { v ˜ n k } , by the following iterative scheme:
t n + 1 = R φ , M ( . , . , . . . ) η , H k ( . , . , . . . ) [ H k ( K 1 , K 2 , , K k ) ( t n ) A ( t n p ( t n ) ) + a + φ K ( v ˜ n 1 , v ˜ n 2 , , v ˜ n p ) ] , v ˜ n 1 N 1 ( t n ) : v ˜ n + 1 1 v ˜ n 1 1 + 1 n + 1 H ˜ ( N 1 ( t n + 1 ) , N 1 ( t n ) ) , v ˜ n 2 N 2 ( t n ) : v ˜ n + 1 2 v ˜ n 2 1 + 1 n + 1 H ˜ ( N 2 ( t n + 1 ) , N 2 ( t n ) ) , : : v ˜ n k N k ( t n ) : v ˜ n + 1 k v ˜ n k 1 + 1 n + 1 H ˜ ( N k ( t n + 1 ) , N k ( t n ) ) ,
  • n = 0 , 1 , 2 , . and H ˜ ( . , . ) is the Hausdorff metric on C B ( B ) .
Theorem 3.
For every r { 1 , 2 , , k } , k 3 , let g r , K r : B B , η : B × B B , K : B k B be single-valued mappings, H k : B k B be a q r -Lipschitz continuous with K r and p : B B be a δ-relaxed accretive and λ p -Lipschitz continuous mapping. Let A : B B be a λ A -Lipschitz continuous, and for every r { 1 , 2 , , k } , N r : B 2 B be ζ i - H -Lipschitz continuous. Let φ : B B be a mapping with φ ( u ˜ 1 + u ˜ 2 ) = φ ( u ˜ 1 ) + φ ( u ˜ 2 ) and K e r n e l ( φ ) = { 0 } , where K e r n e l ( φ ) = { w ˜ B : φ ( w ˜ ) = 0 } such that φ K is λ r -Lipschitz continuous in the r t h -component. The set-valued mapping M : B k 2 B is a generalized ( H k , φ ) -η-accretive mapping with mappings ( K 1 , K 2 , , K k ) and ( g 1 , g 2 , , g k ) . In addition, the following conditions are satisfied:
0 < ( q 1 + q 2 + + q k ) + λ 1 ζ 1 + λ 2 ζ 2 + + λ k ζ k + λ A 1 + 2 δ + c λ p α r β r + μ ¯ r γ ¯ r < 1 .
Then, iterative sequences ( { t n } , { v ˜ n 1 } , { v ˜ n 2 } , . , { v ˜ n k } ) constructed from Algorithm 1 converge strongly to ( t , v ˜ 1 , v ˜ 2 , . . , v ˜ k ) , a solution of SVVLIP (6).
Proof. 
We now argue that t n strongly converges to t. From Theorem 2 and Algorithm 1, we have
t n + 1 t n = R φ , M ( . , . , ) η , H k ( . , . , ) [ H k ( K 1 , K 2 , , K k ) ( t n ) A ( t n p ( t n ) ) + a + φ K ( v ˜ n 1 , v ˜ n 2 , , v ˜ n k ) ] R φ , M ( . , . , ) η , H k ( . , . , ) [ H k ( K 1 , K 2 , , K k ) ( t n 1 ) A ( t n 1 p ( t n 1 ) ) + a + φ K ( v ˜ n 1 1 , v ˜ n 1 2 , , v ˜ n 1 k ) ] α r β r + μ ¯ r γ ¯ r [ H k ( K 1 , K 2 , , K k ) ( t n ) A ( t n p ( t n ) ) + a + φ K ( v ˜ n 1 , v ˜ n 2 , , v ˜ n k ) ] [ H k ( K 1 , K 2 , , K k ) ( t n 1 ) A ( t n 1 p ( t n 1 ) ) + a + φ K ( v ˜ n 1 1 , v ˜ n 1 2 , , v ˜ n 1 k ) ] = α r β r + μ ¯ r γ ¯ r [ H k ( K 1 , K 2 , , K k ) ( t n ) H k ( K 1 , K 2 , , K k ) ( t n 1 ) ] [ A ( t n p ( t n ) ) A ( t n 1 p ( t n 1 ) ) ]
