Next Article in Journal
The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time–Space Fractional Diffusion Equation
Next Article in Special Issue
Fibonacci-like Sequences Reveal the Genetic Code Symmetries, Also When the Amino Acids Are in a Physiological Environment
Previous Article in Journal
On (p,q)–Fibonacci and (p,q)–Lucas Polynomials Associated with Changhee Numbers and Their Properties
Previous Article in Special Issue
Voronoi Diagrams Generated by the Archimedes Spiral: Fibonacci Numbers, Chirality and Aesthetic Appeal
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

p-Numerical Semigroups of Generalized Fibonacci Triples

1
Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
2
Department of Mathematics, Theoretical Statistical & Mathematics Unit (SMU), Indian Statistical Institute, New Delhi 110016, India
3
Department of Applied Sciences, The NorthCap University, Gurugram 122001, Haryana, India
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(4), 852; https://doi.org/10.3390/sym15040852
Submission received: 15 March 2023 / Revised: 28 March 2023 / Accepted: 29 March 2023 / Published: 3 April 2023

Abstract

:
For a nonnegative integer p, we give explicit formulas for the p-Frobenius number and the p-genus of generalized Fibonacci numerical semigroups. Here, the p-numerical semigroup  S p  is defined as the set of integers whose nonnegative integral linear combinations of given positive integers  a 1 , a 2 , , a k  are expressed in more than p ways. When  p = 0 S 0  with the 0-Frobenius number and the 0-genus is the original numerical semigroup with the Frobenius number and the genus. In this paper, we consider the p-numerical semigroup involving Jacobsthal polynomials, which include Fibonacci numbers as special cases. We can also deal with the Jacobsthal–Lucas polynomials, including Lucas numbers accordingly. An application on the p-Hilbert series is also provided. There are some interesting connections between Frobenius numbers and geometric and algebraic structures that exhibit symmetry properties.
MSC:
11D07; 20M14; 05A17; 05A19; 11D04; 11B68; 11P81

1. Introduction

Given the set of positive integers  A : = { a 1 , a 2 , , a k }  ( k 2 ), for a nonnegative integer p, let  S p  be the set of integers whose nonnegative integral linear combinations of given positive integers  a 1 , a 2 , , a k  are expressed in more than p ways. For some backgrounds of the number of representations, see, e.g., [1,2,3,4,5]. For a set of nonnegative integers  N 0 , the set  N 0 \ S p  is finite if and only if  gcd ( a 1 , a 2 , , a k ) = 1 . Then there exists the largest integer  g p ( A ) : = g ( S p )  in  N 0 \ S p , which is called the p-Frobenius number. The cardinality of  N 0 \ S p  is called the p-genus and is denoted by  n p ( A ) : = n ( S p ) . The sum of the elements in  N 0 \ S p  is called the p-Sylvester sum and is denoted by  s p ( A ) : = s ( S p ) . This kind of concept is a generalization of the famous Diophantine problem of Frobenius ([6,7,8]) since  p = 0  is the case when the original Frobenius number  g ( A ) = g 0 ( A ) , the genus  n ( A ) = n 0 ( A )  and the Sylvester sum  s ( A ) = s 0 ( A )  are recovered.  S p  can then be called the p-numerical semigroup. Strictly speaking, when  p 1 S p  does not include 0, since the integer 0 has only one representation, so it satisfies simply additivity and the set  S p { 0 }  becomes a numerical semigroup. For numerical semigroups, we refer to [9,10,11].
Additionally, there exist different extensions of the Frobenius number and genus, even in terms of the number of representations called denumerant. For example, some consider  S p *  as the set of integers whose nonnegative integral linear combinations of given positive integers  a 1 , a 2 , , a k  are expressed in exactly p ways (see, e.g., [12,13]). Consequently, the corresponding p-Frobenius number  g p * ( A )  is the largest integer that has exactly p distinct representations. However, in this case,  g p * ( A )  does not necessarily increase as p increases. For example, when  A : = { 2 , 5 , 7 } g 17 * ( 2 , 5 , 7 ) = 43 > g 18 * ( 2 , 5 , 7 ) = 42 . In addition, for some p g p *  may not exist. For example,  g 22 * ( 2 , 5 , 7 )  does not exist because there is no positive integer whose number of representations is exactly 22. Similarly, the p-genus may be also defined in different ways. For example,  n p * ( A )  can be defined as the cardinality of  [ p ( A ) , g p ( A ) + 1 ] \ S p ( A ) , where  p ( A )  is the least element of  S p ( A ) . However, in our definition of  n p ( A )  as the cardinality of  [ 0 , g p ( A ) + 1 ] \ S p ( A ) , one can use the convenient formula arising from the p-Apéry set in order to obtain  n p ( A ) . See the next section for detail.
In [14], numerical semigroups generated by  { a , a + b , a F k 1 + b F k }  are considered. Using a technique of Johnson [15], the Frobenius numbers of such semigroups are found as a generalization of the result by Marin et al. [16].
In this paper, for a positive integer v, we treat with Jacobsthal polynomials  J n ( v ) , defined by the recurrence relation  J n ( v ) = J n 1 ( v ) + v J n 2 ( v )  ( n 2 ) with  J 0 ( v ) = 0  and  J 1 ( v ) = 1  (see, e.g., [17] (Chapter 44)). When  v = 1 F n = J n ( 1 )  are Fibonacci numbers. When  v = 2 J n = J n ( 2 )  are Jacobsthal numbers. Then, we give explicit formulas of p-Frobenius numbers for  A : = { a , v a + b , v a J k 1 ( v ) + b J k ( v ) } , where a and b are positive integers with  gcd ( a , b ) = 1  and  a , k 3 . If  a = J i ( v )  and  b = J i + 1 ( v ) , then by  v J i ( v ) J k 1 ( v ) + J i + 1 ( v ) J k ( v ) = J i + k ( v ) , we get  A = { J i ( v ) , J i + 2 ( v ) , J i + k ( v ) } . Hence, the results in [18] are recovered as special cases. In addition, if  v = 1 , the results in [16,19] are recovered as special cases.
For  k = 2 , that is, the case of two variables, closed formulas are explicitly given for  g 0 ( A )  ([8]),  n 0 ( A )  ([6]) and  s 0 ( A )  ([20]; its extension [21]). However, for  k 3 , the Frobenius number cannot be given by any set of closed formulas which can be reduced to a finite set of certain polynomials ([22]). For  k = 3 , various algorithms have been devised for finding the Frobenius number ([15,23,24]). Some inexplicit formulas for the Frobenius number in three variables can be seen in [25]. Even in the original case of  p = 0 , it is very difficult to give a closed explicit formula of any general sequence for three or more variables (see, e.g., [24,26,27,28]). Indeed, it is even more difficult when  p > 0 . However, finally, we have succeeded in obtaining the p-Frobenius number in triangular numbers [29] and repunits [30] as well as Fibonacci and Lucas triplets [19] and Jacobsthal triples [18] quite recently.
It is well-known that the Fibonacci sequence exhibits a certain symmetry property known as self-similarity, where the pattern of the sequence repeats itself in smaller and smaller scales. There are some interesting connections between Frobenius numbers and geometric and algebraic structures that exhibit symmetry properties ([31,32,33]), some of which are found in this paper. In the context of Lotka–Volterra models, the Frobenius number may be relevant in determining the stability of equilibria or the number of limit cycles in the system. This can in turn affect the occurrence of bifurcations. In addition, the Frobenius number may be used in models that seek to predict the behavior of financial markets based on historical data.
The structure of the paper is as follows. In Section 2, we prepare a concept for the p-Apéry set and convenient formulas using its elements, which we will use afterwards. In Section 3, we prove the main theorem about the p-Frobenius number on Jacobsthal polynomials. We first set up the structure of the p-Apéry set when  p = 0  and, based on it, we determine the structures of the p-Apéry set when  p = 1 , 2 , . Once the structure of the p-Apéry set is known, the formula prepared in Section 2 is used to find the p-Frobenius number. By looking at the tables in Section 3, one will have a better understanding of how the p-Frobenius number is found. In Section 4, by using the structure of the p-Apéry set discussed in Section 3 and the formula prepared in Section 2, we find the p-genus. In a similar manner, we can also find the p-Sylvester number but we leave it out as the result will only be complicated. In Section 4, we show the corresponding results with respect to the Jacobsthal–Lucas polynomials. In Section 5, we give an application concerning the p-Hilbert series that play an important role in the numerical semigroup. In Section 6, we discuss future works.

2. Preliminaries

We introduce the Apéry set (see [34]) below in order to obtain the formulas for  g p ( A ) n p ( A )  and  s p ( A )  technically. Without loss of generality, we assume that  a 1 = min ( A ) .
Definition 1.
Let p be a nonnegative integer. For a set of positive integers  A = { a 1 , a 2 , , a k }  with  gcd ( A ) = 1  and  a 1 = min ( A )  we denote by
Ap p ( A ) = Ap p ( a 1 , a 2 , , a k ) = { m 0 ( p ) , m 1 ( p ) , , m a 1 1 ( p ) } ,
the p-Apéry set of A, where  m i ( p )  is the least positive integer of  S p ( A ) , satisfying  m i ( p ) i ( mod a 1 ) ( 0 i a 1 1 )  (that is,  m i ( p ) S p ( A )  and  m i ( p ) a 1 S p ( A ) ). Note that  m 0 ( 0 )  is defined to be 0.
It follows that, for each p,
Ap p ( A ) { 0 , 1 , , a 1 1 } ( mod a 1 ) .
Even though it is hard to find any explicit form of  g p ( A )  as well as  n p ( A )  and  s p ( A )  when  k 3 , by using convenient formulas established in [35,36], we can obtain such values for some special sequences  ( a 1 , a 2 , , a k )  after finding any regular structure of  m j ( p )  is hard enough in general. One of the applicable formulas is on the power sum
s p ( μ ) ( A ) : = n N 0 \ S p ( A ) n μ
by using Bernoulli numbers  B n  defined by the generating function
x e x 1 = n = 0 B n x n n ! ,
and another applicable formula is on the weighted power sum ([37,38])
s λ , p ( μ ) ( A ) : = n N 0 \ S p ( A ) λ n n μ
by using Eulerian numbers  n m  appearing in the generating function
k = 0 k n x k = 1 ( 1 x ) n + 1 m = 0 n 1 n m x m + 1 ( n 1 )
with  0 0 = 1  and  0 0 = 1 . Here,  μ  is a nonnegative integer and  λ 1 . From these formulas, many useful expressions are yielded as special cases. Some useful ones are given as follows. Formulas (2) and (3) are entailed from  s λ , p ( 0 ) ( A )  and  s λ , p ( 1 ) ( A ) , respectively.
Lemma 1.
Let k, p and μ be integers with  k 2 p 0  and  μ 1 . Assume that  gcd ( a 1 , a 2 , , a k ) = 1 . We have
g p ( a 1 , a 2 , , a k ) = max 0 j a 1 1 m j ( p ) a 1 ,
n p ( a 1 , a 2 , , a k ) = 1 a 1 j = 0 a 1 1 m j ( p ) a 1 1 2 ,
s p ( a 1 , a 2 , , a k ) = 1 2 a 1 j = 0 a 1 1 m j ( p ) 2 1 2 j = 0 a 1 1 m j ( p ) + a 1 2 1 12 .
Remark 1.
When  p = 0 , the formulas (1)–(3) reduce to the formulas by Brauer and Shockley [39] [Lemma 3], Selmer [40] [Theorem], and Tripathi [41] [Lemma 1] (there was a typo but it was corrected in [42]), respectively:
g ( a 1 , a 2 , , a k ) = max 0 j a 1 1 m j a 1 , n ( a 1 , a 2 , , a k ) = 1 a 1 j = 0 a 1 1 m j a 1 1 2 , s ( a 1 , a 2 , , a k ) = 1 2 a 1 j = 0 a 1 1 ( m j ) 2 1 2 j = 0 a 1 1 m j + a 1 2 1 12 ,
where  m j = m j ( 0 )  ( 1 j a 1 1 ) with  m 0 = m 0 ( 0 ) = 0 .

3. Main Results

Determine integers q and r by  a = q J k ( v ) + r  with  0 r < J k ( v ) . The function  x  denotes the largest integer that does not exceed x.
Theorem 1.
Let a and b be positive integers with  a 3  and  gcd ( a , b ) = 1 . Then, for a positive integer  k 3 , and  0 p a / J k ( v )  we have
g p a , v a + b , v a J k 1 ( v ) + b J k ( v ) = ( a 1 ) b + a v ( r 1 ) 1 + v a ( a r ) J k 1 ( v ) J k ( v ) + p v a J k 1 ( v ) + b J k ( v ) i f a < J k ( v ) o r ( v a + b ) r > v a J k ( v ) J k 1 ( v ) ; ( a r 1 ) b + v a ( J k ( v ) J k 1 ( v ) 1 ) a + v a ( a r ) J k 1 ( v ) J k ( v ) + p v a J k 1 ( v ) + b J k ( v ) i f a J k ( v ) a n d ( v a + b ) r < v a J k ( v ) J k 1 ( v ) ,
where  r = a a / J k ( v ) J k ( v ) .
For example, if  k = 3  and  v = 1 , then for  0 p a / 2  we have
g p ( a , a + b , a F 2 + b F 3 ) = ( a 1 ) b + a ( a 3 ) 2 + p ( a + 2 b ) if a is odd ; ( a 1 ) b + a ( a 2 ) 2 + p ( a + 2 b ) if a is even .

3.1. The Case  p = 0

In this triple  { a , v a + b , v a J k 1 ( v ) + b J k ( v ) } , we can use the similar framework to one in [18] to construct the elements of the p-Apéry set. Nevertheless, it is very important to see that such a framework is not always possible. For example, referring to [29] may call for a different structure. No structure has been analyzed for most other triples, so no explicit formula has been found for them.
Consider the expression
t y , z : = y ( v a + b ) + z v a J k 1 ( v ) + b J k ( v ) .
We see that  q = a / J k ( v ) . Then all the elements in the 0-Apéry set are represented as in Table 1.
Since  t i + 1 , j t i , j b ( mod a )  and  t 0 , j + 1 t J k ( v ) 1 , j b ( mod a ) , the sequence
t 0 , 0 , t 1 , 0 , , t J k ( v ) 1 , 0 , t 0 , 1 , t 1 , 1 , , t J k ( v ) 1 , 1 , t 0 , q 1 , t 1 , q 1 , , t J k ( v ) 1 , q 1 , t 0 , q , , t r 1 , q
is equivalent to the sequence  { b ( mod a ) } = 0 a 1  in a way that keeps this order completely. Since  gcd ( a , b ) = 1  (otherwise,  gcd ( A ) > 1 ), all the elements appearing in Table 1 constitute a complete residue system modulo  a = q J k ( v ) + r .
It is clear that the largest element in  Ap 0 ( A ) , where  A : = { a , v a + b , v a J k 1 ( v ) + b J k ( v ) } , is  t r 1 , q  or  t J k ( v ) 1 , q 1 . If  a < J k ( v ) , by  q = 0 , the largest element is  t r 1 , q = t a 1 , q . Otherwise, by  q > 0 , compare two values. The inequality  t r 1 , q > t J k ( v ) 1 , q 1  holds if and only if  ( v a + b ) r > v a J k ( v ) J k 1 ( v ) . Hence, if  ( v a + b ) r > v a J k ( v ) J k 1 ( v ) , then by Lemma 1 (1) we have
g 0 ( A ) = t r 1 , q a = ( a 1 ) b + a v ( r 1 ) 1 + v a ( a r ) J k 1 ( v ) J k ( v ) .
If  ( v a + b ) r < v a J k ( v ) J k 1 ( v ) , then we have
g 0 ( A ) = t J k ( v ) 1 , q 1 a = ( a r 1 ) b + v a ( J k ( v ) J k 1 ( v ) 1 ) a + v a ( a r ) J k 1 ( v ) J k ( v ) .
Note that  ( v a + b ) r v s . a J k ( v ) J k 1 ( v )  because  gcd ( a , b ) = 1 .

3.2. The Case  p = 1

We assume that  a J k ( v )  from now on. If  a < J k ( v ) , the situation becomes more and more complicated by requiring a lot of case-by-case discussion for  p 1 . So, the discussion that follows does not apply.
All the elements in  Ap 1 ( A )  can be determined from those in  Ap 0 ( A ) . Only those elements that have the same residue modulo a as those in the top row of  Ap 0 ( A )  are arranged in order in the form of filling gaps under the same block. Elements that have the same residue modulo a as the other elements of  Ap 0 ( A )  are arranged in a row shift up to the immediately adjacent block. This is shown in Table 2.
This fact is supported by the congruence relationships
t y , z t y + J k ( v ) , z 1 ( mod a ) ( 0 y J k ( v ) 1 , 0 z q 1 ; 0 y r 1 , z = q ) , t y , 0 t y + r , q ( mod a ) ( 0 y J k ( v ) r 1 ) , t J k ( v ) r + y , 0 t y , q + 1 ( mod a ) ( 0 y r 1 ) .
In addition, each element of  Ap 1 ( A )  has two representations in terms of a v a + b  and  v a J k 1 ( v ) + b J k ( v ) , because
t y + J k ( v ) , z 1 = y + J k ( v ) ( v a + b ) + ( z 1 ) v a J k 1 ( v ) + b J k ( v ) = v J k ( v ) J k 1 ( v ) a + y ( v a + b ) + z v a J k 1 ( v ) + b J k ( v ) , t y + r , q = ( y + r ) ( v a + b ) + q v a J k 1 ( v ) + b J k ( v ) = v a + b q J k ( v ) J k 1 ( v ) a + y ( v a + b ) , t y , q + 1 = y ( v a + b ) + ( q + 1 ) v a J k 1 ( v ) + b J k ( v ) = v a + b ( q + 1 ) v 2 J k 2 ( v ) a + y + J k ( v ) r ( v a + b ) .
Notice that  ( v a + b q J k ( v ) J k 1 ( v ) > 0  and  v a + b ( q + 1 ) v 2 J k 2 ( v ) > 0  because  a = q J k ( v ) + r  and  J k ( v ) = J k 1 ( v ) + v J k 2 ( v ) .
There are four candidates to take the largest value in  Ap 1 ( A ) :
t r 1 , q + 1 , t J k ( v ) 1 , q , t J k ( v ) + r 1 , q 1 , t 2 J k ( v ) 1 , q 2 .
However, since  2 v s . a J k 1 ( v ) + b J k ( v ) > v a J k ( v ) , we can see that  t r 1 , q + 1 > t J k ( v ) + r 1 , q 1  and  t J k ( v ) 1 , q > t 2 J k ( v ) 1 , q 2 . In addition,  t r 1 , q + 1 > t J k ( v ) 1 , q  if and only if  ( v a + b ) r > v a J k ( v ) J k 2 ( v ) . Hence, if  ( v a + b ) r > a J k ( v ) J k 1 ( v ) , then by Lemma 1 (1) we have
g 1 ( A ) = t r 1 , q + 1 a = ( a 1 ) b + a v ( r 1 ) 1 + v a ( a r ) J k 1 ( v ) J k ( v ) + v a J k 1 ( v ) + b J k ( v ) .
If  ( v a + b ) r < a J k ( v ) J k 1 ( v ) , then we have
g 1 ( A ) = t J k ( v ) 1 , q a = ( a r 1 ) b + v a ( J k ( v ) J k 1 ( v ) 1 ) a + v a ( a r ) J k 1 ( v ) J k ( v ) + ( v a J k 1 ( v ) + b J k ( v ) ) .

3.3. The Case  p 2

When  p 2 , in a similar manner, each element of  Ap p ( A )  is determined by the corresponding element with the same residue modulo a in  Ap p 1 ( A ) . In each block with a lateral length of  J k ( v ) , the elements in the top row in  Ap p 1 ( A )  are arranged in order to fill the gap below the left-most block in  Ap p ( A ) . The other elements of  Ap p 1 ( A )  are shifted directly to the right block by one in  Ap p ( A ) .
In Table 3, Symmetry 15 00852 i004 denotes the area of elements in Apn(A). Here, each  m j ( n ) , satisfying  m j ( n ) j   ( mod   a ) ( 0 j a 1 ) , can be expressed in at least n + 1 ways but  m j ( n ) a  in at most n ways. Each element of Ap3(A) existing in the second block to the fourth block corresponds to each element having the same residue of Ap2(A) existing in the block immediately to the left thereof in a form of shifting up one step. The Jk(v) elements of Ap3(A) existing over two rows (or one row) at the bottom of the first block correspond to the Jk(v) elements with the same residue of Ap2(A) at the top of the third block. Therefore, since all the elements in Ap2(A) form a complete remainder system, so is Ap3(A). It can be shown that all the elements of Ap3(A) have exactly four ways of being expressed in terms of a, va + b and vaJk−1(v) + bJk(v). Within each region of Ap3(A), one of the two leftmost (lower left) elements tr−1,q+3 and tJk(v)−1,q+2 is the largest so, by comparing these elements, the largest element of Ap3(A) can be determined.
Such a structure of  Ap p ( A )  continues as long as  p a / J k ( v ) = q . Eventually, the largest element in  Ap p ( A )  is  t r 1 , q + p  or  t J k ( v ) 1 , q + p 1 . However, when  p = a / J k ( v ) + 1 , this kind of regularity is broken. Therefore, regularity cannot be maintained even for the largest value of  Ap p ( A ) . Therefore, Theorem 1 is proved. Table 4 shows the arrangement of the p-Apéry sets ( p = 0 , 1 , , 5 ) when  a / J k ( v ) = 5 . One can see that there will be a deficiency in the arrangement of the lower left for the 6-Apéry set.
See [18,19], etc. for a detailed explanation that the elements located within the entire specified areas actually constitute the elements of the p-Apéry set. That is, they form a complete residue system modulo a and each element is represented by a v a + b v a J k 1 ( v ) + b J k ( v )  in at least  p + 1  ways. The rough structure is similar to that in [18,19], though the structures of the p-Apéry set in other cases are not necessarily similar or have not been known yet.

4.  p -Genus

The elements of  Ap p ( A )  in the area of the  2 p  staircase parts are
t 0 , q + p , , t r 1 , q + p , t r , q + p 1 , , t J k ( v ) 1 , q + p 1 , t J k ( v ) , q + p 2 , , t J k ( v ) + r 1 , q + p 2 , t J k ( v ) + r , q + p 3 , , t 2 J k ( v ) 1 , q + p 3 , t 2 J k ( v ) , q + p 4 , , t 2 J k ( v ) + r 1 , q + p 4 , t 2 J k ( v ) + r , q + p 5 , , t 3 J k ( v ) 1 , q + p 5 , t ( p 1 ) J k ( v ) , q p + 2 , , t ( p 1 ) J k ( v ) + r 1 , q p + 2 , t ( p 1 ) J k ( v ) + r , q p + 1 , , t p J k ( v ) 1 , q p + 1
in order from the lower left and the elements of  Ap p ( A )  in the right-most main area are
t p J k ( v ) , 0 , , t p J k ( v ) + r 1 , 0 , t p J k ( v ) + r , 0 , , t ( p + 1 ) J k ( v ) 1 , 0 , t p J k ( v ) , 1 , , t p J k ( v ) + r 1 , 1 , t p J k ( v ) + r , 1 , , t ( p + 1 ) J k ( v ) 1 , 1 , t p J k ( v ) , q p 1 , , t p J k ( v ) + r 1 , q p 1 , t p J k ( v ) + r , q p 1 , , t ( p + 1 ) J k ( v ) 1 , q p 1 , t p J k ( v ) , q p , , t p J k ( v ) + r 1 , q p .
Hence, by  a = q J k ( v ) + r , we have
w Ap p ( A ) w = i = 0 p 1 j = 0 r 1 t i J k ( v ) + j , q + p 2 i + i = 0 p 1 j = 0 J k ( v ) r 1 t i J k ( v ) + r + j , q + p 2 i 1 + i = 0 J k ( v ) 1 j = 0 q p 1 t p J k ( v ) + i , j + i = 0 r 1 t p J k ( v ) + i , q p = a 2 v ( a r 2 ) + b ( a 1 ) + v ( a + r ) q a + r J k 1 ( v ) + v ( a r ) J k ( v ) + p 2 a J k ( v ) 2 ( v a + b ) v ( J k ( v ) J k 1 ( v ) p 2 2 a v s . J k ( v ) J k ( v ) J k 1 ( v ) .
Thus, by Lemma 1 (2), we obtain that
n p ( a , v a + b , a J k 1 ( v ) + b J k ( v ) ) = 1 a w Ap p ( A ) w a 1 2 = 1 2 v ( a r 2 ) + b ( a 1 ) + v ( a + r ) q a + r J k 1 ( v ) + v ( a r ) J k ( v ) + p 2 a J k ( v ) 2 ( v a + b ) v ( J k ( v ) J k 1 ( v ) p 2 2 a v s . J k ( v ) J k ( v ) J k 1 ( v ) a 1 2 = 1 2 ( v ( a r 2 ) + ( a 1 ) ( b 1 ) + v ( a + r ) ( a r ) J k 1 ( v ) J k ( v ) + v ( a r ) J k ( v ) J k 1 ( v ) ) + p 2 a J k ( v ) 2 ( v a + b ) v ( J k ( v ) J k 1 ( v ) p 2 2 a v s . J k ( v ) J k ( v ) J k 1 ( v ) .
Theorem 2.
Let a and b be coprime integers. Then, for a positive integer  k 3  and  0 p a / J k ( v )  we have
n p a , a + b , a J k 1 ( v ) + b J k ( v ) = 1 2 ( v ( a r 2 ) + ( a 1 ) ( b 1 ) + v ( a + r ) ( a r ) J k 1 ( v ) J k ( v ) + v ( a r ) J k ( v ) J k 1 ( v ) ) + p 2 a J k ( v ) 2 ( v a + b ) v ( J k ( v ) J k 1 ( v ) p 2 2 a v s . J k ( v ) J k ( v ) J k 1 ( v ) ,
where  r = a a / J k ( v ) J k ( v ) .

p-Sylvester Sum

In this subsection, we shall show a closed formula for the Sylvester sum. By  a = q J k ( v ) + r , we have
w Ap p ( A ) w 2 = i = 0 p 1 j = 0 r 1 ( t i J k ( v ) + j , q + p 2 i ) 2 + i = 0 p 1 j = 0 J k ( v ) r 1 ( t i J k ( v ) + r + j , q + p 2 i 1 ) 2 + i = 0 J k ( v ) 1 j = 0 q p 1 ( t p J k ( v ) + i , j ) 2 + i = 0 r 1 ( t p J k ( v ) + i , q p ) 2 = a 6 ( ( v a + b ) 2 + ( v a + b ) ( 2 v s . r 2 3 a b 3 v s . r 2 ) + 2 a b ( a b + 3 v s . r 2 ) + v 2 a 2 q 2 ( a + 2 r ) ( a r ) ( 3 q 1 ) J k 1 ( v ) 2 3 v ( a r ) ( v a + b b ( a r ) ) J k ( v ) + v ( a r ) ( 2 v s . a + b ) J k ( v ) 2 + v ( 3 ( a r ) ( ( a r ) ( v a b ) + v a + b ) + q ( a + r ) ( 4 a b 3 ( v a + b ) ) + 2 q r 2 ( 3 v s . a b ) ( a r ) ( 3 v s . a + b ) J k ( v ) ) J k 1 ( v ) ) + a p 6 ( 6 ( ( v a + b ) ( a b + v r 2 ) ( v a + b ) 2 b 2 ) J k ( v ) + 3 v ( v a + b ) ( 2 r + 1 ) + 2 v s . a 2 J k ( v ) 2 v ( 2 v s . a b ) J k ( v ) 3 + v ( 6 ( a 2 r 2 ) ( a v + b ) + 3 ( ( v a + b ) ( 2 r 1 ) 4 v s . a 2 ) J k ( v ) + ( 5 v s . a b ) J k ( v ) 2 ) J k 1 ( v ) + 3 v 2 a 2 a J k ( v ) J k 1 ( v ) 2 ) + a p 2 2 ( v ( v a + b ) ( 2 a + 1 ) + 2 b 2 v ( 2 v s . a + b ) J k ( v ) J k ( v ) 2 v 2 a ( v a b ) + a v + b J k 1 ( v ) J k ( v ) + v 2 a J k 1 ( v ) 2 ( 2 a J k ( v ) 2 ) ) 2 a v ( v a + b ) p 3 3 J k ( v ) J k 1 ( v ) ( J k ( v ) ) 2 .
Thus, by Lemma 1 (3), together with  w Ap p ( A ) w  in (4), we obtain that
s p a , v a + b , v a J k 1 ( v ) + b J k ( v ) = 1 2 a w Ap p ( A ) w 2 1 2 w Ap p ( A ) w + a 2 1 12 = 1 12 ( ( a r ) v ( 2 a v + b ) J k ( v ) 2 ( a r ) v ( 3 ( v a + b b ( a r ) + a ) + ( 3 v s . a + b ) J k 1 ( v ) ) J k ( v ) + v 2 a ( a r ) J k 1 ( v ) 2 + 3 ( a r ) v v a + b + ( a r ) ( v a b ) + a J k 1 ( v ) + 3 v r 2 ( v a + b ) + v a r 2 ( 2 b 1 ) v a 2 ( b 1 ) a b ( a + b 1 ) + ( v a + b ) 2 + ( a 2 1 ) + 2 v r 3 ( v a b ) + a 2 b 2 + 2 v 2 a ( a r ) ( a 2 + a r 2 r 2 ) J k 1 ( v ) 2 J k ( v ) 2 3 v 2 a ( a r ) 2 J k 1 ( v ) 2 J k ( v ) + v ( a r ) J k 1 ( v ) J k ( v ) ( 4 a b ( 2 a + 3 r ) + 2 r 2 ( 3 v b ) 3 ( a 2 + r ( v + b + 1 ) ) 3 a ( v a + b ) ) ) + p 12 ( v ( 2 v s . a b ) J k ( v ) 3 + 3 v ( 2 r 1 ) ( v a + b ) + a ( 2 v s . a + 1 ) J k ( v ) 2 + 6 ( v a + b ) v r 2 ( v a + b ) + a ( b 1 ) J k ( v ) + v ( 5 v s . a b ) J k 1 ( v ) J k ( v ) 2 + 3 v ( 2 r 1 ) ( v a + b ) + a ( 4 v s . a + 1 ) J k 1 ( v ) J k ( v ) + 6 v ( a 2 r 2 ) ( v a + b ) J k 1 ( v ) + 3 v 2 a 2 a J k ( v ) J k 1 ( v ) 2 ) + p 2 4 ( v a ( 2 v s . a 2 b + 1 ) + v a + b ( 3 v s . a + b ) J k ( v ) J k 1 ( v ) J k ( v ) + v ( 2 a + 1 ) ( v a + b ) + v a + 2 b 2 v ( 2 v s . a + b ) J k ( v ) J k ( v ) 2 + v 2 a J k 1 ( v ) 2 J k ( v ) 2 ) v ( v a + b ) p 3 3 J k ( v ) J k 1 ( v ) J k ( v ) 2 .
Here, again  q = a / J k ( v )  and  r = a q J k ( v ) .

5. Jacobsthal–Lucas Polynomials

The same discussion as Jacobsthal polynomials can be applied to Jacobsthal–Lucas polynomials  j n ( v ) . Here,  j n ( v ) = j n 1 ( v ) + j n 2 ( v )  ( n 2 ) with  j 0 ( v ) = 2  and  j 1 ( v ) = 1  (see, e.g., [17], Chapter 44). When  v = 1 L n = j n ( 1 )  are Lucas numbers. When  v = 2 j n = j n ( 2 )  are Jacobsthal–Lucas numbers. Similarly, determine integers q and r by  a = q j k ( v ) + r  with  0 r < j k ( v ) . If  a = j i ( v )  and  b = j i + 1 ( v ) , then the numerical semigroup  j i ( v ) , j i + 2 ( v ) , j i + k ( v )  in [18] can be reduced as a special case.
Theorem 3.
Let a and b be positive integers with  gcd ( a , b ) = 1  and  a 3 . Then, for a positive integer  k 3  and  0 p a / j k ( v )  we have
g p a , v a + b , v a j k 1 ( v ) + b j k ( v ) = ( a 1 ) b + a v ( r 1 ) 1 + v a ( a r ) j k 1 ( v ) j k ( v ) + p v a j k 1 ( v ) + b j k ( v ) i f a < j k ( v ) o r ( v a + b ) r > v a j k ( v ) j k 1 ( v ) ; ( a r 1 ) b + v a ( j k ( v ) j k 1 ( v ) 1 ) a + v a ( a r ) j k 1 ( v ) j k ( v ) + p v a j k 1 ( v ) + b j k ( v ) i f a j k ( v ) a n d ( v a + b ) r < v a j k ( v ) j k 1 ( v ) ,
where  r = a a / j k ( v ) j k ( v ) .
Theorem 4.
Let a and b be coprime integers. Then, for a positive integer  k 3  and  0 p a / j k ( v )  we have
n p a , a + b , a j k 1 ( v ) + b j k ( v ) = 1 2 ( v ( a r 2 ) + ( a 1 ) ( b 1 ) + v ( a + r ) ( a r ) j k 1 ( v ) j k ( v ) + v ( a r ) j k ( v ) j k 1 ( v ) ) + p 2 a j k ( v ) 2 ( v a + b ) v ( j k ( v ) j k 1 ( v ) p 2 2 a v s . j k ( v ) j k ( v ) j k 1 ( v ) ,
where  r = a a / j k ( v ) j k ( v ) .

6.  p -Hilbert Series

There are some applications, due to the p-Apéry set. One of them is on the p-Hilbert series ([36]) of  S p ( A ) , which is defined by
H p ( A ; x ) : = H ( S p ; x ) = s S p ( A ) x s ,
When  p = 0 , the 0-Hilbert series is the original Hilbert series, which plays an important role in the numerical semigroup (see, e.g., [9]). In addition, the p-gaps generating function is defined by
Ψ p ( A ; x ) = s N 0 \ S p ( A ) x s ,
satisfying  H p ( A ; x ) + Ψ p ( A ; x ) = 1 / ( 1 x )  ( | x | < 1 ). Moreover, according to the same arguments of Chapter 5 in [9], we can express the p-Hilbert series as
H p ( A ; x ) = 1 1 x a w Ap p ( A ; a ) x w ,
where  a = min { A } .
When  A = { a , v a + b , v a J k 1 ( v ) + b J k ( v ) } , similarly to (4), we have
w Ap p ( A ) x w = i = 0 p 1 j = 0 r 1 x t i J k ( v ) + j , q + p 2 i + i = 0 p 1 j = 0 J k ( v ) r 1 x t i J k ( v ) + r + j , q + p 2 i 1 + i = 0 J k ( v ) 1 j = 0 q p 1 x t p J k ( v ) + i , j + i = 0 r 1 x t p J k ( v ) + i , q p = ( 1 x r ( v a + b ) ) ( x 2 p ( v a J k 1 ( v ) + b J k ( v ) ) x p ( v a + b ) J k ( v ) ) x ( p q 2 ) ( v a J k 1 ( v ) + b J k ( v ) ) ( 1 x v a + b ) ( x 2 ( v a J k 1 ( v ) + b J k ( v ) ) x ( v a + b ) J k ( v ) ) + ( x r ( v a + b ) x ( v a + b ) J k ( v ) ) ( x 2 p ( v a J k 1 ( v ) + b J k ( v ) ) x p ( v a + b ) J k ( v ) ) x ( p q 1 ) ( v a J k 1 ( v ) + b J k ( v ) ) ( 1 x v a + b ) ( x 2 ( v a J k 1 ( v ) + b J k ( v ) ) x ( v a + b ) J k ( v ) ) + ( x p ( v a + b ) J k ( v ) x ( p + 1 ) ( v a + b ) J k ( v ) ) ( 1 x ( q p ) ( v a J k 1 ( v ) + b J k ( v ) ) ) ) ( 1 x v a + b ) ( 1 x v a J k 1 ( v ) + b J k ( v ) ) + x p v s . a ( J k ( v ) J k 1 ( v ) ) + q ( v a J k 1 + b J k ( v ) ) ( 1 x r ( v a + b ) ) 1 x v a + b .
Therefore, by (5)
H p a , v a + b , v a J k 1 ( v ) + b J k ( v ) ; x = 1 1 x a ( ( 1 x r ( v a + b ) ) ( x 2 p ( v a J k 1 ( v ) + b J k ( v ) ) x p ( v a + b ) J k ( v ) ) x ( p q 2 ) ( v a J k 1 ( v ) + b J k ( v ) ) ( 1 x v a + b ) ( x 2 ( v a J k 1 ( v ) + b J k ( v ) ) x ( v a + b ) J k ( v ) ) + ( x r ( v a + b ) x ( v a + b ) J k ( v ) ) ( x 2 p ( v a J k 1 ( v ) + b J k ( v ) ) x p ( v a + b ) J k ( v ) ) x ( p q 1 ) ( v a J k 1 ( v ) + b J k ( v ) ) ( 1 x v a + b ) ( x 2 ( v a J k 1 ( v ) + b J k ( v ) ) x ( v a + b ) J k ( v ) ) + ( x p ( v a + b ) J k ( v ) x ( p + 1 ) ( v a + b ) J k ( v ) ) ( 1 x ( q p ) ( v a J k 1 ( v ) + b J k ( v ) ) ) ) ( 1 x v a + b ) ( 1 x v a J k 1 ( v ) + b J k ( v ) ) + x p v s . a ( J k ( v ) J k 1 ( v ) ) + q ( v a J k 1 + b J k ( v ) ) ( 1 x r ( v a + b ) ) 1 x v a + b ) .

7. Future Works

In this paper, as well as in [18,19,29,30], the p-numerical semigroup with three variables has been studied. However, that with four variables is very difficult to deal with. In fact, even for  p = 0 , no algorithm to calculate the Frobenius number has been discovered yet.
In [43], the numerical semigroup of  A : = ( a , a + b , 2 a + 3 b , , F 2 k 1 a + F 2 k b )  is studied for relatively prime integers a and b when  p = 0 :
g 0 ( A ) = a F 2 k 1 ( a 1 ) F 2 k 1 + ( a 1 ) b
and
n 0 ( A ) = y = 1 a 1 F 2 k 1 y F 2 k + ( a 1 ) ( b 1 ) 2 .
However, for  p 1 , it is very difficult to find an explicit formula for the case with more than three variables. One wants to study a more general number  U n , satisfying  U n = u U n 1 + v U n 2 , but nothing is known even for the numerical semigroup of Pell numbers  P n , satisfying  P n = 2 P n 1 + P n 2  ( n 2 ) with  P 0 = 0  and  P 1 = 1 , because the structure is rather different.

Author Contributions

Validation, T.K.; Investigation, T.K., S.L. and P.P.; Writing—original draft preparation, T.K.; Writing—review and editing, S.L. and P.P.; Supervision, T.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The most of this paper has been completed when the first named author stayed in Delhi in February 2023. He thanks the discussions and hospitality by the second and third named authors. All the authors thank the reviewers for careful reading of the manuscript and for giving constructive comments, which made this paper so sophisticated.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Binner, D.S. The number of solutions to ax+by+cz=n and its relation to quadratic residues. J. Integer Seq. 2020, 23, 20.6.5. [Google Scholar]
  2. Cayley, A. On a problem of double partitions. Philos. Mag. 1860, 20, 337–341. [Google Scholar] [CrossRef]
  3. Komatsu, T. On the number of solutions of the Diophantine equation of Frobenius–General case. Math. Commun. 2003, 8, 195–206. [Google Scholar]
  4. Sylvester, J.J. On the partition of numbers. Quart. J. Pure Appl. Math. 1857, 1, 141–152. [Google Scholar]
  5. Tripathi, A. The number of solutions to ax+by=n. Fibonacci Quart. 2000, 38, 290–293. [Google Scholar]
  6. Sylvester, J.J. On subinvariants, i.e., semi-invariants to binary quantics of an unlimited order. Am. J. Math. 1882, 5, 119–136. [Google Scholar] [CrossRef]
  7. Ramirez Alfonsin, J.L. The Diophantine Frobenius Problem; Oxford Lecture Series in Mathematics and Its Applications 30; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
  8. Sylvester, J.J. Mathematical questions with their solutions. Educ. Times 1884, 41, 21. [Google Scholar]
  9. Assi, A.; D’Anna, M.; Garcia-Sanchez, P.A. Numerical Semigroups and Applications, 2nd ed.; RSME Springer Series 3; Springer: Cham, Switzerland, 2020. [Google Scholar]
  10. Rosales, J.C.; Garcia-Sanchez, P.A. Finitely Generated Commutative Monoids; Nova Science Publishers, Inc.: Commack, NY, USA, 1999. [Google Scholar]
  11. Rosales, J.C.; Garcia-Sanchez, P.A. Numerical Semigroups. In Developments in Mathematics; Springer: New York, NY, USA, 2009. [Google Scholar]
  12. Brown, A.; Dannenberg, E.; Fox, J.; Hanna, J.; Keck, K.; Moore, A.; Robbins, Z.; Samples, B.; Stankewicz, J. On a generalization of the Frobenius number. arXiv 2010, arXiv:1001.0207. [Google Scholar]
  13. Fukshansky, L.; Schurmann, A. Bounds on generalized Frobenius numbers. Eur. J. Comb. 2011, 32, 361–368. [Google Scholar] [CrossRef]
  14. Matthews, G.L. Frobenius numbers of generalized Fibonacci semigroups. In Proceedings of the 3rd Integers Conference 2007, Carrollton, GA, USA, 24–27 October 2007. [Google Scholar]
  15. Johnson, S.M. A linear diophantine problem. Can. J. Math. 1960, 12, 390–398. [Google Scholar] [CrossRef]
  16. Marin, J.M.; Ramirez Alfonsin, J.L.; Revuelta, M.P. On the Frobenius number of Fibonacci numerical semigroups. Integers 2007, 7, A14. [Google Scholar]
  17. Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; Volume 2. [Google Scholar]
  18. Komatsu, T.; Pita-Ruiz, C. The Frobenius number for Jacobsthal triples associated with number of solutions. Axioms 2023, 12, 98. [Google Scholar] [CrossRef]
  19. Komatsu, T.; Ying, H. The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets. Math. Biosci. Eng. 2023, 20, 3455–3481. [Google Scholar] [CrossRef] [PubMed]
  20. Brown, T.C.; Shiue, P.J. A remark related to the Frobenius problem. Fibonacci Quart. 1993, 31, 32–36. [Google Scholar]
  21. Rødseth, ∅J. A note on Brown and Shiue’s paper on a remark related to the Frobenius problem. Fibonacci Quart. 1994, 32, 407–408. [Google Scholar]
  22. Curtis, F. On formulas for the Frobenius number of a numerical semigroup. Math. Scand. 1990, 67, 190–192. [Google Scholar] [CrossRef]
  23. Fel, L.G. Frobenius problem for semigroups S(d1,d2,d3). Funct. Anal. Other Math. 2006, 1, 119–157. [Google Scholar] [CrossRef]
  24. Rosales, J.C.; Garcia-Sanchez, P.A. Numerical semigroups with embedding dimension three. Arch. Math. 2004, 83, 488–496. [Google Scholar] [CrossRef]
  25. Tripathi, A. Formulae for the Frobenius number in three variables. J. Number Theory 2017, 170, 368–389. [Google Scholar] [CrossRef]
  26. Robles-Pérez, A.M.; Rosales, J.C. The Frobenius number for sequences of triangular and tetrahedral numbers. J. Number Theory 2018, 186, 473–492. [Google Scholar] [CrossRef]
  27. Rosales, J.C.; Branco, M.B.; Torrão, D. The Frobenius problem for Thabit numerical semigroups. J. Number Theory 2015, 155, 85–99. [Google Scholar] [CrossRef]
  28. Rosales, J.C.; Branco, M.B.; Torrão, D. The Frobenius problem for Mersenne numerical semigroups. Math. Z. 2017, 286, 741–749. [Google Scholar] [CrossRef]
  29. Komatsu, T. The Frobenius number for sequences of triangular numbers associated with number of solutions. Ann. Comb. 2022, 26, 757–779. [Google Scholar] [CrossRef]
  30. Komatsu, T. The Frobenius number associated with the number of representations for sequences of repunits. C. R. Math. Acad. Sci. Paris 2023, 361, 73–89. [Google Scholar] [CrossRef]
  31. Albano, A. The Fibonacci sequence and the golden section in a lunette decoration of the medieval church of San Nicola in Pisa. Territ. Cult. 2015, 21, 48–59. [Google Scholar]
  32. Antoniotti, A.; Caldarola, F.; d’Atri, G.; Pellegrini, M. New Approaches to Basic Calculus: An Experimentation via Numerical Computation. In Numerical Computations: Theory and Algorithms: Third International Conference, NUMTA 2019, Crotone, Italy, 15–21 June 2019; Sergeyev, Y.D., Kvasov, D.E., Eds.; Springer: Cham, Switzerland, 2020; pp. 329–342. [Google Scholar]
  33. Caldarola, F.; d’Atri, G.; Maiolo, M.; Pirillo, G. New algebraic and geometric constructs arising from Fibonacci numbers. Soft Comput. 2020, 24, 17497–17508. [Google Scholar] [CrossRef]
  34. Apéry, R. Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 1946, 222, 1198–1200. [Google Scholar]
  35. Komatsu, T. Sylvester power and weighted sums on the Frobenius set in arithmetic progression. Discrete Appl. Math. 2020, 315, 110–126. [Google Scholar] [CrossRef]
  36. Komatsu, T. On p-Frobenius and related numbers due to p-Apéry set. arXiv 2023, arXiv:2111.11021v3. [Google Scholar]
  37. Komatsu, T.; Zhang, Y. Weighted Sylvester sums on the Frobenius set. Irish Math. Soc. Bull. 2021, 87, 21–29. [Google Scholar] [CrossRef]
  38. Komatsu, T.; Zhang, Y. Weighted Sylvester Sums on the Frobenius Set in More Variables. Kyushu J. Math. 2022, 76, 163–175. [Google Scholar] [CrossRef]
  39. Brauer, A.; Shockley, B.M. On a problem of Frobenius. J. Reine. Angew. Math. 1962, 211, 215–220. [Google Scholar]
  40. Selmer, E.S. On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 1977, 293–294, 1–17. [Google Scholar]
  41. Tripathi, A. On sums of positive integers that are not of the form ax+by. Amer. Math. Monthly 2008, 115, 363–364. [Google Scholar] [CrossRef]
  42. Punyani, P.; Tripathi, A. On changes in the Frobenius and Sylvester numbers. Integers 2018, 18B, A8. [Google Scholar]
  43. Batra, S.S.; Kumar, N.; Tripathi, A. On a linear Diophantine problem involving the Fibonacci and Lucas sequences. Integers 2015, 15, A26. [Google Scholar]
Table 1. Ap 0 ( a , v a + b , v a J k 1 ( v ) + b J k ( v ) ) .
Table 1. Ap 0 ( a , v a + b , v a J k 1 ( v ) + b J k ( v ) ) .
  t 0 , 0   t J k ( v ) 1 , 0
  t 0 , 1   t J k ( v ) 1 , 1
  t 0 , q 1   t J k ( v ) 1 , q 1
  t 0 , q   t r 1 , q
Table 2. Ap 1 ( A )  from  Ap 0 ( A ) .
Table 2. Ap 1 ( A )  from  Ap 0 ( A ) .
Symmetry 15 00852 i001
Table 3. Ap p ( A )  ( p = 0 , 1 , 2 , 3 ) for  q 3 .
Table 3. Ap p ( A )  ( p = 0 , 1 , 2 , 3 ) for  q 3 .
Symmetry 15 00852 i002
Table 4. Ap p ( A )  ( p = a / J k ( v ) ).
Table 4. Ap p ( A )  ( p = a / J k ( v ) ).
Symmetry 15 00852 i003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Komatsu, T.; Laishram, S.; Punyani, P. p-Numerical Semigroups of Generalized Fibonacci Triples. Symmetry 2023, 15, 852. https://doi.org/10.3390/sym15040852

AMA Style

Komatsu T, Laishram S, Punyani P. p-Numerical Semigroups of Generalized Fibonacci Triples. Symmetry. 2023; 15(4):852. https://doi.org/10.3390/sym15040852

Chicago/Turabian Style

Komatsu, Takao, Shanta Laishram, and Pooja Punyani. 2023. "p-Numerical Semigroups of Generalized Fibonacci Triples" Symmetry 15, no. 4: 852. https://doi.org/10.3390/sym15040852

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop