Next Article in Journal
p-Numerical Semigroups of Generalized Fibonacci Triples
Next Article in Special Issue
Asymptotic Approximations of Higher-Order Apostol–Frobenius–Genocchi Polynomials with Enlarged Region of Validity
Previous Article in Journal
An Efficient Analytical Approach to Investigate Fractional Caudrey–Dodd–Gibbon Equations with Non-Singular Kernel Derivatives
Previous Article in Special Issue
Approximate and Exact Solutions in the Sense of Conformable Derivatives of Quantum Mechanics Models Using a Novel Algorithm
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On (p,q)–Fibonacci and (p,q)–Lucas Polynomials Associated with Changhee Numbers and Their Properties

1
School of Mathematics and Big Data, Guizhou Normal College, Guiyang 550018, China
2
Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia
3
Department of Mathematics, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(4), 851; https://doi.org/10.3390/sym15040851
Submission received: 3 March 2023 / Revised: 29 March 2023 / Accepted: 31 March 2023 / Published: 2 April 2023

Abstract

:
Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties have been studied in the literature with the help of generating functions and their functional equations. In this paper, using the ( p , q ) –Fibonacci polynomials,  ( p , q ) –Lucas polynomials, and Changhee numbers, we define the  ( p , q ) –Fibonacci–Changhee polynomials and  ( p , q ) –Lucas–Changhee polynomials, respectively. We obtain some important identities and relations of these newly established polynomials by using their generating functions and functional equations. Then, we generalize the  ( p , q ) –Fibonacci–Changhee polynomials and the  ( p , q ) –Lucas–Changhee polynomials called generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials. We derive a determinantal representation for the generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials in terms of the special Hessenberg determinant. Finally, we give a new recurrent relation of the  ( p , q ) –Fibonacci–Lucas–Changhee polynomials.

1. Introduction

Special polynomials and numbers with special cases of these polynomials have been studied by many mathematicians. In particular, with the help of the generating functions of these polynomials, some identities, sum formulas, and symmetric identities containing these polynomials have been obtained. Special functions and numbers are frequently used in many branches of mathematics, especially in areas such as mathematical physics, mathematical modeling, and analytical number theory. Moreover, a large number of studies on families of generalized polynomials and their various applications in the solution of differential equations and approximation theory have appeared in the literature. For more details on special polynomials and some of their applications, please see [1,2,3,4,5,6,7,8,9].
Horadam [10] defined the sequence  W n ( r , s ; u , v ) n 0  or, in brief,  W n n 0  by the recurrence relation
W n = u W n 1 + v W n 2 , n 2
where  r , s , u , v Z  with the initial values  W 0 = r  and  W 1 = s . For different values  r , s , u  and  v ,  some special cases of the Horadam numbers  W n ( r , s ; u , v )  are as shown in Table 1:
In addition to these numbers, polynomials containing these numbers and which have the same names as these numbers have also attracted the attention of mathematicians from the past to the present. For  c 0 c 1 c 2 c 3  are constants and  d = 0  or 1. In [11], Horadam defined the following polynomial sequence  W n ( ξ )  as
W n ( ξ ) = p ( ξ ) W n 1 ( ξ ) + q ( ξ ) W n 2 ( ξ ) , n 2
where
W 0 ( ξ ) = c 0 , W 1 ( ξ ) = c 1 ξ d , p ( ξ ) = c 2 ξ d , q ( ξ ) = c 3 ξ d .
With special choices of  p ( ξ ) q ( ξ ) , W 0 ( ξ ) , and  W 1 ( ξ ) , the  W n ( ξ )  polynomials become important polynomials mentioned in the following Table 2:
Next, Nalli and Haukkanen [12] defined the  h ( ξ ) –Fibonacci polynomials  h ( ξ ) –Lucas polynomials including the Fibonacci polynomials, Pell polynomials, Lucas polynomials, and Pell–Lucas polynomials given in Table 2. In [13] Lee and Asci considered the  p , q –Fibonacci polynomials and  p , q –Lucas polynomials, as follows:
F p , q , n ( ξ ) = p ( ξ ) F p , q , n 1 ( ξ ) + q ( ξ ) F p , q , n 2 ( ξ ) ,
and
L p , q , n ( ξ ) = p ( ξ ) L p , q , n 1 ( ξ ) + q ( ξ ) L p , q , n 2 ( ξ ) ,
with the initial values  F p , q , 0 ( ξ ) = 0 F p , q , 1 ( ξ ) = 1 L p , q , 0 ( ξ ) = 2  and  L p , q , 1 ( ξ ) = p ( ξ ) , respectively. Here,  p ( ξ )  and  q ( ξ )  are polynomials with real coefficients. They derived the generating functions of the  p , q –Fibonacci polynomials and  p , q –Lucas polynomials as
n = 0 F p , q , n ( ξ ) w n = w 1 p ( ξ ) w q ( ξ ) w 2 ,
and
n = 0 L p , q , n ( ξ ) w n = 2 p ( ξ ) w 1 p ( ξ ) w q ( ξ ) w 2 .
Very recently, Simsek [14] defined the general forms of ordinary generating functions for special numbers and polynomials involving Fibonacci-type numbers and polynomials, Lucas numbers, and polynomials. The new classes of multiple variables polynomials are defined by means of the following generating functions as
n = 0 Y n P ξ m w n = 1 1 + j = 1 m P j ξ j w j ,
and
n = 0 S n P ξ m ; Q ξ k w n = j = 0 k Q j ξ j w j 1 + j = 1 m P j ξ j w j ,
where  P ξ m = P 1 ξ 1 , P 2 ξ 2 , , P m ξ m ,   Q ξ k = Q 1 ξ 1 , Q 2 ξ 2 , , Q k ξ k ,
P j ξ j = v = 0 d a v ξ j v , Q l ξ l = v = 0 c b v ξ l v ,
and  c , d , k , m N 0 , 0 l k  and  0 j m . For more details related to the above numbers and polynomials, please see [14,15,16,17,18]. Another well-known polynomial is the Euler polynomial. The classical Euler polynomials  E n ( ξ )  are defined with the help of the following generating function as [19]
2 e w + 1 e ξ w = n = 0 E n ( ξ ) w n n ! , w < π .
Note that for  ξ = 0 E n ( 0 ) = E n  are called the Euler numbers. In [20], Pathan and Khan defined the  h ( ξ ) –Fibonacci–Euler and  h ( ξ ) –Lucas–Euler polynomials and numbers and derived some important identities for these types of polynomials. For  n 0 , the Stirling numbers of the second kind are defined by (see, [19])
ξ n = q = 0 j S 2 ( n , q ) ( ξ ) q ,
where  ( ξ ) q = ξ ξ 1 ξ q + 1 .  By virtue of (2), the Stirling numbers of the second kind can be expressed as follows:
1 r ! ( e w 1 ) r = n = r S 2 ( n , r ) w n n ! .
The Changhee polynomials are defined with the help of the following generating function
2 2 + w ( 1 + w ) ξ = n = 0 C h n ( ξ ) w n n ! .
Substituting  ξ = 0  into (3),  C h n ( 0 ) = C h n , Changhee numbers are obtained. Replacing w by  e w 1  in (3), we can write (see [21])
2 e w + 1 e ξ w = m = 0 C h m ( ξ ) ( e w 1 ) m m ! = m = 0 C h m ( ξ ) n = m S 2 ( n , m ) w n n ! = n = 0 m = 0 n C h m ( ξ ) S 2 ( n , m ) w n n ! .
Using (1) and (4), we can get (see [22])
E n ( ξ ) = m = 0 n C h m ( ξ ) S 2 ( n , m ) .
In [23] Kim et al. defined the modified Changhee–Genocchi polynomials defined by
2 w 2 + w ( 1 + w ) ξ = n = 0 C G n ( ξ ) w n n ! .
Setting  ξ = 0  into (5),  C G n ( 0 ) = C G n  are called the modified Changhee–Genocchi numbers. For more details related to Stirling numbers of the second kind, the Changhee polynomials, and the modified Changhee–Genocchi polynomials, please see [23,24,25].
Our main purpose in this article is to define a new polynomial family with the help of  ( p , q ) –Fibonacci polynomials,  ( p , q ) –Lucas polynomials, and the Changhee number. In the second and third parts of our article, we define  ( p , q ) –Fibonacci–Changhee polynomials and  ( p , q ) –Lucas–Changhee polynomials with the help of the generating functions of these polynomials and their functional equations, and we derive many new and interesting identities and relations related to these classes of these numbers and polynomials. In the last section, we define a new polynomial containing the  ( p , q ) –Fibonacci–Changhee and  ( p , q ) –Lucas–Changhee polynomials. With the help of the generating function of this polynomial, we give the determinant expression for this polynomial. Based on this determinant, we give a new recurrence relation for this polynomial using the lower Hessenbeg matrix.