+ [ φ K ( v ˜ n 1 , v ˜ n 2 , , v ˜ n k ) φ K ( v ˜ n 1 1 , v ˜ n 1 2 , , v ˜ n 1 k ) α r β r + μ ¯ r γ ¯ r H k ( K 1 , K 2 , , K k ) ( t n ) H k ( K 1 , K 2 , , K k ) ( t n 1 ) + A ( t n p ( t n ) ) A ( t n 1 p ( t n 1 ) ) + φ K ( v ˜ n 1 , v ˜ n 2 , , v ˜ n k ) φ K ( v ˜ n 1 1 , v ˜ n 1 2 , , v ˜ n 1 k )
As H k is q r -Lipschitz continuous with K r , we have
H k ( K 1 , K 2 , , K k ) ( t n ) H k ( K 1 , K 2 , , K k ) ( t n 1 ) H k ( K 1 t n , K 2 t n , , K k t n ) H k ( K 1 t n 1 , K 2 t n , , K k t n ) + H k ( K 1 t n 1 , K 2 t n , , K k t n ) H k ( K 1 t n 1 , K 2 t n 1 , , K k t n ) : : + H k ( K 1 t n 1 , K 2 t n 1 , , K k t n ) H k ( K 1 t n 1 , K 2 t n 1 , , K k t n 1 ) q 1 t n t n 1 + q 2 t n t n 1 + + q k t n t n 1 | = q 1 + q 2 + + q k t n t n 1 .
Using the λ r -Lipschitz continuity of φ K and ζ i - H ˜ -Lipschitz continuity of N r , we have
φ K ( v ¯ n 1 , v ¯ n 2 , , v ¯ n k ) φ K ( v ¯ n 1 1 , v ¯ n 1 2 , , v ¯ n 1 k ) φ K ( v ¯ n 1 , v ¯ n 2 , , v ¯ n k ) φ K ( v ¯ n 1 1 , v ¯ n 2 , , v ¯ n k ) + φ K ( v ¯ n 1 1 , v ¯ n 2 , , v ¯ n k ) φ K ( v ¯ n 1 1 , v ¯ n 1 2 , , v ¯ n k ) : : + φ K ( v ¯ n 1 1 , v ¯ n 1 2 , , v ¯ n 1 k ) φ K ( v ¯ n 1 1 , v ¯ n 1 2 , , v ¯ n k ) λ 1 v ¯ n 1 v ¯ n 1 1 + λ 2 v ¯ n 2 v ¯ n 1 2 + . + λ k v ¯ n k v ¯ n 1 k λ 1 1 + n 1 H ˜ ( N 1 ( t n ) , N 1 ( t n 1 ) ) + λ 2 1 + n 1 H ˜ ( N 2 ( t n ) , N 2 ( t n 1 ) ) + + λ k 1 + n 1 H ˜ ( N k ( t n ) , N k ( t n 1 ) ) 1 + 1 n λ 1 ζ 1 + λ 2 ζ 2 + + λ k ζ k t n t n 1
We compute the following by using the λ A -Lipschitz continuity of A :
[ A ( t n p ( t n ) ) A ( t n 1 p ( t n 1 ) ) λ A t n p ( t n ) ( t n 1 p ( t n 1 ) ) = λ A t n t n 1 ( p ( t n ) p ( t n 1 ) ) .
Using the δ -relaxed accretivity, the λ p Lipschitz continuity of p, and Lemma 1, we have
t n t n 1 ( p ( t n ) p ( t n 1 ) ) 2 = t n t n 1 2 2 [ p ( t n ) p ( t n 1 ) , t n t n 1 ] + c p ( t n ) p ( t n 1 ) 2 t n t n 1 2 2 [ δ t n t n 1 2 ] + c λ p t n t n 1 2 1 + 2 δ + c λ p t n t n 1 2 .
So, we have
t n t n 1 ( p ( t n ) p ( t n 1 ) ) 1 + 2 δ + c λ p t n t n 1 .
Using (11)–(15) in (10), we obtain
t n + 1 t n = θ n t n t n 1 ,
where
θ n = ( q 1 + q 2 + + q k ) + 1 + 1 n λ 1 ζ 1 + λ 2 ζ 2 + + λ k ζ k + λ A 1 + 2 δ + c λ p α r β r + μ ¯ r γ ¯ r .
We can obtain θ n θ as n , where
θ = ( q 1 + q 2 + + q k ) + λ 1 ζ 1 + λ 2 ζ 2 + + λ k ζ k + λ A 1 + 2 δ + c λ p α r β r + μ ¯ r γ ¯ r .
It follows from (9) that θ ( 0 , 1 ) . Thus, { t n } is a Cauchy sequence. Then, t B exists in such a way that { t n } x as n . Next, we show that v ˜ n 1 v ˜ 1 N 1 ( t ) . From Algorithm 1 and the Lipschitz continuity of N 1 , we have
v ˜ n 1 v ˜ n 1 1 1 + 1 n H ˜ ( N 1 ( t n ) , N 1 ( t n 1 ) ) 1 + 1 n ζ 1 t n t n 1 .
It shows that { v ˜ n 1 } is a Cauchy sequence. Similarly, we can prove that { v ˜ n 2 } , , { v ˜ n k } are Cauchy sequences. Then, there exist v ˜ 1 , v ˜ 2 , v ˜ k such that v ˜ n 1 v ˜ 1 , v ˜ n 2 v ˜ 2 , , v ˜ n k v ˜ k , as n . Now, we argue that v ˜ 1 N 1 ( t ) . Since v ˜ n 1 N 1 ( t ) , we have
d ( v ˜ 1 , N 1 ( t ) ) v ˜ 1 v ˜ n 1 + d ˜ ( v ˜ n 1 , N 1 ( t ) ) v ˜ 1 v ˜ n 1 + H ˜ ( N 1 ( t n ) , N 1 ( t ) ) v ˜ 1 v ˜ n 1 + ζ 1 t n t as n .
Since N 1 ( t ) is closed, thus v ˜ 1 N 1 ( t ) . Through the same procedure, we can show that v ˜ 2 N 2 ( t ) , v ˜ 3 N 3 ( t ) , , u ˜ k N k ( t ) . By the continuity of R φ , M ( . , . , ) η , H k ( . , . , ) , φ K , K r , g r , N r , M and Algorithm 1, it follows that ( t , v ˜ 1 , v ˜ 2 , , v ˜ k ) satisfies:
t n + 1 = R φ , M ( . , . , ) η , H k ( . , . , ) [ H k ( K 1 , K 2 , , K k ) ( t n ) φ K ( v ˜ n 1 , v ˜ n 2 , , v ˜ n k ) ] t = R φ , M ( . , . , ) η , H k ( . , . , ) [ H k ( K 1 , K 2 , , K k ) ( t ) φ K ( v ˜ 1 , v ˜ 2 , , v ˜ k ) ] .
By Lemma 3, SVVLIP (6) has a solution ( t , v ˜ 1 , v ˜ 2 , , v ˜ k ) . □
Remark 2.
(i) Theorem 3 coincides with Theorem 4.1 in [10] if
a = 0 , K , p = 0 , M ( g 1 ( t ) , g 2 ( t ) , , g k ( t ) ) = M , φ ( u ) = ρ u , ρ > 0 , for each u B , η ( u , v ) = u v for each u , v B each v B .
(ii) 
In addition to the above case, let M is a H-monotone mapping, and B be a Hilbert space X. Then, Theorem 3 coincides with Theorem 3.1 in [15].
The functional space L p ˜ is a 2-uniformly smooth space when p ˜ [ 2 , ) is as given in Example 2. Let B = L p ˜ , where p ˜ [ 2 , ) . Then, Theorem 3 yields the following outcome:
Corollary 1.
For every r { 1 , 2 , , k } , k 3 , let g r , K r : L p ˜ L p ˜ , η : L p ˜ × L p ˜ L p ˜ , K : L p ˜ k L p ˜ be single-valued mappings, H k : L p ˜ k L p ˜ be a q r -Lipschitz continuous with K r and p : L p ˜ L p ˜ be a δ-relaxed accretive and λ p -Lipschitz continuous mapping. Let A : L p ˜ L p ˜ be a λ A -Lipschitz continuous, and for every r { 1 , 2 , , k } , N r : L p ˜ 2 L p ˜ be ζ i - H -Lipschitz continuous. Let φ : L p ˜ L p ˜ be a mapping with φ ( u ˜ 1 + u ˜ 2 ) = φ ( u ˜ 1 ) + φ ( u ˜ 2 ) and K e r ( φ ) = { 0 } , where K e r ( φ ) = { w ˜ L p ˜ : φ ( w ˜ ) = 0 } such that φ K is λ r -Lipschitz continuous in the r t h -component. The set-valued mapping M : L p ˜ k 2 L p ˜ is a generalized ( H k , φ ) -η-accretive mapping with mappings ( K 1 , K 2 , , K k ) and ( g 1 , g 2 , , g k ) . In addition, the following conditions are satisfied:
0 < ( q 1 + q 2 + + q k ) + λ 1 ζ 1 + λ 2 ζ 2 + + λ k ζ k + λ A 1 + 2 δ + ( p ˜ 1 ) λ p α r β r + μ ¯ r γ ¯ r < 1 ,
where p ˜ 1 is the smoothness constant. Then, iterative sequences ( { t n } , { v ˜ n 1 } , { v ˜ n 2 } , . , { v ˜ n k } ) constructed from Algorithm 1 converge strongly to ( t , v ˜ 1 , v ˜ 2 , . . , v ˜ k ) , a solution of SVVLIP (6).

4. Conclusions

In this paper, we have investigated a new class of accretive mappings, known as generalized ( H k , φ ) - η -accretive mappings and their proximal mapping. As its significance role, we have studied a set-valued variational-like inclusion problem in the frame of semi-inner product spaces. An iterative scheme involving a generalized ( H k , φ ) - η accretive mapping was given. Further, we have concentrated on the convergence of the proposed iterative scheme. An example is constructed in support of our result. The obtained result as “Theorem 3” in this paper unifies, improves, and extends the main results obtained in [10,15].

Author Contributions

Equal contributions from both authors are made to the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The reviewers’ recommendations and insightful criticism helped shape the original work into its current form, for which the authors are quite grateful.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kato, T. Nonlinear Semigroups and Evolution Equations. J. Math. Soc. Jpn. 1967, 19, 508–520. [Google Scholar] [CrossRef]
  2. Kato, T. Accretive operators and evolution equations in Banach spaces. Nonlinear Funtional Anal. 1970, 18, 138–161. [Google Scholar]
  3. Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980. [Google Scholar]
  4. Kenmochi, N. Accretive Mappings in Banach Spaces. Hiroshima Math. J. 1972, 2, 163–177. [Google Scholar] [CrossRef]
  5. Kukushkin, M.V. Abstract Fractional Calculus for m-Accretive Operators. Int. J. Appl. 2021, 34, 1–41. [Google Scholar] [CrossRef]
  6. Sahu, N.K.; Mohapatra, R.N.; Nahak, C.; Nanda, S. Approximation solvability of a class of A-monotone implicit variational inclusion problems in semi-inner product spaces. Appl. Math. Comput. 2014, 236, 109–117. [Google Scholar] [CrossRef]
  7. Bhat, M.I.; Zahoor, B. Existence of solution and iterative approximation of a system of generalized variational-like inclusion problems in semi-inner product spaces. Filomat 2017, 31, 6051–6070. [Google Scholar] [CrossRef] [Green Version]
  8. Kazmi, K.R.; Khan, F.A.; Shahzad, M. A system of generalized variational inclusions involving generalized H(.,.)-accretive mapping in real q-uniformly smooth Banach spaces. Appl. Math. Comput. 2011, 217, 9679–9688. [Google Scholar] [CrossRef]
  9. Liu, L.S. Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 1995, 194, 114–125. [Google Scholar] [CrossRef] [Green Version]
  10. Zou, Y.-Z.; Huang, N.-J. H(.,.)-accretive operator with an application for solving variational inclusions in Banach spaces. Appl. Math. Comput. 2008, 204, 809–816. [Google Scholar] [CrossRef]
  11. Ahmad, R.; Dilshad, M. H(.,.)-ϕ-η-accretive operator mapping and generalized variational-like inclusion. Am. J. Oper. Res. 2011, 1, 305–311. [Google Scholar]
  12. Mishra, P.; Diwan, S.D. A strong convergence theorem for H(.,.)-ϕ-η-accretive mapping using proximal point algorithms. Malaya J. Mat. 2019, 7, 192–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Lan, H.-Y.; Cho, Y.J.; Verma, R.U. Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces. Comput. Math. Appl. 2006, 51, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
  14. Verma, R.U. Approximation solvability of a class of nonlinear set-valued inclusions involving (A,η)-monotone mappings. J. Math. Appl. Anal. 2008, 337, 969–975. [Google Scholar] [CrossRef]
  15. Fang, Y.-P.; Huang, N.-J. H-monotone operator and resolvent operator technique for variational inclusions. Appl. Math. Comput. 2003, 145, 795–803. [Google Scholar] [CrossRef]
  16. Wang, Z.B.; Ding, X.P. (H(.,.)-η)-accretive operators with an application for solving set-valued variational inclusions in Banach spaces. Comput. Macth. Appl. 2010, 59, 1559–1567. [Google Scholar] [CrossRef] [Green Version]
  17. Bhat, M.I.; Zahoor, B. Approximation solvability for a system of variational-like inclusions involving generalized (H,φ)-η-monotone operators. Int. J. Modern Math. Sci. 2017, 15, 30–49. [Google Scholar]
  18. Bi, Z.S.; Hart, Z.; Fang, Y.P. Sensitivity analysis for nonlinear variational inclusions involving generalized m-accretive mappings. J. Sichuan Univ. 2003, 40, 240–243. [Google Scholar]
  19. Ding, X.P.; Fang, H.R. Algorithm for solving a new class of generalized nonlinear implicit quasi-variational inclusions in Banach spaces. Appl. Math. Comput. 2009, 208, 547–555. [Google Scholar] [CrossRef]
  20. Fang, Y.-P.; Huang, N.-J. Approximate Solutions for Nonlinear Operator Inclusions with (H,η)-Monotone Operator; Research Report; Sichuan University: Chengdu, China, 2003. [Google Scholar]
  21. Fang, Y.-P.; Huang, N.-J. H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces. Appl. Math. Lett. 2004, 17, 647–653. [Google Scholar] [CrossRef] [Green Version]
  22. Fang, Y.P.; Cho, Y.J.; Kim, J.K. (H,η)-accretive operator and approximating solutions for systems of variational inclusions in Banach spaces. Appl. Math. Lett. 2004, preprint. [Google Scholar]
  23. Feng, H.R.; Ding, X.P. A new system of generalized nonlinear quasi-variational-like inclusions with A-monotone operators in Banach spaces. J. Comput. Appl. Math. 2009, 225, 365–373. [Google Scholar] [CrossRef] [Green Version]
  24. Guan, J.; Hu, C. A System of generalized variational inclusions involving a new monotone mapping in Banach Spaces. Abstr. Appl. Anal. 2013, 2013, 654537. [Google Scholar] [CrossRef]
  25. Gupta, S.; Husain, S.; Mishra, V.N. Variational inclusion governed by αβ-H((.,.),(.,.))-mixed accretive mapping. Filomat 2017, 31, 6529–6542. [Google Scholar] [CrossRef] [Green Version]
  26. Gupta, S.; Singh, M. Variational-like inclusion involving infinite family of set-valued mapping governed by resolvent equations. J. Math. Comput. Sci. 2021, 10, 874–892. [Google Scholar]
  27. Gupta, S.; Singh, M. Generalized monotone mapping and resolvent equation techniques with an application. J. Math. Comput. Sci. 2021, 11, 1767–1783. [Google Scholar]
  28. Gupta, S. H(.,.)-ϕ-η mixed accretive mapping with an application. J. Math. Comput. Sci. 2020, 10, 2327–2341. [Google Scholar]
  29. Lou, J.; He, X.F.; He, Z. Iterative methods for solving a system of variational inclusions H-η-monotone operators in Banach spaces. Comput. Math. Appl. 2008, 55, 1832–1841. [Google Scholar] [CrossRef] [Green Version]
  30. Nazemi, S.Z. A new class of monotone mappings and a new class of variational inclusions in Banach spaces. J. Optim. Theory Appl. 2012, 155, 785–795. [Google Scholar] [CrossRef]
  31. Peng, J.-W. On a new system of generalized mixed quasi-variational-like inclusions with (H,η)-accretive operators in real q-uniformly smooth Banach spaces. Nonlinear Anal. 2008, 68, 981–993. [Google Scholar] [CrossRef]
  32. Verma, R.U. General class of implicit variational inclusions and graph convergence on A-maximal relaxed monotonicity. J. Optim. Theory Appl. 2012, 155, 196–214. [Google Scholar] [CrossRef]
  33. Zhang, Q.B. Generalized implicit variational-like inclusion problems involving G-η-monotone mappings. Appl. Math. Lett. 2007, 20, 216–221. [Google Scholar] [CrossRef]
  34. Sahu, N.K.; Nahak, C.; Nanda, S. Graph convergence and approximation solvability of a class of implicit variational inclusion problems in Banach spaces. J. Indian Math. Soc. 2014, 81, 155–172. [Google Scholar]
  35. Luo, X.P.; Huang, N.J. (H,φ)-η-monotone operators in Banach spaces with an application to variational inclusions. Appl. Math. Comput. 2010, 216, 1131–1139. [Google Scholar]
  36. Gupta, S.; Khan, F.A. Set-valued variational inclusion governed by generalized αiβj-Hp(.,.,...)-accretive mapping. Axioms 2022, 11, 539. [Google Scholar] [CrossRef]
  37. Gupta, S.; Khan, F.A. A class of Yosida inclusion and graph convergence on Yosida approximation mapping with an application. Filomat 2023, 37, 4881–4902. [Google Scholar]
  38. Khan, F.A.; Gupta, S. Graph convergence and iterative approximation of solution of a set-valued variational inclusions. J. Math. 2022, 2022, 4540369. [Google Scholar] [CrossRef]
  39. Lumer, G. Semi-inner product spaces. Trans. Am. Math. Soc. 1961, 100, 29–43. [Google Scholar] [CrossRef]
  40. Giles, J.R. Classes of semi-inner product spaces. Trans. Am. Math. Soc. 1967, 129, 436–446. [Google Scholar] [CrossRef]
  41. Koehler, D.O. A note on some operator theory in certain semi-inner-product space. Proc. Amer. Math. Soc. 1971, 30, 363–366. [Google Scholar]
  42. Xu, H.K. Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16, 1127–1138. [Google Scholar] [CrossRef]
  43. Zou, Y.-Z.; Huang, N.-J. A new system of variational inclusions involving H(.,.)-accretive operator in Banach spaces. Appl. Math. Comput. 2009, 212, 135–144. [Google Scholar] [CrossRef]
  44. Huang, N.J. A new completely general class of variational inclusions with noncompact valued mappings. Comput. Math. Appl. 1998, 35, 9–14. [Google Scholar] [CrossRef] [Green Version]
  45. Harker, P.T.; Pang, J.S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program. 1990, 48, 161–220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Gupta, S.; Altaweel, N.H. A New Class of Accretive Mappings in Semi-Inner Product Space with an Application to Solve Variational Inclusion. Axioms 2023, 12, 567. https://doi.org/10.3390/axioms12060567

AMA Style

Gupta S, Altaweel NH. A New Class of Accretive Mappings in Semi-Inner Product Space with an Application to Solve Variational Inclusion. Axioms. 2023; 12(6):567. https://doi.org/10.3390/axioms12060567

Chicago/Turabian Style

Gupta, Sanjeev, and Nifeen Hussain Altaweel. 2023. "A New Class of Accretive Mappings in Semi-Inner Product Space with an Application to Solve Variational Inclusion" Axioms 12, no. 6: 567. https://doi.org/10.3390/axioms12060567

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop