Towards Zero Solid Waste in the Sedimentary Phosphate Industry: Challenges and Opportunities
Abstract
:1. Introduction
2. Methodology
3. Phosphate Waste Streams and Characteristics
3.1. Mining/Extraction Operations Waste Streams
3.2. Beneficiation Processing Waste Streams
3.3. Chemical Transformation Waste Streams
4. Environmental Impacts and Management Methods
4.1. Environmental Impacts
4.2. Management Methods
5. Circularity Opportunities
5.1. Waste Minimization
5.2. Phosphate Recovery
5.3. Recovery of Other Critical Elements
5.4. Application of Wastes as Alternative Raw Materials
5.5. Civil Engineering Applications
5.6. Construction and Building Materials
6. Challenges Facing Circularity in the Phosphate Industry
Category | Challenges | References |
---|---|---|
Technology | Heterogeneity of secondary materials Removal of impurities in waste materials Waste rock sorting Waste processing efficiency Difficult access to waste materials | [5,54,105,108,109] |
Environment | Leaching of heavy metals and metalloids Emissions of gaseous pollutants (thermal treatment applications) Risks associated with opening old heaps | [5,53,108] |
Regulation | Absence of legislation regarding the sustainable use of mine wastes in other sectors Absence of legal obligations on the recovery of P from the different waste streams Legislation on environmental requirements Legislation on contaminated land rehabilitation Environmental permits | [5,105,108,109] |
Economy | Lower price of virgin materials Presence of minerals of interest in wastes: potential future reserves Low markets Investment costs High costs associated with building new process factories Cost of logistics | [5,53,54,105,108] |
Social | Social acceptance Societal awareness | [5,53,108] |
Knowledge gaps | Mineralogy, metal concentrations, and radioactivity of wastes Long term behavior of novel waste-based materials Market price | [5,105,108] |
7. Recommendations and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- USGS. U.S. Geological Survey; Mineral Resources Program (MRP): Washington, DC, USA, 2020.
- Kawatra, S.K.; Carlson, J. Beneficiation of Phosphate Ore; Society for Mining, Metallurgy, and Exploration: Englewood, CO, USA, 2013. [Google Scholar]
- Taha, Y.; Benzaazoua, M. Editorial for Special Issue: “Recent Trends in Phosphate Mining, Beneficiation and Related Waste Management”. Minerals 2019, 9, 755. [Google Scholar] [CrossRef][Green Version]
- Esposito, M.; Tse, T.; Soufani, K. Is the circular economy a new fast-expanding market? Thunderbird Int. Bus. Rev. 2017, 59, 9–14. [Google Scholar] [CrossRef]
- Kinnunen, P. Towards Circular Economy in the Mining Industry: Implications of Institutions on the Drivers and Barriers for Tailings Valorization. Master’s Thesis, Tampere University, Tampere, Finland, 2019. [Google Scholar]
- H2020-WASTE-2015-two-stage. Waste: A resource to recycle, reuse and recover raw materials. In Call for Proposals, Specific Programme: EU.3.5.4.; European Commission: Brussels, Belgium, 2013.
- ERA-MIN. Raw materials for the sustainable development and the circular economy. In EU Co-Funded ERA-MIN Joint Call 2021; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Berg, A.; Antikainen, R.; Hartikainen, E.; Kauppi, S.; Kautto, P.; Lazarevic, D.; Piesik, S.; Saikku, L. Circular Economy for Sustainable Development; Finnish Environment Institute: Helsinki, Finland, 2018. [Google Scholar]
- De Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Godinho Filho, M.; Roubaud, D. Industry 4.0 and the circular economy: A proposed research agenda and original roadmap for sustainable operations. Ann. Oper. Res. 2018, 270, 273–286. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy–From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H.; Hu, M.-C. Moving to a circular economy in China: Transforming industrial parks into eco-industrial parks. Calif. Manag. Rev. 2018, 60, 157–181. [Google Scholar] [CrossRef]
- IFIA. Environmental Aspects of Phosphate and Potash Mining; International Fertilizer Association: Paris, France; UNEP: Paris, France, 2001. [Google Scholar]
- Tagieddin, S.A. Applicability of blast casting technique in strip-mining phosphate rock. Eng. Geol. 1992, 33, 127–139. [Google Scholar] [CrossRef]
- Beavers, C.; Ellis, R.; Hanlon, C.; MacDonald, G. An Overview of Phosphate Mining and Reclamation in Florida. Master’s Thesis, University of Florida, Gainesville, FL, USA, 2013. [Google Scholar]
- Krekeler, M.P.; Morton, J.; Lepp, J.; Tselepis, C.M.; Samsonov, M.; Kearns, L.E. Mineralogical and geochemical investigation of clay-rich mine tailings from a closed phosphate mine, Bartow Florida, USA. Environ. Geol. 2008, 55, 123–147. [Google Scholar] [CrossRef]
- Singh, S.; Ma, L.; Hendry, M. Characterization of aqueous lead removal by phosphatic clay: Equilibrium and kinetic studies. J. Hazard. Mater. 2006, 136, 654–662. [Google Scholar] [CrossRef]
- Moudgil, B.; Mathur, S.; Behl, S. Flocculation behavior of dolomite with poly (ethylene oxide). Min. Metall. Explor. 1995, 12, 219–224. [Google Scholar] [CrossRef]
- Guan, C. Theoretical background of the Crago phosphate flotation process. Min. Metall. Explor. 2009, 26, 55–64. [Google Scholar] [CrossRef]
- Shang, J.; Lo, K. Electrokinetic dewatering of a phosphate clay. J. Hazard. Mater. 1997, 55, 117–133. [Google Scholar] [CrossRef]
- El-Shall, H.; Zhang, P.; Snow, R. Comparative analysis of dolomite/francolite flotation techniques. Min. Metall. Explor. 1996, 13, 135–140. [Google Scholar] [CrossRef]
- Moudgil, B.; Chanchani, R. Selective flotation of dolomite from francolite using two-stage conditioning. Min. Metall. Explor. 1985, 2, 19–25. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Z.; Sun, H.; Yin, W.; Hong, J.; Cao, S.; Tang, Y.; Zhao, C.; Yao, J. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant. Miner. Eng. 2020, 156, 106492. [Google Scholar] [CrossRef]
- Wang, T.; Feng, B.; Guo, Y.; Zhang, W.; Rao, Y.; Zhong, C.; Zhang, L.; Cheng, C.; Wang, H.; Luo, X. The flotation separation behavior of apatite from calcite using carboxymethyl chitosan as depressant. Miner. Eng. 2020, 159, 106635. [Google Scholar] [CrossRef]
- Dong, L.; Wei, Q.; Qin, W.; Jiao, F. Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite. Sep. Purif. Technol. 2020, 241, 116415. [Google Scholar] [CrossRef]
- Saadaoui, E.; Ghazel, N.; Ben Romdhane, C.; Massoudi, N. Phosphogypsum: Potential uses and problems–A review. Int. J. Environ. Stud. 2017, 74, 558–567. [Google Scholar] [CrossRef]
- Bandgar, G.S.; Kumthekar, M.B.; Landage, A.B. A review of effective utilization of waste phosphogypsum as a building material. Int. J. Eng. Res. 2016, 5, 277–280. [Google Scholar]
- EPFA. Phosphoric Acid Statistics; European Phosphate Fertilizer Alliance, Alliance Européene des Engrais Phosphatés: Bruxelles, Belgium, 2015. [Google Scholar]
- Arman, A.; Seals, R. A preliminary assessment of utilization alternatives for phosphogypsum. In Proceedings of the Third International Symposium on Phosphogypsum, Orlando, FL, USA, 4–6 December 1990; p. 83. [Google Scholar]
- Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. Environmental impact and management of phosphogypsum. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef][Green Version]
- Chernysh, Y.; Yakhnenko, O.; Chubur, V.; Roubík, H. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci. 2021, 11, 1575. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Wu, H.N.; Shen, S.L.; Horpibulsuk, S.; Xu, Y.S.; Zhou, Q.H. Environmental impacts caused by phosphate mining and ecological restoration: A case history in Kunming, China. Natural Hazards 2014, 74, 755–770. [Google Scholar] [CrossRef]
- Lamoreaux, P.E. Water development for phosphate mining in a karst setting in Florida—A complex environmental problem. Environ. Geol. Water Sci. 1989, 14, 117–153. [Google Scholar] [CrossRef]
- Lewelling, B.; Wylie, R. Hydrology and Water Quality of Unmined and Reclaimed Basins in Phosphate-Mining Areas, West-Central Florida; US Geological Survey: Washington, DC, USA, 1993; Volume 93.
- Wang, K.; Lin, Z.; Zhang, R. Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin, China. Sci. Total Environ. 2016, 543, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Hakkou, R.; Benzaazoua, M.; Bussiere, B. Laboratory evaluation of the use of alkaline phosphate wastes for the control of acidic mine drainage. Mine Water Environ. 2009, 28, 206–218. [Google Scholar] [CrossRef]
- Ouakibi, O.; Loqman, S.; Hakkou, R.; Benzaazoua, M. The potential use of phosphatic limestone wastes in the passive treatment of AMD: A laboratory study. Mine Water Environ. 2013, 32, 266–277. [Google Scholar] [CrossRef]
- Bossé, B.; Bussière, B.; Hakkou, R.; Maqsoud, A.; Benzaazoua, M. Field experimental cells to assess hydrogeological behaviour of store-and-release covers made with phosphate mine waste. Can. Geotech. J. 2015, 52, 1255–1269. [Google Scholar] [CrossRef]
- Brown, M.T. Landscape restoration following phosphate mining: 30 years of co-evolution of science, industry and regulation. Ecol. Eng. 2005, 24, 309–329. [Google Scholar] [CrossRef]
- Rico, M.; Benito, G.; Salgueiro, A.; Díez-Herrero, A.; Pereira, H. Reported tailings dam failures: A review of the European incidents in the worldwide context. J. Hazard. Mater. 2008, 152, 846–852. [Google Scholar] [CrossRef][Green Version]
- Dixon-Hardy, D.W.; Engels, J.M. Guidelines and recommendations for the safe operation of tailings management facilities. Environ. Eng. Sci. 2007, 24, 625–637. [Google Scholar] [CrossRef]
- Rico, M.; Benito, G.; Diez-Herrero, A. Floods from tailings dam failures. J. Hazard. Mater. 2008, 154, 79–87. [Google Scholar] [CrossRef][Green Version]
- Rutherford, P.; Dudas, M.; Arocena, J. Trace elements and fluoride in phosphogypsum leachates. Environ. Technol. 1995, 16, 343–354. [Google Scholar] [CrossRef]
- Rutherford, P.; Dudas, M.; Arocena, J. Radon emanation coefficients for phosphogypsum. Health Phys. 1995, 69, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, P.; Dudas, M.; Samek, R. Environmental impacts of phosphogypsum. Sci. Total Environ. 1994, 149, 1–38. [Google Scholar] [CrossRef]
- Reijnders, L. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review. Build. Environ. 2007, 42, 1036–1042. [Google Scholar] [CrossRef]
- Rutherford, P.; Dudas, M.; Arocena, J. Radium in Phosphogypsum Leachates; Wiley Online Library: Hoboken, NJ, USA, 1995. [Google Scholar]
- Lèbre, É.; Corder, G.D.; Golev, A. Sustainable practices in the management of mining waste: A focus on the mineral resource. Miner. Eng. 2017, 107, 34–42. [Google Scholar] [CrossRef]
- Owen, J.R.; Kemp, D.; Lébre, É.; Svobodova, K.; Murillo, G.P. Catastrophic tailings dam failures and disaster risk disclosure. Int. J. Disaster Risk Reduct. 2020, 42, 101361. [Google Scholar] [CrossRef]
- Lèbre, É.; Corder, G. Integrating industrial ecology thinking into the management of mining waste. Resources 2015, 4, 765–786. [Google Scholar] [CrossRef]
- Kemp, D.; Owen, J.R.; Lèbre, É. Tailings facility failures in the global mining industry: Will a ‘transparency turn’ drive change? Bus. Strategy Environ. 2021, 30, 122–134. [Google Scholar] [CrossRef]
- Dold, B. Sustainability in metal mining: From exploration, over processing to mine waste management. Rev. Environ. Sci. BioTechnol. 2008, 7, 275–285. [Google Scholar] [CrossRef]
- Montoya, T. Yellow water: Rupture and return one year after the Gold King Mine spill. Anthropol. Now 2017, 9, 91–115. [Google Scholar] [CrossRef]
- Zhao, Y.; Zang, L.; Li, Z.; Qin, J. Discussion on the Model of Mining Circular Economy. Energy Procedia 2012, 16, 438–443. [Google Scholar] [CrossRef][Green Version]
- Lèbre, É.; Corder, G.; Golev, A. The role of the mining industry in a circular economy: A framework for resource management at the mine site level. J. Ind. Ecol. 2017, 21, 662–672. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Recycling, Reuse and Rehabilitation of Mine Wastes. Elements 2011, 7, 404–410. [Google Scholar] [CrossRef]
- Van Zyl, D.; Shields, D.; Agioutantis, Z.; Joyce, S. Waste not, want not-rethinking the tailings and mine waste issue. AusIMM Bull. 2016, 38–40. [Google Scholar]
- Zafar, Z.I.; Anwar, M.M.; Pritchard, D.W. Innovations in beneficiation technology for low grade phosphate rocks. Nutr. Cycl. Agroecosystems 1996, 46, 135–151. [Google Scholar] [CrossRef]
- Koppelaar, R.; Weikard, H. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Chang. 2013, 23, 1454–1466. [Google Scholar] [CrossRef]
- Loutou, M.; Hajjaji, M.; Mansori, M.; Favotto, C.; Hakkou, R. Phosphate sludge: Thermal transformation and use as lightweight aggregate material. J. Environ. Manag. 2013, 130, 354–360. [Google Scholar] [CrossRef]
- Zhang, P.; Bogan, M. Recovery of phosphate from Florida beneficiation slimes I. Re-identifying the problem. Miner. Eng. 1995, 8, 523–534. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; Hakkou, R.; Benzaazoua, M. Review of the Main Factors Affecting the Flotation of Phosphate Ores. Minerals 2020, 10, 1109. [Google Scholar] [CrossRef]
- Alsafasfeh, A.; Alagha, L. Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals 2017, 7, 145. [Google Scholar] [CrossRef][Green Version]
- Oliveira, M.S.; Santana, R.C.; Ataíde, C.H.; Barrozo, M.A.S. Recovery of apatite from flotation tailings. Sep. Purif. Technol. 2011, 79, 79–84. [Google Scholar] [CrossRef]
- Testa, F.G. Avanços na Flotação de Finos de Minério com Condicionamento em Alta Intensidade. Master’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2008. [Google Scholar]
- Shang, D.; Geissler, B.; Mew, M.; Satalkina, L.; Zenk, L.; Tulsidas, H.; Barker, L.; El-Yahyaoui, A.; Hussein, A.; Taha, M.; et al. Unconventional uranium in China’s phosphate rock: Review and outlook. Renew. Sustain. Energy Rev. 2021, 140, 110740. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Zhao, L.; Zhang, P.; El-Shall, H.; Moudgil, B.; Huang, X.; Zhang, L. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes—A critical review. Chem. Eng. J. 2018, 335, 774–800. [Google Scholar] [CrossRef]
- Al-Thyabat, S.; Zhang, P. REE extraction from phosphoric acid, phosphoric acid sludge, and phosphogypsum. Miner. Process. Extr. Metall. 2015, 124, 143–150. [Google Scholar] [CrossRef]
- Habashi, F. The recovery of the lanthanides from phosphate rock. J. Chem. Technol. Biotech. Chem. Technol. 1985, 35, 5–14. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Al-Thyabat, S.; Zhang, P. Extraction of rare earth elements from upgraded phosphate flotation tailings. Miner. Metall. Process. 2016, 33, 23–30. [Google Scholar] [CrossRef]
- LKAB. LKAB Produces Apatite from Mine Waste in a New Pilot Plant. Available online: https://www.lkabminerals.com/en/apatite-from-mine-waste-in-new-pilot-plant/ (accessed on 12 October 2021).
- Leonida, C. Turning Mine Waste from Risk into Opportunity. The Intelligent Miner 2020. Available online: https://theintelligentminer.com/2020/06/10/turning-mine-waste-from-risk-into-opportunity/ (accessed on 30 September 2021).
- Ettoumi, M.; Jouini, M.; Neculita, C.M.; Bouhlel, S.; Coudert, L.; Taha, Y.; Benzaazoua, M. Characterization of phosphate processing sludge from Tunisian mining basin and its potential valorization in fired bricks making. J. Clean. Prod. 2021, 284, 124750. [Google Scholar] [CrossRef]
- OECD. Global Material Resources Outlook to 2060—Economic Drivers and Environmental Consequences; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Hakkou, R.; Benzaazoua, M.; Bussière, B. Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: Challenges and perspectives. Procedia Eng. 2016, 138, 110–118. [Google Scholar] [CrossRef][Green Version]
- ElIdrissi, H.E.B.; Taha, Y.; Elghali, A.; El Khessaimi, Y.; Aboulayt, A.; Amalik, J.; Hakkou, R.; Benzaazoua, M. Sustainable use of phosphate waste rocks: From characterization to potential applications. Mater. Chem. Phys. 2021, 260, 124119. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Valorization of Phosphate Mine Waste Rocks as Materials for Road Construction. Minerals 2019, 9, 237. [Google Scholar] [CrossRef][Green Version]
- Amrani, M.; Taha, Y.; Elghali, A.; Benzaazoua, M.; Kchikach, A.; Hakkou, R. An experimental investigation on collapsible behavior of dry compacted phosphate mine waste rock in road embankment. Transp. Geotech. 2021, 26, 100439. [Google Scholar] [CrossRef]
- Amrani, M.; El Haloui, Y.; Hajikarimi, P.; Sehaqui, H.; Hakkou, R.; Barbachi, M.; Taha, Y. Feasibility of using phosphate wastes for enhancing high-temperature rheological characteristics of asphalt binder. J. Mater. Cycles Waste Manag. 2020, 22, 1407–1417. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum recycling: New horizons for a more sustainable road material application. J. Build. Eng. 2020, 30, 101267. [Google Scholar] [CrossRef]
- El Machi, A.; Mabroum, S.; Taha, Y.; Tagnit-Hamou, A.; Benzaazoua, M.; Hakkou, R. Valorization of phosphate mine waste rocks as aggregates for concrete. Mater. Today Proc. 2021, 37, 3840–3846. [Google Scholar] [CrossRef]
- El Machi, A.; Mabroum, S.; Taha, Y.; Tagnit-Hamou, A.; Benzaazoua, M.; Hakkou, R. Use of flint from phosphate mine waste rocks as an alternative aggregates for concrete. Constr. Build. Mater. 2021, 271, 121886. [Google Scholar] [CrossRef]
- Zheng, K.; Zhou, J.; Gbozee, M. Influences of phosphate tailings on hydration and properties of Portland cement. Constr. Build. Mater. 2015, 98, 593–601. [Google Scholar] [CrossRef]
- Bahhou, A.; Taha, Y.; El Khessaimi, Y.; Idrissi, H.; Hakkou, R.; Amalik, J.; Benzaazoua, M. Use of phosphate mine by-products as supplementary cementitious materials. Mater. Today Proc. 2021, 37, 3781–3788. [Google Scholar] [CrossRef]
- Bahhou, A.; Taha, Y.; Khessaimi, Y.E.; Hakkou, R.; Tagnit-Hamou, A.; Benzaazoua, M. Using Calcined Marls as Non-Common Supplementary Cementitious Materials—A Critical Review. Minerals 2021, 11, 517. [Google Scholar] [CrossRef]
- Bayoussef, A.; Oubani, M.; Loutou, M.; Taha, Y.; Benzaazoua, M.; Manoun, B.; Hakkou, R. Manufacturing of high-performance ceramics using clays by-product from phosphate mines. Mater. Today Proc. 2021, 37, 3994–4000. [Google Scholar] [CrossRef]
- Loutou, M.; Taha, Y.; Benzaazoua, M.; Daafi, Y.; Hakkou, R. Valorization of clay by-product from moroccan phosphate mines for the production of fired bricks. J. Clean. Prod. 2019, 229, 169–179. [Google Scholar] [CrossRef]
- Bayoussef, A.; Loutou, M.; Taha, Y.; Mansori, M.; Benzaazoua, M.; Manoun, B.; Hakkou, R. Use of clays by-products from phosphate mines for the manufacture of sustainable lightweight aggregates. J. Clean. Prod. 2021, 280, 124361. [Google Scholar] [CrossRef]
- Negm, A.; Abouzeid, A. Utilization of solid wastes from phosphate processing plants. Physicochem. Probl. Miner. Process. 2008, 42, 5–16. [Google Scholar]
- Yang, Y.; Wei, Z.; Chen, Y.-l.; Li, Y.; Li, X. Utilizing phosphate mine tailings to produce ceramisite. Constr. Build. Mater. 2017, 155, 1081–1090. [Google Scholar] [CrossRef]
- Mabroum, S.; Moukannaa, S.; El Machi, A.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Mine wastes based geopolymers: A critical review. Clean. Eng. Technol. 2020, 1, 100014. [Google Scholar] [CrossRef]
- Mabroum, S.; Aboulayt, A.; Taha, Y.; Benzaazoua, M.; Semlal, N.; Hakkou, R. Elaboration of geopolymers based on clays by-products from phosphate mines for construction applications. J. Clean. Prod. 2020, 261, 121317. [Google Scholar] [CrossRef]
- Moukannaa, S.; Bagheri, A.; Benzaazoua, M.; Sanjayan, J.; Pownceby, M.; Hakkou, R. Elaboration of alkali activated materials using a non-calcined red clay from phosphate mines amended with fly ash or slag: A structural study. Mater. Chem. Phys. 2020, 256, 123678. [Google Scholar] [CrossRef]
- Moukannaa, S.; Loutou, M.; Benzaazoua, M.; Vitola, L.; Alami, J.; Hakkou, R. Recycling of phosphate mine tailings for the production of geopolymers. J. Clean. Prod. 2018, 185, 891–903. [Google Scholar] [CrossRef]
- Dabbebi, R.; de Aguiar, J.B.; Camões, A.; Samet, B.; Baklouti, S. Effect of the calcinations temperatures of phosphate washing waste on the structural and mechanical properties of geopolymeric mortar. Constr. Build. Mater. 2018, 185, 489–498. [Google Scholar] [CrossRef]
- Ennaciri, Y.; Zdah, I.; El Alaoui-Belghiti, H.; Bettach, M. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chem. Eng. Commun. 2020, 207, 382–392. [Google Scholar] [CrossRef]
- Ennaciri, Y.; Bettach, M. Procedure to convert phosphogypsum waste into valuable products. Mater. Manuf. Process. 2018, 33, 1727–1733. [Google Scholar] [CrossRef]
- Rashad, A.M. Phosphogypsum as a construction material. J. Clean. Prod. 2017, 166, 732–743. [Google Scholar] [CrossRef]
- Altun, İ.A.; Sert, Y. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cem. Concr. Res. 2004, 34, 677–680. [Google Scholar] [CrossRef]
- Singh, M. Treating waste phosphogypsum for cement and plaster manufacture. Cem. Concr. Res. 2002, 32, 1033–1038. [Google Scholar] [CrossRef]
- Garg, M.; Jain, N.; Singh, M. Development of alpha plaster from phosphogypsum for cementitious binders. Constr. Build. Mater. 2009, 23, 3138–3143. [Google Scholar] [CrossRef]
- Shen, W.; Zhou, M.; Zhao, Q. Study on lime–fly ash–phosphogypsum binder. Constr. Build. Mater. 2007, 21, 1480–1485. [Google Scholar] [CrossRef]
- Koopman, C. Purification of Gypsum from Phosphoric Acid Production by Recrystallization with Simultaneous Extraction. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2003. [Google Scholar]
- Cánovas, C.R.; Macías, F.; Pérez-López, R.; Basallote, M.D.; Millán-Becerro, R. Valorization of wastes from the fertilizer industry: Current status and future trends. J. Clean. Prod. 2018, 174, 678–690. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, A.; Garza-Reyes, J.A.; de Sá, M.M. Managing operations for circular economy in the mining sector: An analysis of barriers intensity. Resour. Policy 2020, 69, 101752. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Lantieri, C.; Tataranni, P.; Castro-Gomes, J.; Gabriel, M. Reuse of mining waste into innovative alkali-activated-based materials for road pavement applications. In Functional Pavement Design; CRC Press: Boca Raton, FL, USA, 2016; pp. 1735–1744. [Google Scholar]
- Bian, Z.; Miao, X.; Lei, S.; Chen, S.-E.; Wang, W.; Struthers, S. The challenges of reusing mining and mineral-processing wastes. Science 2012, 337, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef][Green Version]
- Upadhyay, A.; Laing, T.; Kumar, V.; Dora, M. Exploring barriers and drivers to the implementation of circular economy practices in the mining industry. Resour. Policy 2021, 72, 102037. [Google Scholar] [CrossRef]
- Robben, C.; Wotruba, H. Sensor-Based Ore Sorting Technology in Mining—Past, Present and Future. Minerals 2019, 9, 523. [Google Scholar] [CrossRef][Green Version]
Mining/Extraction Wastes | Beneficiation Wastes | Transformation Wastes |
---|---|---|
Exploitation waste rock (overburden and interlayers) Destoning waste rock Screening waste rock | Beneficiation waste rock Phosphate sludge Froth tailings | Phosphogypsum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, Y.; Elghali, A.; Hakkou, R.; Benzaazoua, M. Towards Zero Solid Waste in the Sedimentary Phosphate Industry: Challenges and Opportunities. Minerals 2021, 11, 1250. https://doi.org/10.3390/min11111250
Taha Y, Elghali A, Hakkou R, Benzaazoua M. Towards Zero Solid Waste in the Sedimentary Phosphate Industry: Challenges and Opportunities. Minerals. 2021; 11(11):1250. https://doi.org/10.3390/min11111250
Chicago/Turabian StyleTaha, Yassine, Abdellatif Elghali, Rachid Hakkou, and Mostafa Benzaazoua. 2021. "Towards Zero Solid Waste in the Sedimentary Phosphate Industry: Challenges and Opportunities" Minerals 11, no. 11: 1250. https://doi.org/10.3390/min11111250