2. The ( p , q ) –Fibonacci–Changhee Numbers and Polynomials

In this part of the paper, we introduce the  ( p , q ) –Fibonacci–Changhee numbers and polynomials, denoted by  C h F p , q , n ( ξ ) , and we derive some properties of these polynomials using their generating functions.
Definition 1.
Let  p ( ξ )  and  q ( ξ )  be polynomials with real coefficients. The  ( p , q ) –Fibonacci–Changhee polynomials  C h F p , q , n ( ξ )  are defined by the generating function as follows:
w 1 p ( ξ ) w q ( ξ ) w 2 2 2 + w = n = 0 C h F p , q , n ( ξ ) w n n ! .
Remark 1.
The  ( p , q ) –Fibonacci–Changhee polynomials can be expressed as
C h F p , q , n ( ξ ) = S n 1 / 2 p ( ξ ) , q ( ξ ) + p ( ξ ) / 2 , q ( ξ ) / 2 ; 0 , 1 .
Using (6), we find that
2 w ( 1 p ( ξ ) w q ( ξ ) w 2 ) ( 2 + w ) = n = 0 C h F p , q , n ( ξ ) w n n ! = n = 0 F p , q , n ( ξ ) w n m = 0 C h m w m m ! .
Comparing the coefficients of  w n  on both sides of the above equation, we obtain
C h F p , q , n ( ξ ) = n ! m = 0 n F p , q , n m ( ξ ) C h m m ! .
Theorem 1.
For  n 1 , we have
C G n = C h F p , q , n ( ξ ) p ( ξ ) n C h F p , q , n 1 ( ξ ) q ( ξ ) n 2 C h F p , q , n 2 ( ξ ) ,
where  n 2 = n n 1 .
Proof. 
Using (5) and (6), we have
2 w 2 + w = ( 1 p ( ξ ) w q ( ξ ) w 2 ) n = 0 C h F p , q , n ( ξ ) w n n = 0 C G n w n n ! = n = 0 C h F p , q , n ( ξ ) w n n ! p ( ξ ) n = 0 C h F p , q , n ( ξ ) w n + 1 n ! q ( ξ ) n = 0 C h F p , q , n ( ξ ) w n + 2 n ! n = 0 C G n w n n ! = n = 0 C h F p , q , n ( ξ ) w n n ! n = 0 p ( ξ ) C h F p , q , n 1 ( ξ ) w n ( n 1 ) ! n = 0 q ( ξ ) C h F p , q , n 2 ( ξ ) w n ( n 2 ) ! .
Comparing the coefficients of  w n  on both sides of the above equation, we get the desired result (7). □
Theorem 2.
For  n 1 , we get
F p , q , n ( ξ ) = 1 n ! C h F p , q , n ( ξ ) + n 2 C h F p , q , n 1 ( ξ ) .
Proof. 
Equation (6) can be written as
2 w 1 p ( ξ ) w q ( ξ ) w 2 = ( 2 + w ) n = 0 C h F p , q , n ( ξ ) w n n ! 2 n = 0 F p , q , n ( ξ ) w n = 2 n = 0 C h F p , q , n ( ξ ) w n n ! + n = 0 C h F p , q , n ( ξ ) w n + 1 n ! 2 n = 0 F p , q , n ( ξ ) w n = 2 n = 0 C h F p , q , n ( ξ ) w n n ! + n = 0 C h F p , q , n 1 ( ξ ) w n ( n 1 ) ! .
Comparing the coefficients of  w n  on both sides of the above equation, we get the desired results. □
Theorem 3.
For  n 1 , we have
C h F p , q , n ( ξ ) = n ! m = 0 n i = 0 [ m 1 2 ] m i 1 i C h n m ( n m ) ! p m 2 i 1 ( ξ ) q i ( ξ )
where  p ( ξ ) w + q ( ξ ) w 2 < 1 .
Proof. 
From (6), we obtain
w 1 p ( ξ ) w q ( ξ ) w 2 2 2 + w = w 2 2 + w n = 0 ( p ( ξ ) w + q ( ξ ) w 2 ) n = w 2 2 + w n = 0 i = 0 n n i ( p ( ξ ) w ) n i ( q ( ξ ) w 2 ) i = 2 2 + w n = 0 i = 0 n n i ( p ( ξ ) w ) n i ( q ( ξ ) ) i w 2 i + 1 .
On writing  n + i + 1 = m  in the right-hand side of the above equation, we get
w 1 p ( ξ ) w q ( ξ ) w 2 2 2 + w = 2 2 + w m = 0 i = 0 [ m 1 2 ] m i 1 i p m 2 i 1 ( ξ ) q i ( ξ ) w m n = 0 C h F p , q , n ( ξ ) w n n ! = n = 0 C h n w n n ! m = 0 i = 0 [ m 1 2 ] m i 1 i p m 2 i 1 ( ξ ) q i ( ξ ) w m .
Next, we n by  n m  and compare the coefficients of  w n  on both sides of the above equation, and thus obtain our assertion. □
Theorem 4.
The Representation of Changhee numbers in terms of  ( p , q ) –Fibonacci–Changhee polynomials is
C h n = C h F p , q , n + 1 ( ξ ) n p ( ξ ) C h F p , q , n ( ξ ) q ( ξ ) n C h F p , q , n 1 ( ξ ) , n 1 .
Proof. 
Using (6), we find that
2 2 + w = ( 1 p ( ξ ) w q ( ξ ) w 2 ) n = 0 C h F p , q , n ( ξ ) w n 1 n ! n = 0 C h n w n n ! = ( 1 p ( ξ ) w q ( ξ ) w 2 ) n = 0 C h F p , q , n ( ξ ) ( ξ ) w n 1 n ! .
Comparing the coefficients of  w n  on both sides of the above equation, we obtain the result (8). □
Theorem 5.
For  n 0 , we have
k = 0 n m = 0 k n k F m , p , q ( ξ ) m ! S 2 ( k , m ) E n k = m = 0 n C h F p , q , m ( ξ ) S 2 ( n , m ) .
Proof. 
Replacing w by  e w 1  in (6), we find that
e w 1 1 p ( ξ ) ( e w 1 ) q ( ξ ) ( e w 1 ) 2 2 e w + 1 = m = 0 C h F p , q , m ( ξ ) ( e w 1 ) m m ! = m = 0 C h F p , q , m ( ξ ) n = m S 2 ( n , m ) w n n ! = n = 0 m = 0 n C h F p , q , m ( ξ ) S 2 ( n , m ) w n n ! .
On the other hand, we have
e w 1 1 p ( ξ ) ( e w 1 ) q ( ξ ) ( e w 1 ) 2 2 e w + 1 = m = 0 F m , p , q ( ξ ) m ! ( e w 1 ) m m ! n = 0 E n w n n ! = k = 0 m = 0 k F m , p , q ( ξ ) m ! S 2 ( k , m ) w k k ! n = 0 E n w n n ! .
So, we find that right hand-side of the above equation as
n = 0 k = 0 n m = 0 k n k F m , p , q ( ξ ) m ! S 2 ( k , m ) E n k w n n ! .
Therefore, according to (10) and (11), we obtain the desired result (9). □
Theorem 6.
For  n 0 , we have
C h F 2 ξ , 1 , n ( ξ ) = m = 0 n n m U m ( ξ ) m ! C h n m ,
where  U n ( ξ )  are the Chebyshev polynomials of the second kind.
Proof. 
On setting  p ( ξ ) = 2 ξ  and  q ( ξ ) = 1  in (6), we obtain
n = 0 C h F 2 ξ , 1 , n ( ξ ) w n n ! = w 1 2 ξ w + w 2 2 2 + w = m = 0 U m ( ξ ) w m n = 0 C h n w n n ! = n = 0 m = 0 n n m U m ( ξ ) m ! C h n m w n n ! .
Comparing the coefficients of  w n  on both sides of the above equation, we obtain (12). □

3. The ( p , q ) –Lucas–Changhee Numbers and Polynomials

Now, in this part of the our paper, the  ( p , q ) –Lucas–Changhee numbers and polynomials, denoted by  C h L p , q , n ( ξ ) , are defined, and certain properties of these polynomials are obtained.
Definition 2.
Let  p ( ξ )  and  q ( ξ )  be a polynomial with real coefficients. We define  ( p , q ) –Lucas–Changhee polynomials  C h L p , q , n ( ξ )  by the generating function
2 p ( ξ ) w 1 p ( ξ ) w q ( ξ ) w 2 2 2 + w = n = 0 C h L p , q , n ( ξ ) w n n ! .
Remark 2.
The  ( p , q ) –Lucas–Changhee polynomials can be expressed as
C h L p , q , n ( ξ ) = S n 1 / 2 p ( ξ ) , q ( ξ ) + p ( ξ ) / 2 , q ( ξ ) / 2 ; 2 , p ( ξ ) .
We may now rewrite (14) as
n = 0 C h L p , q , n ( ξ ) w n n ! = n = 0 L p , q , n ( ξ ) w n m = 0 C h m w m m ! .
We replace n by  n m  in the right hand-side and compare the coefficients of  w n  to obtain the following representation for  ( p , q ) –Lucas–Changhee polynomials
C h L p , q , n ( ξ ) = n ! m = 0 n L p , q , n m ( ξ ) C h m m ! .
Theorem 7.
For  n 1 , we have
2 C h n n ! = p ( ξ ) C h F p , q , n ( ξ ) 1 n ! + C h L p , q , n ( ξ ) 1 n ! p ( ξ ) p ( ξ ) C h F p , q , n 1 ( ξ ) 1 ( n 1 ) ! + C h L p , q , n 1 ( ξ ) 1 ( n 1 ) ! q ( ξ ) p ( ξ ) C h F p , q , n 2 ( ξ ) 1 ( n 2 ) ! + C h L p , q , n 2 ( ξ ) 1 ( n 2 ) ! ,
and
L p , q , n ( ξ ) = C h L p , q , n ( ξ ) 1 n ! + 1 2 C h L p , q , n 1 ( ξ ) 1 ( n 1 ) ! .
Proof. 
Using Equation (14), we can write
2 1 p ( ξ ) w q ( ξ ) w 2 2 2 + w = p ( ξ ) n = 0 C h F p , q , n ( ξ ) w n n ! + n = 0 C h L p , q , n ( ξ ) w n n ! 2 1 p ( ξ ) w q ( ξ ) w 2 n = 0 C h n w n n ! = p ( ξ ) n = 0 C h F p , q , n ( ξ ) w n n ! + n = 0 C h L p , q , n ( ξ ) w n n ! .
Thus, we have
2 n = 0 C h n w n n ! = ( 1 p ( ξ ) w q ( ξ ) w 2 ) p ( ξ ) n = 0 C h F p , q , n ( ξ ) w n n ! + n = 0 C h L p , q , n ( ξ ) w n n ! 2 n = 0 C h n w n n ! = p ( ξ ) n = 0 C h F p , q , n ( ξ ) w n n ! + n = 0 C h L p , q , n ( ξ ) w n n ! p ( ξ ) w p ( ξ ) n = 0 C h F h , n ( ξ ) w n n ! + n = 0 C h L p , q , n ( ξ ) w n n ! q ( ξ ) w 2 p ( ξ ) n = 0 C h F p , q , n ( ξ ) w n n ! + n = 0 C h L p , q , n ( ξ ) w n n ! .
Comparing the coefficients of  w n , we have the result (15).
Again, we rewrite Equation (14) as
2 2 p ( ξ ) w 1 p ( ξ ) w q ( ξ ) w 2 = ( 2 + w ) n = 0 C h L p , q , n ( ξ ) w n n ! 2 n = 0 L p , q , n ( ξ ) w n = 2 n = 0 C h L p , q , n ( ξ ) w n n ! + n = 0 C h L p , q , n ( ξ ) w n + 1 n ! .
Comparing the coefficients of  w n , we get the result (16). □
Theorem 8.
For  n 0 , we have
k = 0 n k = 0 m n k L p , q , m ( ξ ) S 2 ( k , m ) E n k m ! = m = 0 n C h L p , q , m ( ξ ) S 2 ( n , m ) .
Proof. 
Replacing w with  e w 1  in (14), we get
2 p ( ξ ) ( e w 1 ) 1 p ( ξ ) ( e w 1 ) q ( ξ ) ( e w 1 ) 2 2 e w + 1 = m = 0 C h L p , q , m ( ξ ) ( e w 1 ) m m ! = m = 0 C h L p , q , m ( ξ ) n = m S 2 ( n , m ) w n n ! = n = 0 m = 0 n C h L p , q , m ( ξ ) S 2 ( n , m ) w n n ! .
On the other hand, we have
2 p ( ξ ) ( e w 1 ) 1 p ( ξ ) ( e w 1 ) q ( ξ ) ( e w 1 ) 2 2 e w + 1 = m = 0 L p , q , m ( ξ ) m ! ( e w 1 ) m m ! n = 0 E n w n n ! = k = 0 m L p , q , m ( ξ ) k = m S 2 ( k , m ) m ! w k k ! n = 0 E n w n n !
From the above equation, we get
= n = 0 k = 0 n k = 0 m n k L p , q , m ( ξ ) S 2 ( k , m ) E n k m ! w n n ! .
In view of (18) and (19), we obtain the result (17). □
Theorem 9.
For  n 0 , we have
C h L 2 ξ , 1 , n ( ξ ) = 2 m = 0 n n m w m ( ξ ) m ! C h n m ,
where  w m ( ξ )  are the Chebyshev polynomials of the first kind.
Proof. 
On taking  p ( ξ ) = 2 ξ  and  q ( ξ ) = 1  in (14), we get
n = 0 C h L 2 ξ , 1 , n ( ξ ) w n n ! = 2 1 ξ w 1 2 ξ w + w 2 2 2 + w = 2 m = 0 w m ( ξ ) m ! w m m ! n = 0 C h n w n n ! = n = 0 2 m = 0 n n m w m ( ξ ) m ! C h n m w n n ! .
Comparing the coefficients of  w n , we get the result (20). □

4. Some Applications of the Generalized  ( p , q ) –Fibonacci–Lucas–Changhee Polynomials in Matrices

In this section, firstly, we define a polynomial including the  ( p , q ) –Fibonacci–Changhee polynomials and the  ( p , q ) –Lucas–Changhee polynomials that we defined in Section 2 and Section 3. We define this newly established polynomial with the help of the following generating function as follows.
Let  ( p , q )  be a polynomial with real coefficients. The generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials  C h P p , q , n a , b ( ξ )  are defined by the following generating function
n = 0 C h P p , q , n a , b ( ξ ) w n n ! = a w + b ( 2 p ( ξ ) w ) ( 1 p ( ξ ) w q ( ξ ) w 2 ) 2 2 + w .
Remark 3.
The  ( p , q ) –Fibonacci–Lucas–Changhee polynomials can be expressed as
C h P p , q , n a , b ( ξ ) = S n 1 / 2 p ( ξ ) , q ( ξ ) + p ( ξ ) / 2 , q ( ξ ) / 2 ; 2 b , a p ( ξ ) .
Setting  a = 1  and  b = 0  into (21), we obtain the  ( p , q ) –Fibonacci–Changhee polynomials defined by (6). Setting  a = 0  and  b = 1  into (21), we obtain the  ( p , q ) –Lucas–Changhee polynomials defined by (14).
Secondly, we present a closed formula for the generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials  C h P p , q , n a , b ( ξ ) ,  in terms of the following determinant. For more details related to determinantal expressions for special polynomials and numbers, please see [26,27,28,29,30,31].
Theorem 10.
The generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials  C h P p , q , n a , b ( ξ )  for  n 0  can be expressed as following determinant
C h P p , q , n a , b ( ξ ) = 1 2 n + 1 4 b 2 0 0 2 a 2 b p ( ξ ) 2 p ( ξ ) 1 1 0 0 0 0 4 q ( ξ ) + 2 p ( ξ ) 2 0 0 0 0 6 q ( ξ ) 3 0 0 0 0 0 2 0 0 0 2 p ( ξ ) 1 n 1 n 2 2 0 0 4 q ( ξ ) + 2 p ( ξ ) n n 2 2 p ( ξ ) 1 n n 1 .
Proof. 
We recall that a general and fundamental formula for derivatives of a ratio of two differential functions ([32], page 40, Exercise 5). Let  γ ( w )  and  δ ( w ) 0  be differentiable functions, let  U ( n + 1 ) × 1 ( w )  be an  ( n + 1 ) × 1  matrix whose elements  γ k , 1 ( w ) = γ ( k 1 ) ( w )  for  1 k n + 1 , and let  V ( n + 1 ) × n ( w )  be an  ( n + 1 ) × n  matrix whose elements
δ i , j ( w ) = i 1 j 1 δ ( i j ) ( w ) , i j 0 ; 0 , i j < 0
for  1 i n + 1  and  1 j n , and let  W ( n + 1 ) × ( n + 1 ) ( ξ )  denote the lower Hessenberg determinant of the  ( n + 1 ) × ( n + 1 )  lower Hessenberg matrix
W ( n + 1 ) × ( n + 1 ) ( w ) = U ( n + 1 ) × 1 ( w ) V ( n + 1 ) × n ( w ) .
Then, the nth derivative of the ratio  γ ( w ) δ ( w )  can be computed by
d n d ξ n γ ( w ) δ ( w ) = ( 1 ) n W ( n + 1 ) × ( n + 1 ) ( w ) δ n + 1 ( w ) .
Using (21) and (23), we find that
d n d w n a w + b ( 2 p ( ξ ) w ) 1 p ( ξ ) w q ( ξ ) w 2 2 2 + w = ( 1 ) n 1 p ( ξ ) w q ( ξ ) w 2 2 + w n + 1 × γ ( w ) δ ( w ) 0 0 0 γ ( w ) δ ( w ) δ ( w ) 0 0 γ ( w ) δ ( w ) 2 1 δ ( w ) 0 0 γ ( n 2 ) ( w ) δ ( n 2 ) ( w ) n 2 1 δ ( n 3 ) ( w ) δ ( w ) 0 γ ( n 1 ) ( w ) δ ( n 1 ) ( w ) n 1 1 δ ( n 2 ) ( w ) n 1 n 2 δ ( w ) δ ( w ) γ ( n ) ( w ) δ ( n ) ( w ) n 1 δ ( n 1 ) ( w ) n n 2 δ ( w ) n n 1 δ ( w ) .
So, we find the right hand-side above equation
1 2 n + 1 × 4 b 2 0 0 2 a 2 b p ( ξ ) 2 p ( ξ ) 1 1 0 0 0 0 2 p ( ξ ) + 4 q ( ξ ) 2 0 0 0 0 6 q ( ξ ) 3 0 0 0 0 0 2 0 0 0 2 p ( ξ ) 1 n 1 n 2 2 0 0 2 p ( ξ ) + 4 q ( ξ ) n n 2 2 p ( ξ ) 1 n n 1 ,
as  w 0  for  n 0 .  Therefore, we have,
C h P p , q , n a , b ( ξ ) = lim ξ 0 d n d w n a w + b ( 2 p ( ξ ) w ) 1 p ( ξ ) w q ( ξ ) w 2 2 2 + w = 1 2 n + 1 4 b 2 0 0 2 a 2 b p ( ξ ) 2 p ( ξ ) 1 1 0 0 0 0 2 p ( ξ ) + 4 q ( ξ ) 2 0 0 0 0 6 q ( ξ ) 3 0 0 0 0 0 2 0 0 0 2 p ( ξ ) 1 n 1 n 2 2 0 0 2 p ( ξ ) + 4 q ( ξ ) n n 2 2 p ( ξ ) 1 n n 1 .
Thus, the proof is completed. □
Remark 4.
By choosing  a = 1  and  b = 0  in Theorem 10, we can find the determinantal expression for the  ( p , q ) –Fibonacci–Changhee polynomials. Similarly, taking  a = 0  and  b = 1  in Theorem 10, we can get the determinantal expression for the  ( p , q ) –Lucas–Changhee polynomials.
Remark 5.
Equality (22) can be obtained using a different method. For nice and short proofs, please see [33,34,35,36].
Now, in the following theorem, we give a new recurrent relation for the generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials  C h P p , q , n a , b ( ξ ) .
Theorem 11.
For  n 3 ,  we have the recurrent relation
C h P p , q , n a , b ( ξ ) = 1 2 n 3 q ( ξ ) C h P p , q , n 3 a , b ( ξ ) + n 2 p ( ξ ) + 2 q ( ξ ) C h P p , q , n 2 a , b ( ξ ) + n 1 2 p ( ξ ) 1 C h P p , q , n 1 a , b ( ξ ) .
Proof. 
Let  D 0 = 1  and
D n = u 1 , 1 u 1 , 2 0 0 0 u 2 , 1 u 2 , 2 u 2 , 3 0 0 u 3 , 1 u 3 , 2 u 3 , 3 0 0 u n 2 , 1 u n 2 , 2 u n 2 , 3 u n 2 , n 1 0 u n 1 , 1 u n 1 , 2 u n 1 , 3 u n 1 , n 1 u n 1 , n u n , 1 u n , 2 u n , 3 u n , n 1 u n , n ,
for  n N .  In ([37], Page 222, Theorem), the authors proved that the sequence  D n  for  n 0  satisfies  D 1 = e 1 , 1  and
D n = r = 1 n ( 1 ) n r u n , r j = r n 1 u j , j + 1 D r 1 ,
for  n 2 ,  where the empty product is understood to be 1. If we apply the recurrent relation (25) to Theorem 10, we have
2 n C h P p , q , n 1 a , b ( ξ ) = 6 q ( ξ ) n 1 n 4 2 n 1 C h P p , q , n 4 a , b ( ξ ) + 2 p ( ξ ) + 4 q ( ξ ) n 1 n 3 2 n 1 C h P p , q , n 3 a , b ( ξ ) + 2 p ( ξ ) 1 n 1 n 2 2 n 1 C h P p , q , n 2 a , b ( ξ )
for  n 3 ,  which can be simplified as (24). □

5. Conclusions

In our present investigation, we defined the  ( p , q ) –Fibonacci–Changhee polynomials and  ( p , q ) –Lucas–Changhee polynomials, respectively. Then, we derived several fundamental properties and relations of these types of polynomials. Next, we generalized the  ( p , q ) –Fibonacci–Changhee polynomials and the  ( p , q ) –Lucas–Changhee polynomials called generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials. We derived a determinantal representation for the generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials. Finally, we provided a new recurrent relation of the generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials. Our results can be derived not only for the generalized  ( p , q ) –Fibonacci–Lucas–Changhee polynomials defined by Equation (21), but also for many polynomials and numbers (please see Table 1 and Table 2), according to the special cases of  p ( ξ ) q ( ξ ) . Thus, our main results are more general. For the interested reader, the results presented here could motivate further research such as symmetric identities, sum formulas, and recurrence relations on the subject of other mixed-type polynomials.

Author Contributions

Conceptualization, C.Z., W.A.K. and C.K.; Formal analysis, C.Z., W.A.K. and C.K.; Funding acquisition, C.Z. and W.A.K.; Investigation, W.A.K. and C.K.; Methodology, C.Z., W.A.K. and C.K.; Project administration, C.Z., W.A.K. and C.K.; Software, C.Z., W.A.K. and C.K.; Writing—original draft, W.A.K. and C.K.; Writing—review and editing, C.Z., W.A.K. and C.K. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Natural Science Research Project of Guizhou Province Education Department in 2020 (QianJiaoHe KY Character [2021]250), Social Science Research Base Project of Guizhou Province Education Department in 2020 (no. 2021JD040), the Natural Science Foundation of Guizhou Province Education Department in 2023 (Research on Automatic Reasoning and Application of Point Geometry Method to Prove Equal Geometric Propositions), Education Science Planning Project of Guizhou Province in 2020 (2020B196), the Doctoral Program of Guizhou Normal College in 2022 (no. 2022BS001).

Data Availability Statement

Not applicable.

Acknowledgments

The authors wish to express their hearty thanks to the anonymous referees for their valuable suggestions and comments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Khan, W.A.; Alatawi, M.S. A note on modified degenerate Changhee-Genocchi polynomials of the second kind. Symmetry 2023, 15, 136. [Google Scholar] [CrossRef]
  2. Khan, W.A.; Alatawi, M.S.; Ryoo, C.S.; Duran, U. Novel properties of q-Sine-based and q-Cosine-based q-Fubini polynomials. Symmetry 2023, 15, 356. [Google Scholar] [CrossRef]
  3. Khan, W.A.; Muhiuddin, G.; Duran, U.; Al-Kadi, D. On (p,q)-Sine and (p,q)-Cosine Fubini polynomials. Symmetry 2022, 14, 527. [Google Scholar] [CrossRef]
  4. Khan, W.A. A note on q-analogue of degenerate Catalan numbers associated with p-adic integral on Z p. Symmetry 2022, 14, 1119. [Google Scholar] [CrossRef]
  5. Albosaily, S.; Quintana, Y.; Iqbal, A.; Khan, W.A. Lagrange-based hypergeometric Bernoulli polynomials. Symmetry 2022, 14, 1125. [Google Scholar] [CrossRef]
  6. Khan, W.A.; Alatawi, M.S. Analytical properties of degenerate Genocchi polynomials of the second kind and some of their applications. Symmetry 2022, 14, 1500. [Google Scholar] [CrossRef]
  7. Khan, W.A.; Alatawi, M.S.; Duran, U. A note on degenerate Catalan-Daehee numbers and polynomials. Symmetry 2022, 14, 2169. [Google Scholar] [CrossRef]
  8. Simsek, Y. Explicit formulas for p-adic integrals: Approach to p-adic distributions and some families of special numbers and polynomials. Montes Taurus J. Pure Appl. Math. 2019, 1, 1–76. [Google Scholar]
  9. Simsek, Y. Peters type polynomials and numbers and their generating functions:Approach with p-adic integral method. Math. Meth. Appl. Sci. 2019, 42, 7030–7046. [Google Scholar] [CrossRef]
  10. Horadam, A.F. Basic properties of a certain generalized sequence of numbers. Fibonacci Quart. 1965, 3, 161–176. [Google Scholar]
  11. Horadam, A.F. Extension of a synthesis for a class of polynomial sequences. Fibonacci Quart. 1996, 34, 68–74. [Google Scholar]
  12. Nallı, A.; Haukkanen, P. On generalized Fibonacci and Lucas polynomials. Chaos Solitons Fractals 2009, 42, 3179–3186. [Google Scholar] [CrossRef]
  13. Lee, G.; Asci, M. Some properties of the (p,q)-Fibonacci and (p,q)-Lucas polynomials. J. Appl. Math. 2012, 2012, 264842. [Google Scholar] [CrossRef] [Green Version]
  14. Simsek, Y. Construction of general forms of ordinary generating functions for more families of numbers and multiple variables polynomials. arXiv 2023, arXiv:2302.14646. [Google Scholar]
  15. Kocer, E.G.; Tuglu, N.; Stakhov, A. On the m-extension of the Fibonacci and Lucas p-numbers. Chaos Solitons Fractals 2009, 40, 1890–1906. [Google Scholar] [CrossRef]
  16. Horzum, T.; Kocer, E.G. On some properties of Horadam polynomials. Int. Math. Forum. 2009, 25, 1243–1252. [Google Scholar]
  17. Djordjevic, S.S.; Djordjevic, G.B. Generalized Horadam polynomials and numbers. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 2018, 26, 91–102. [Google Scholar]
  18. Pathan, M.A.; Khan, W.A. On a class of generalized Humbert–Hermite polynomials via generalized Fibonacci polynomials. Turk. J. Math. 2022, 46, 929–945. [Google Scholar] [CrossRef]
  19. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
  20. Pathan, M.A.; Khan, M.A. On h(ξ)-Fibonacci-Euler and h(ξ)-Lucas-Euler numbers and polynomials. Acta Univ. Apulensis Math. Inform. 2019, 58, 117–133. [Google Scholar] [CrossRef]
  21. Simsek, Y. Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals. Turk. J. Math. 2018, 42, 557–577. [Google Scholar] [CrossRef] [Green Version]
  22. Kim, D.S.; Kim, T.; Seo, J. A note on Changhee polynomials and numbers. Adv. Stud. Theor. Phys. 2013, 7, 993–1003. [Google Scholar] [CrossRef]
  23. Kim, B.-M.; Jeong, J.; Rim, S.-H. Some explicit identities on Changhee-Genocchi polynomials and numbers. Adv. Differ. Equ. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
  24. Kwon, H.-I.; Kim, T.; Park, J.W. A note on degenerate Changhee-Genocchi polynomials and numbers. Glob. J. Pure Appl. Math. 2016, 12, 4057–4064. [Google Scholar]
  25. Kim, D.S.; Kim, T. Higher-order Changhee numbers and polynomials. Adv. Studies Theor. Phys. 2014, 8, 365–373. [Google Scholar] [CrossRef] [Green Version]
  26. Qi, F.; Guo, B.-N. A diagonal recurrence relation for the Stirling numbers of the first kind. Appl. Anal. Discrete Math. 2018, 12, 153–165. [Google Scholar] [CrossRef] [Green Version]
  27. Qi, F.; Guo, B.N. Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant. Matematiche 2017, 72, 167–175. [Google Scholar] [CrossRef]
  28. Wang, Y.; Dağlı, M.C.; Liu, X.-M.; Qi, F. Explicit, determinantal, and recurrent formulas of generalized Eulerian polynomials. Axioms 2021, 10, 37. [Google Scholar] [CrossRef]
  29. Dağlı, M.C. Closed formulas and determinantal expressions for higher-order Bernoulli and Euler polynomials in terms of Stirling numbers. Rev. Real Acad. Cienc. Exactas Fís Nat. Ser A Mat. Racsam. 2021, 115, 32. [Google Scholar] [CrossRef]
  30. Dağlı, M.C. Explicit, determinantal, recursive formulas and relations of the Peters polynomials and numbers. Math. Methods Appl. Sci. 2022, 45, 2582–2591. [Google Scholar] [CrossRef]
  31. Kızılateş, C.; Du, W.S.; Qi, F. Several determinantal expressions of generalized tribonacci polynomials and sequences. Tamkang J. Math. 2022, 53, 277–291. [Google Scholar] [CrossRef]
  32. Bourbaki, N. Functions of a Real Variable, Elementary Theory; Translated from the 1976 French original by Philip Spain. Elements of Mathematics (Berlin); Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
  33. Anđelić, M.; da Fonseca, C.M. On a determinantal formula for derangement numbers. Kragujevac J. Math. 2023, 47, 847–850. [Google Scholar]
  34. Anđelić, M.; da Fonseca, C.M. On the constant coefficients of a certain recurrence relation: A simple proof. Heliyon 2021, 7, 1–3. [Google Scholar] [CrossRef] [PubMed]
  35. Anđelić, M.; da Fonseca, C.M. A short proof for a determinantal formula for generalized Fibonacci numbers. Matematiche 2019, 74, 363–367. [Google Scholar] [CrossRef]
  36. da Fonseca, C.M. On a closed form for derangement numbers: An elemantary proof. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 2020, 114, 146. [Google Scholar] [CrossRef]
  37. Cahill, N.D.; D’Errico, J.R.; Narayan, D.A.; Narayan, J.Y. Fibonacci determinants. Coll. Math. J. 2002, 33, 221–225. [Google Scholar] [CrossRef]
Table 1. Special cases of the Horadam sequence.
Table 1. Special cases of the Horadam sequence.
rsuvSequence
0111Fibonacci;  F n
2111Lucas;  L n
0121Pell;  P n
2221Pell-Lucas;  P L n
01k1k-Fibonacci;  F k , n
2kk1k-Lucas;  L k , n
0112Jacobsthal;  J n
2112Jacobsthal-Lucas;  j n
Table 2. Special cases of the  W n ( ξ )  polynomials.
Table 2. Special cases of the  W n ( ξ )  polynomials.
  p ( ξ )   q ( ξ )   W 0 ( ξ )   W 1 ( ξ ) Polynomial
  ξ 101Fibonacci;  f n ( ξ )
  ξ 12   ξ Lucas;  l n ( ξ )
  2 ξ 101Pell;  P n ( ξ )
  2 ξ 12   ξ Pell–Lucas;  P L n ( ξ )
1   2 ξ 01Jacobsthal;  J n ( ξ )
1   2 ξ 2   ξ Jacobsthal–Lucas;  j n ( ξ )
  3 ξ   2 01Fermat;  F n ( ξ )
  3 ξ   2 2   ξ Fermat Lucas;  FL n ( ξ )
  2 ξ   1 01Chebyshev polynomials of the second kind;  U n ( ξ )
  2 ξ   1 2   ξ Chebyshev polynomials of the first kind;  w n ( ξ )
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, C.; Khan, W.A.; Kızılateş, C. On (p,q)–Fibonacci and (p,q)–Lucas Polynomials Associated with Changhee Numbers and Their Properties. Symmetry 2023, 15, 851. https://doi.org/10.3390/sym15040851

AMA Style

Zhang C, Khan WA, Kızılateş C. On (p,q)–Fibonacci and (p,q)–Lucas Polynomials Associated with Changhee Numbers and Their Properties. Symmetry. 2023; 15(4):851. https://doi.org/10.3390/sym15040851

Chicago/Turabian Style

Zhang, Chuanjun, Waseem Ahmad Khan, and Can Kızılateş. 2023. "On (p,q)–Fibonacci and (p,q)–Lucas Polynomials Associated with Changhee Numbers and Their Properties" Symmetry 15, no. 4: 851. https://doi.org/10.3390/sym15040851

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop