Next Article in Journal
Fluctuating Asymmetry and Developmental Instability, a Guide to Best Practice
Next Article in Special Issue
Lie Symmetry Analysis, Conservation Laws, Power Series Solutions, and Convergence Analysis of Time Fractional Generalized Drinfeld-Sokolov Systems
Previous Article in Journal
Semi-Analytical Monte Carlo Method to Simulate the Signal of the VIP-2 Experiment
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Explicit Identities for 3-Variable Degenerate Hermite Kampé de Fériet Polynomials and Differential Equation Derived from Generating Function

1
Department of Mathematics, Dong-A University, Busan 49315, Korea
2
Department of Mathematics, Hannam University, Daejeon 34430, Korea
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(1), 7; https://doi.org/10.3390/sym13010007
Submission received: 30 November 2020 / Revised: 10 December 2020 / Accepted: 11 December 2020 / Published: 22 December 2020
(This article belongs to the Special Issue Symmetries in Differential Equation and Application)

Abstract

:
We get the 3-variable degenerate Hermite Kampé de Fériet polynomials and get symmetric identities for 3-variable degenerate Hermite Kampé de Fériet polynomials. We make differential equations coming from the generating functions of degenerate Hermite Kampé de Fériet polynomials to get some identities for 3-variable degenerate Hermite Kampé de Fériet polynomials,. Finally, we study the structure and symmetry of pattern about the zeros of the 3-variable degenerate Hermite Kampé de Fériet equations.

1. Introduction

The classical Hermite numbers H n and polynomials H n ( x ) are usually defined by the generating functions
e t 2 = n = 0 H n t n n ! ,
and
e 2 x t t 2 = n = 0 H n ( x ) t n n ! .
Clearly, H n = H n ( 0 ) .
These numbers and polynomials have been studied because of important roles in many areas of mathematics (see References [1,2]). The special polynomials of 3-variable give partial differential equations of physical phenomenon. Physical problems was expressed by the special functions of mathematical physics. We recall that the 3-variable Hermite polynomials H n ( x , y , z ) made by the generating function (see Reference [3])
n = 0 H n ( x , y , z ) t n n ! = e x t + y t 2 + z t 3
are solutions in the system of equations
y H n ( x , y , z ) = 2 x 2 H n ( x , y , z ) , z H n ( x , y , z ) = 3 x 3 H n ( x , y , z ) , H n ( x , 0 , 0 ) = x n .
In particular, one has
H n ( 2 x , 1 , 0 ) = H n ( x ) .
Many researchers studied special numbers and polynomials because of importance (see References [1,2,3,4,5,6,7]). The degenerate Bernoulli, Euler, Genocchi and tangent polynomials were studied in several papers (see References [8,9,10,11,12]). Recently, researchers have studied the differential equations which are related to generating functions of special polynomials (see References [13,14,15,16,17,18]).
We construct the 3-variable degenerate Hermite Kampé de Fériet polynomials and get symmetric identities for 3-variable degenerate Hermite Kampé de Fériet polynomials. Finally, we study the distribution and symmetry of pattern of the roots of the 3-variable degenerate Hermite Kampé de Fériet polynomials Hermite equations.
We define the 3-variable degenerate Hermite Kampé de Fériet polynomials H n ( x , y , z | μ ) made by the generating function
F ( t , x , y , z | μ ) = n = 0 H n ( x , y , z | μ ) t n n ! = ( 1 + μ ) x t μ ( 1 + μ ) y t 2 μ ( 1 + μ ) z t 3 μ .
Since ( 1 + μ ) t μ e t as μ 0 , it is clear that (4) reduces to (3). If μ 0 and z = 0 , Equation (4) is the generating function of the 2-variable Hermite polynomials H n ( x , y , 0 ) . Observe that Hermite polynomials H n ( x , y , 0 ) with the 2-variable are the solution of the heat equation (see Reference [17])
y H n ( x , y , 0 ) = 2 x 2 H n ( x , y , 0 ) , H n ( x , 0 , 0 ) = x n .
Theorem 1.
For n = 0 , 1 , . . . , the 3-variable degenerate Hermite Kampé de Fériet polynomials H n ( x , y , z | μ ) with the generating function (4) are the solution of the differential equation
3 z 2 x y + 2 y 2 x 2 + x log ( 1 + μ ) μ x n log ( 1 + μ ) μ H n ( x , y , z | μ ) = 0 , H n ( x , 0 , 0 | μ ) = log ( 1 + μ ) μ n x n . H n ( 0 , y , 0 | μ ) = log ( 1 + μ ) μ k y k ( 2 k ) ! k ! , if n = 2 k 0 , otherwise H n ( 0 , 0 , z | μ ) = log ( 1 + μ ) μ k z k ( 3 k ) ! k ! , if n = 3 k 0 , otherwise
Proof. 
We see that
F ( t , x , y , z | μ ) = ( 1 + μ ) x t μ ( 1 + μ ) y t 2 μ ( 1 + μ ) z t 3 μ
satisfies
F ( t , x , y , z | μ ) t log ( 1 + μ ) μ x + 2 y t + 3 z t 2 F ( t , x , y , z | μ ) = 0 .
By substituting the series (4) for F ( t , x , y , z | μ ) , one obtains
H n + 1 ( x , y , z | μ ) x log ( 1 + μ ) μ H n ( x , y , z | μ ) 2 y log ( 1 + μ ) μ H n 1 ( x , y , z | μ ) n ( n 1 ) 3 z log ( 1 + μ ) μ H n 2 ( x , y , z | μ ) = 0 , n = 2 , 3 ,
We get a recurrence relation for 3-variable degenerate Hermite Kampé de Fériet polynomials and another recurrence relation which comes from
F ( t , x , y , z | μ ) x log ( 1 + μ ) μ t F ( t , x , y , z | μ ) = 0 .
This implies
H n ( x , y , z | μ ) x n log ( 1 + μ ) μ H n 1 ( x , y , z | μ ) = 0 , n = 1 , 2 ,
On the other hand, since
F ( t , x , y , z | μ ) y log ( 1 + μ ) μ t 2 F ( t , x , y , z | μ ) = 0 ,
we get
H n ( x , y , z | μ ) y n ( n 1 ) log ( 1 + μ ) μ H n 2 ( x , y , z | μ ) = 0 , n = 2 , 3 ,
Eliminate H n 1 ( x , y , z | μ ) and H n 2 ( x , y , z | μ ) from (5)–(7) to obtain
H n + 1 ( x , y , z | μ ) x log ( 1 + μ ) μ H n ( x , y , z | μ ) 2 y H n ( x , y , z | μ ) x 3 z H n ( x , y , z | μ ) y = 0 .
Differentiate this equation and use (6) again to get
3 z 2 H n ( x , y , z | μ ) x y + 2 y H n ( x , y , z | μ ) x + x log ( 1 + μ ) μ H n ( x , y , z | μ ) n log ( 1 + μ ) μ H n ( x , y , z | μ ) = 0 , ( n = 0 , 1 , ) ,
thus we have shown the theorem. □
Theorem 2.
The 3-variable degenerate Hermite Kampé de Fériet polynomials H n ( x , y , z | μ ) with the generating function (4) are the solution of the differential equation
3 z μ log ( 1 + μ ) 3 x 3 + 2 y 2 x 2 + x log ( 1 + μ ) μ x n log ( 1 + μ ) μ H n ( x , y , z | μ ) = 0 , H n ( x , 0 , 0 | μ ) = log ( 1 + μ ) μ n x n , n = 0 , 1 , 2 , . H n ( 0 , y , 0 | μ ) = log ( 1 + μ ) μ k y k ( 2 k ) ! k ! , if n = 2 k 0 , otherwise H n ( 0 , 0 , z | μ ) = log ( 1 + μ ) μ k z k ( 3 k ) ! k ! , if n = 3 k 0 , otherwise .
Proof. 
We get another recurrence relation which comes from
2 F ( t , x , y , z | μ ) x y log ( 1 + μ ) μ 2 t 2 F ( t , x , y , z | μ ) = 0 .
This implies
2 H n ( x , y , z | μ ) x y = n ( n 1 ) ( n 2 ) log ( 1 + μ ) μ 2 H n 3 ( x , y , z | μ ) = 0 , n = 3 , 4 ,
Again, we also have
3 F ( t , x , y , z | μ ) x 3 log ( 1 + μ ) μ 3 t 3 F ( t , x , y , z | μ ) = 0 .
This implies
3 H n ( x , y , z | μ ) x 3 = n ( n 1 ) ( n 2 ) log ( 1 + μ ) μ 3 H n 3 ( x , y , z | μ ) = 0 , n = 3 , 4 ,
Thus, from (8)–(10), the degenerate Hermite Kampé de Fériet polynomials H n ( x , y , z | μ ) of 3-variable with the generating function (4) are the solution of the differential equation
3 z μ log ( 1 + μ ) 3 H n ( x , y , z | μ ) x 3 + 2 y 2 H n ( x , y , z | μ ) x 2 + x log ( 1 + μ ) μ H n ( x , y , z | μ ) x n log ( 1 + μ ) μ H n ( x , y , z | μ ) = 0 .
Therefore, we are done. □
We see another application of the differential equation for H n ( x , y , z | μ ) . The polynomials H n ( x , y , z | μ ) have this relations
H n ( x , y , z | μ ) y μ log ( 1 + μ ) 2 H n ( x , y , z | μ ) x 2 = 0 , H n ( x , y , z | μ ) z μ log ( 1 + μ ) 2 2 H n ( x , y , z | μ ) x 2 = 0 ,
which in view of the initial condition are solved by
H n ( x , 0 , 0 | μ ) = log ( 1 + μ ) μ n x n , n = 0 , 1 , 2 , . H n ( 0 , y , 0 | μ ) = log ( 1 + μ ) μ k y k ( 2 k ) ! k ! , if n = 2 k 0 , otherwise H n ( 0 , 0 , z | μ ) = log ( 1 + μ ) μ k z k ( 3 k ) ! k ! , if n = 3 k 0 , otherwise
The Stirling numbers of the first kind, S 1 ( n , k ) , were defined by (see References [8,9,10])
( x ) n = k = 0 n S 1 ( n , k ) x k .
S 1 ( n , k ) is
n = m S 1 ( n , m ) t n n ! = 1 m ! ( log ( 1 + t ) ) m ,
where ( x ) n = x ( x 1 ) ( x n + 1 ) . We see the binomial theorem: for a variable x,
( 1 + μ ) x t μ = m = 0 t x μ m μ m m ! = m = 0 l = 0 m S 1 ( m , l ) t x μ l μ m m ! = l = 0 m = l S 1 ( m , l ) x l μ m l l ! m ! t l l ! .
By (4), we have
n = 0 H n ( x , y , z | μ ) t n n ! = ( 1 + μ ) x t μ ( 1 + μ ) y t 2 μ ( 1 + μ ) z t 2 μ = k = 0 y log ( 1 + μ ) μ k t 2 k k ! l = 0 x log ( 1 + μ ) μ l t l l ! j = 0 x log ( 1 + μ ) μ j t 3 j j ! = n = 0 k = 0 [ n 2 ] log ( 1 + μ ) μ n k y k x n 2 k n ! k ! ( n 2 k ) ! t n n ! j = 0 x log ( 1 + μ ) μ j t 3 j j ! n = 0 k = 0 [ n 3 ] l = 0 [ n 3 k 2 ] log ( 1 + μ ) μ n 2 k l z k y l x n 3 k 2 l n ! ( n 3 k ) ! k ! l ! ( n 3 k ) ! ( n 3 k 2 l ) ! t n n ! .
If we compare the coefficients t n n ! on the both sides of (12), we have representation of H n ( x , y , z | μ ) .
H n ( x , y , z | μ ) = k = 0 [ n 3 ] l = 0 [ n 3 k 2 ] log ( 1 + μ ) μ n 2 k l z k y l x n 3 k 2 l n ! ( n 3 k ) ! k ! l ! ( n 3 k ) ! ( n 3 k 2 l ) ! ,
and [ ] denotes taking the integer part.
The following elementary properties of H n ( x , y , z | μ ) are deduced form (4). We delete the details.
Theorem 3.
For any positive n, we have
1 . H n ( x , 0 , 0 | μ ) = m = n S 1 ( m , n ) x n μ m n n ! m ! . 2 . H n ( x 1 + x 2 , y , z | μ ) = l = 0 n m = l n l H n l ( x 1 , y , z | μ ) S 1 ( m , l ) x 2 l μ m l l 1 m ! . 3 . H n ( x , y 1 + y 2 , z | μ ) = k = 0 [ n 2 ] H n 2 k ( x , y 1 , z | μ ) log ( 1 + μ ) μ k y 2 k n ! k ! ( n 2 k ) ! . 4 . H n ( x , y 1 + y 2 , z | μ ) = k = 0 [ n 2 ] m = k S 1 ( m , k ) y 2 k μ m k n ! m ! ( n 2 k ) ! H n 2 k ( x , y 1 , z | μ ) . 5 . H n ( x , y , z 1 + z 2 | μ ) = k = 0 [ n 3 ] H n 3 k ( x , y , z 1 | μ ) log ( 1 + μ ) μ k z 2 k n ! k ! ( n 3 k ) ! . 6 . H n ( x , y , z 1 + z 2 | μ ) = k = 0 [ n 3 ] m = k S 1 ( m , k ) z 2 k μ m k n ! m ! ( n 3 k ) ! H n 3 k ( x , y , z 1 | μ ) . 7 . H n ( x 1 + x 2 , y 1 + y 2 , z 1 + z 2 | μ ) = l = 0 n n l H l ( x 1 , y 1 , z 1 | μ ) H n l ( x 2 , y 2 , z 2 | μ ) .
The paper is written by this process: We make symmetric identities about 3-variable degenerate Hermite Kampé de Fériet polynomials in Section 2. We also get formulas of 3-variable degenerate Hermite Kampé de Fériet polynomials. We induce the differential equations getting from the generating function of 3-variable degenerate Hermite Kampé de Fériet polynomials in Section 3:
t N F ( t , x , y , z | μ ) a 0 ( N , x , y , z | μ ) F ( t , x , y , z | μ ) a 1 ( N , x , y , z | μ ) t F ( t , x , y , z | μ ) a N 1 ( N , x , y , z | μ ) t N 1 F ( t , x , y , z | μ ) a N ( N , x , y , z | μ ) t N F ( t , x , y , z | μ ) = 0 .
In Section 4, we study distribution of computer graphic about the roots of the 3-variable degenerate Hermite Kampé de Fériet equation H n ( x , y , z | μ ) = 0 . Finally, we see the symmetric pattern of the roots of polynomials H n ( x , y , z | μ ) = 0 and indicate some open problems.

2. Symmetric Identities for the 3-Variable Degenerate Hermite Kampé de Fériet Polynomials

In this section, we give symmetric identities for the 3-variable degenerate Hermite Kampé de Fériet polynomials. We also get some formulas and properties of the 3-variable degenerate Hermite Kampé de Fériet polynomials.
Theorem 4.
Let a , b > 0 and a b . Then
a m H m ( b x , b 2 y , b 3 z | μ ) = b m H m ( a x , a 2 y , a 3 z | μ ) .
Proof. 
Let a , b > 0 and a b . We start with
F ( t , x , y , z , μ ) = ( 1 + μ ) a b x t μ ( 1 + μ ) a 2 b 2 y t 2 μ ( 1 + μ ) a 3 b 3 z t 3 μ .
Then the expression for F ( t , x , y , z , μ ) is symmetric in a and b
F ( t , x , y , z , μ ) = m = 0 H m ( a x , a 2 y , a 3 z | μ ) ( b t ) m m ! = m = 0 b m H m ( a x , a 2 y , a 3 z | μ ) t m m ! .
We can get that
F ( t , x , y , z , μ ) = m = 0 H m ( b x , b 2 y , b 3 z | μ ) ( a t ) m m ! = m = 0 a m H m ( b x , b 2 y , b 3 z | μ ) t m m ! .
When we compare the coefficients of t m m ! on the right hand sides of the last two equations, the proof is completed. □
When we let μ 0 in Theorem 4, we have the corollary
Corollary 1.
Let a , b > 0 and a b . Then
a m H m ( b x , b 2 y , b 3 z ) = b m H m ( a x , a 2 y , a 3 z ) .
Again, we now use
G ( t , x , y , z , μ ) = a b t ( 1 + μ ) a b x t μ ( 1 + μ ) a 2 b 2 y t 2 μ ( 1 + μ ) a 3 b 3 z t 3 μ ( 1 + μ ) a b t μ 1 ( 1 + μ ) a t μ 1 ( 1 + μ ) b t μ 1 .
For μ C , we define the degenerate Bernoulli polynomials related to the generating function
n = 0 B n ( x | μ ) t n n ! = t ( 1 + μ ) t μ 1 ( 1 + μ ) x t μ .
If we give x = 0 , B n ( μ ) = B n ( 0 , μ ) are called the degenerate Bernoulli numbers. Let us look at few terms:
B 0 ( x | μ ) = μ log ( 1 + μ ) , B 1 ( x | μ ) = x 1 2 , B 2 ( x | μ ) = x 2 log ( 1 + μ ) μ x log ( 1 + μ ) μ + log ( 1 + μ ) 6 μ , B 3 ( x | μ ) = x 3 log ( 1 + μ ) 2 μ 2 3 x 2 log ( 1 + μ ) 2 2 μ 2 + x log ( 1 + μ ) 2 2 μ 2 , B 4 ( x | μ ) = x 4 log ( 1 + μ ) 3 μ 3 2 x 3 log ( 1 + μ ) 3 μ 3 + x 2 log ( 1 + μ ) 3 μ 3 log ( 1 + μ ) 3 30 μ 3 .
Let each integer k 0 . S k ( n ) = 0 k + 1 k + 2 k + + ( n 1 ) k is called sum of integers. A generalized falling factorial sum σ k ( n , μ ) can be defined by the generation function
k = 0 σ k ( n , μ ) t k k ! = ( 1 + μ ) ( n + 1 ) t μ 1 ( 1 + μ ) t μ 1 .
We look at this lim μ 0 σ k ( n , μ ) = S k ( n ) .
Theorem 5.
Let a , b > 0 and a b . Then
i = 0 n m = 0 i n i i m a i b n + 1 i B m ( μ ) H i m ( b x , b 2 y , b 3 z | μ ) σ n i ( a 1 , μ ) = i = 0 n m = 0 i n i i m b i a n + 1 i B m ( μ ) H i m ( a x , a 2 y , a 3 z | μ ) σ n i ( b 1 , μ ) .
Proof. 
From G ( t , x , y , z , μ ) , we get the following result:
G ( t , x , y , z , μ ) = a b t ( 1 + μ ) a b x t μ ( 1 + μ ) a 2 b 2 y t 2 μ ( 1 + μ ) a 3 b 3 z t 3 μ ( 1 + μ ) a b t μ 1 ( 1 + μ ) a t μ 1 ( 1 + μ ) b t μ 1 = a b t ( 1 + μ ) a t μ 1 ( 1 + μ ) a b x t μ ( 1 + μ ) a 2 b 2 y t 2 μ ( 1 + μ ) a 3 b 3 z t 3 μ ( 1 + μ ) a b t μ 1 ( 1 + μ ) b t μ 1 = b n = 0 B n ( μ ) ( a t ) n n ! n = 0 H n ( b x , b 2 y , b 3 z | μ ) ( a t ) n n ! n = 0 σ k ( a 1 , μ ) ( b t ) n n ! = n = 0 i = 0 n m = 0 i n i i m a i b n + 1 i B m ( μ ) H i m ( b x , b 2 y , b 3 z | μ ) σ n i ( a 1 , μ ) t n n ! .
If we follow a similar way, we have
G ( t , x , y , z , μ ) = a b t ( 1 + μ ) b t μ 1 ( 1 + μ ) a b x t μ ( 1 + μ ) a 2 b 2 y t 2 μ ( 1 + μ ) a 3 b 3 z t 3 μ ( 1 + μ ) a b t μ 1 ( 1 + μ ) a t μ 1 = a n = 0 B n ( μ ) ( b t ) n n ! n = 0 H n ( a x , a 2 y , a 3 z | μ ) ( b t ) n n ! n = 0 σ k ( a 1 , μ ) ( a t ) n n ! = n = 0 i = 0 n m = 0 i n i i m b i a n + 1 i B m ( μ ) H i m ( a x , a 2 y , a 3 z | μ ) σ n i ( b 1 , μ ) t n n ! .
If we compare the coefficients of t n n ! on the right hand sides of the last two equations, then the proof is completed. □
If we give μ 0 in Theorem 5, we have the corollary
Corollary 2.
Let a , b > 0 and a b . Then
i = 0 n m = 0 i n i i m a i b n + 1 i B m H i m ( b x , b 2 y , b 3 z ) S n i ( a 1 ) = i = 0 n m = 0 i n i i m b i a n + 1 i B m H i m ( a x , a 2 y , a 3 z ) S n i ( b 1 ) ,
where B m are Bernoulli numbers (see References [8,9,10]).
Theorem 6.
Let m , n , N be nonnegative integers. Then,
k = 0 m m k ( n ) m k log ( 1 + μ ) μ m k H N + k ( x , y , z | μ ) = k = 0 N N k n N k log ( 1 + μ ) μ N k H m + k x n log ( 1 + μ ) μ , y , z | μ .
Proof. 
If we take N-th many derivative with respect to t in (4), we have
t N F ( t , x , y , z | μ ) = t N ( 1 + μ ) x t μ ( 1 + μ ) y t 2 μ ( 1 + μ ) z t 3 μ = m = 0 H m + N ( x , y , z | μ ) t m m ! .
If we use the Cauchy product and multiplying the exponential series e x t = m = 0 x m t m m ! on both sides of (13), we get
e n log ( 1 + μ ) μ t t N F ( t , x , y , z | μ ) = m = 0 ( n ) m log ( 1 + μ ) μ m t m m ! m = 0 H m + N ( x , y , z | μ ) t m m ! = m = 0 k = 0 m m k ( n ) m k log ( 1 + μ ) μ m k H N + k ( x , y , z | μ ) t m m ! .
When we use (14) and the Leibniz rule, we have
e n log ( 1 + μ ) μ t t N F ( t , x , y , z | μ ) = k = 0 N N k n N k log ( 1 + μ ) μ N k t k e n log ( 1 + μ ) μ t F ( t , x , y , z | μ ) = m = 0 k = 0 N N k n N k log ( 1 + μ ) μ N k H m + k x n log ( 1 + μ ) μ , y , z | μ t m m ! .
If we use (14) and (15), and compare the coefficients of t m m ! , then the proof is completed. □
If we plug in m = 0 in (15), then we obtain the following theorem
Theorem 7.
For N = 0 , 1 , 2 , , we have
H N ( x , y , z | μ ) = k = 0 N N k n N k log ( 1 + μ ) μ N k H k x n log ( 1 + μ ) μ , y , z | μ .

3. Differential Equations Related to 3-Variable Degenerate Hermite Kampé de Fériet Polynomials

Many researchers have studied differential equations which are related to the generating functions of special numbers and polynomials in References [13,14,15,16,17,18] in order to make formulas for special numbers and polynomials. Recall that
F = F ( t , x , y , z | μ ) = ( 1 + μ ) x t μ ( 1 + μ ) y t 2 μ ( 1 + μ ) z t 3 μ = n = 0 H n ( x , y , z | μ ) t n n ! , μ , x , t C .
In this section, we study the differential equations with coefficients a i ( N , x , y , z | μ ) coming from the generating functions of the 3-variable degenerate Hermite Kampé de Fériet polynomials:
t N F ( t , x , y , z | μ ) a 0 ( N , x , y , z | μ ) F ( t , x , y , z | μ ) a N ( N , x , y , z | μ ) t N F ( t , x , y , z | μ ) = 0 .
From (16), it follows
F ( 1 ) = t F ( t , x , y , μ ) = t ( 1 + μ ) x t μ ( 1 + μ ) y t 2 μ ( 1 + μ ) z t 3 μ = ( x + 2 y t + 3 z t 2 ) log ( 1 + μ ) μ ( 1 + μ ) x t μ ( 1 + μ ) y t 2 μ ( 1 + μ ) z t 3 μ = ( x + 2 y t + 3 z t 2 ) log ( 1 + μ ) μ F ( t , x , y , z | μ ) ,
F ( 2 ) = t F ( 1 ) ( t , x , y , z | μ ) = ( 2 y + 6 z t ) log ( 1 + μ ) μ F ( t , x , y , z | μ ) + ( x + 2 y t + 3 z t 2 ) log ( 1 + μ ) μ F ( 1 ) ( t , x , y , z | μ ) = log ( 1 + μ ) μ 2 y + log ( 1 + μ ) μ 2 x 2 F ( t , x , y , z | μ ) + log ( 1 + μ ) μ 6 z + log ( 1 + μ ) μ 2 4 x y t F ( t , x , y , z | μ ) + log ( 1 + μ ) μ 2 ( 4 y 2 + 6 x z ) t 2 F ( t , x , y , z | μ ) + log ( 1 + μ ) μ 2 12 y z t 3 F ( t , x , y , z | μ ) + log ( 1 + μ ) μ 2 ( 3 z ) 2 t 2 F ( t , x , y , z | μ ) .
When we continue this process, we can guess that
F ( N ) = t N F ( t , x , y , z | μ ) = i = 0 2 N a i ( N , x , y , z | μ ) t i F ( t , x , y , z | μ ) , ( N = 0 , 1 , 2 , ) .
If we differentiate (19) with respect to t, we have
F ( N + 1 ) = F ( N ) t = i = 0 2 N a i ( N , x , y , z | μ ) i t i 1 F ( t , x , y , z | μ ) + i = 0 2 N a i ( N , x , y , z | μ ) t i F ( 1 ) ( t , x , y , z | μ ) = i = 0 2 N ( i ) a i ( N , x , y , z | μ ) t i 1 F ( t , x , y , z | μ ) + i = 0 2 N x log ( 1 + μ ) μ a i ( N , x , y , z | μ ) t i F ( t , x , y , z | μ ) + i = 0 2 N 2 y log ( 1 + μ ) μ a i ( N , x , y , z | μ ) t i + 1 F ( t , x , y , z | μ ) + i = 0 2 N 3 z log ( 1 + μ ) μ a i 1 ( N , x , y , z | μ ) t i + 2 F ( t , x , y , z | μ ) = i = 0 2 N 1 ( i + 1 ) a i + 1 ( N , x , y , z | μ ) t i F ( t , x , y , z | μ ) + i = 0 2 N x log ( 1 + μ ) μ a i ( N , x , y , z | μ ) t i F ( t , x , y , z | μ ) + i = 1 2 N + 1 2 y log ( 1 + μ ) μ a i 1 ( N , x , y , z | μ ) t i F ( t , x , y , z | μ ) + i = 2 2 N + 2 3 z log ( 1 + μ ) μ a i 2 ( N , x , y , z | μ ) t i F ( t , x , y , z | μ ) .
Now we plug in N + 1 instead of N in (19) to find
F ( 2 N + 2 ) = i = 0 N + 1 a i ( N + 1 , x , y , z | μ ) t i F ( t , x , y , z | μ ) .
Comparing the coefficients from (20) and (21), we get
a 0 ( N + 1 , x , y , z | μ ) = a 1 ( N , x , y , z | μ ) + x log ( 1 + μ ) μ a 0 ( N , x , y , z | μ ) , a 1 ( N + 1 , x , y , z | μ ) = 2 a 2 ( N , x , y , z | μ ) + x log ( 1 + μ ) μ a 1 ( N , x , y , z | μ ) + 2 y log ( 1 + μ ) μ a 0 ( N , x , y , z | μ ) , a 2 N ( N + 1 , x , y , z | μ ) = x log ( 1 + μ ) μ a 2 N ( N , x , y , z | μ ) + 2 y log ( 1 + μ ) μ a 2 N 1 ( N , x , y , z | μ ) + 3 z log ( 1 + μ ) μ a 2 N 2 ( N , x , y , z | μ ) , a 2 N + 1 ( N + 1 , x , y , z | μ ) = 2 y log ( 1 + μ ) μ a N ( N , x , y , z | μ ) + 3 z log ( 1 + μ ) μ a 2 N 1 ( N , x , y , z | μ ) , a 2 N + 2 ( N + 1 , x , y , z | μ ) = 3 z log ( 1 + μ ) μ a 2 N ( N , x , y , z | μ ) ,
and
a i ( N + 1 , x , y , z | μ ) = ( i + 1 ) a i + 1 ( N , x , y , z | μ ) + x log ( 1 + μ ) μ a i ( N , x , y , z | μ ) + 2 y log ( 1 + μ ) μ a i 1 ( N , x , y , z | μ ) + 3 z log ( 1 + μ ) μ a i 2 ( N , x , y , z | μ ) , ( 2 i 2 N 1 ) .
In addition, by (16), we have
F ( t , x , y , z | μ ) = F ( 0 ) ( t , x , y , z | μ ) = a 0 ( 0 , x , y , z | μ ) F ( t , x , y , z | μ ) .
By (24), we get
a 0 ( 0 , x , y , z | μ ) = 1 .
It is easy to show that
x log ( 1 + μ ) μ F ( t , x , y , z | μ ) + 2 y log ( 1 + μ ) μ t F ( t , x , y , z | μ ) + 2 z log ( 1 + μ ) μ t 2 F ( t , x , y , z | μ ) = F ( 1 ) ( t , x , y , z | μ ) = i = 0 2 a i ( 1 , x , y , z | μ ) t i F ( t , x , y , z | μ ) = a 0 ( 1 , x , y , z | μ ) F ( t , x , y , z | μ ) + a 1 ( 1 , x , y , z | μ ) t F ( t , x , y , z | μ ) + a 2 ( 1 , x , y , z | μ ) t 2 F ( t , x , y , z | μ ) .
Thus, by (26), we also get
a 0 ( 1 , x , y , μ ) = x log ( 1 + μ ) μ , a 1 ( 1 , x , y , z | μ ) = 2 y log ( 1 + μ ) μ , a 2 ( 1 , x , y , z | μ ) = 3 z log ( 1 + μ ) μ .
From (22), we note that
a 0 ( N + 1 , x , y , z | μ ) = a 1 ( N , x , y , z | μ ) + x log ( 1 + μ ) μ a 0 ( N , x , y , z | μ ) , a 0 ( N , x , y , z | μ ) = a 1 ( N 1 , x , y , z | μ ) + x log ( 1 + μ ) μ a 0 ( N 1 , x , y , z | μ ) , a 0 ( N + 1 , x , y , z | μ ) = i = 0 N x log ( 1 + μ ) μ i a 1 ( N i , x , y , z | μ ) + log ( 1 + μ ) μ N + 1 x N + 1 ,
For i = 1 , we have
a 1 ( N + 1 , x , y , z | μ ) = 2 k = 0 N x log ( 1 + μ ) μ k a 2 ( N k , x , y , z | μ ) + 2 y log ( 1 + μ ) μ k = 0 N x log ( 1 + μ ) μ k a 0 ( N k , x , y , z | μ ) ,
Continuing this process, we can deduce that, for 2 i 2 N 1 ,
a i ( N + 1 , x , y , z | μ ) = ( i + 1 ) k = 0 N x log ( 1 + μ ) μ k a i + 1 ( N k , x , y , z | μ ) + 2 y log ( 1 + μ ) μ k = 0 N x log ( 1 + μ ) μ k a i 1 ( N k , x , y , z | μ ) + 3 z log ( 1 + μ ) μ k = 0 N x log ( 1 + μ ) μ k a i 2 ( N k , x , y , z | μ ) .
For i = 2 N , we get
a 2 N ( N + 1 , x , y , z | μ ) = x log ( 1 + μ ) μ a 2 N ( N , x , y , z | μ ) + 2 y log ( 1 + μ ) μ a 2 N 1 ( N , x , y , z | μ ) + 3 z log ( 1 + μ ) μ a 2 N 2 ( N , x , y , z | μ ) , a 2 N 2 ( N , x , y , z | μ ) = x log ( 1 + μ ) μ a 2 N 2 ( N 1 , x , y , z | μ ) + 2 y log ( 1 + μ ) μ a 2 N 1 ( N 1 , x , y , z | μ ) + 3 z log ( 1 + μ ) μ a 2 N 4 ( N 1 , x , y , z | μ ) , , a 2 N ( N + 1 , x , y , z | μ ) = x log ( 1 + μ ) μ k = 0 N 3 z log ( 1 + μ ) μ k a 2 N 2 k ( N k , x , y , z | μ ) + 2 y log ( 1 + μ ) μ k = 0 N 1 3 z log ( 1 + μ ) μ k a 2 N 2 k 1 ( N k , x , y , z | μ ) .
For i = 2 N + 1 , we obtain
a 2 N + 1 ( N + 1 , x , y , z | μ ) = 2 y log ( 1 + μ ) μ k k = 0 N 3 z log ( 1 + μ ) μ k a 2 N 2 k ( N k , x , y , z | μ ) .
For i = 2 N + 2 , we have
a 2 N + 2 ( N + 1 , x , y , z | μ ) = 3 z log ( 1 + μ ) μ N + 1 .
As a matrix, a i ( j , x , y , z | μ ) 0 i 2 N + 2 , 0 j N + 1 is given by
1 x log ( 1 + μ ) μ x log ( 1 + μ ) μ 2 + 2 y log ( 1 + μ ) μ · 0 2 y log ( 1 + μ ) μ 6 z log ( 1 + μ ) μ + log ( 1 + μ ) μ 2 4 x y · 0 3 z log ( 1 + μ ) μ 2 y log ( 1 + μ ) μ 2 + log ( 1 + μ ) μ 2 6 x z · 0 0 log ( 1 + μ ) μ 2 12 y z · 0 0 3 z log ( 1 + μ ) μ 2 · · 0 0 0 3 z log ( 1 + μ ) μ N + 1
Therefore, by (28)–(33), we get the following theorem:
Theorem 8.
Let N = 0 , 1 , 2 , . The differential equation
t N F ( t , x , y , z | μ ) i = 0 N a i ( N , x , y , z | μ ) t i F ( t , x , y , z | μ ) = 0
has a solution
F = F ( t , x , y , z | μ ) = ( 1 + μ ) x t μ ( 1 + μ ) y t 2 μ ( 1 + μ ) z t 3 μ ,
where
a 0 ( N + 1 , x , y , z | μ ) = i = 0 N x log ( 1 + μ ) μ i a 1 ( N i , x , y , z | μ ) + log ( 1 + μ ) μ N + 1 x N + 1 , a 1 ( N + 1 , x , y , z | μ ) = 2 k = 0 N x log ( 1 + μ ) μ k a 2 ( N k , x , y , z | μ ) + 2 y log ( 1 + μ ) μ k = 0 N x log ( 1 + μ ) μ k a 0 ( N k , x , y , z | μ ) a 2 N ( N + 1 , x , y , z | μ ) = x log ( 1 + μ ) μ k = 0 N 3 z log ( 1 + μ ) μ k a 2 N 2 k ( N k , x , y , z | μ ) + 2 y log ( 1 + μ ) μ k = 0 N 1 3 z log ( 1 + μ ) μ k a 2 N 2 k 1 ( N k , x , y , z | μ ) a 2 N + 1 ( N + 1 , x , y , z | μ ) = 2 y log ( 1 + μ ) μ k k = 0 N 3 z log ( 1 + μ ) μ k a 2 N 2 k ( N k , x , y , z | μ ) , a 2 N + 2 ( N + 1 , x , y , z | μ ) = 3 z log ( 1 + μ ) μ N + 1 , a i ( N + 1 , x , y , z | μ ) = ( i + 1 ) k = 0 N x log ( 1 + μ ) μ k a i + 1 ( N k , x , y , z | μ ) + 2 y log ( 1 + μ ) μ k = 0 N x log ( 1 + μ ) μ k a i 1 ( N k , x , y , z | μ ) + 3 z log ( 1 + μ ) μ k = 0 N x log ( 1 + μ ) μ k a i 2 ( N k , x , y , z | μ ) , ( 2 i 2 N 1 ) .
We have a picture of the surface for this solution.
In Figure 1a, we choose 1 x 1 , 1 t 1 , μ = 1 / 3 , and y = 2 , z = 1 . In Figure 1b, we choose 2 y 2 , 1 t 1 , μ = 1 / 3 , and x = 5 , z = 3 .
When we take N-th many derivative with respect to t for (4), we have
t N F ( t , x , y , z | μ ) = m = 0 H m + N ( x , y , z | μ ) t m m ! .
From (19) and (34), we have the following theorem:
Theorem 9.
For N = 0 , 1 , 2 , , one obtains
H m + N ( x , y , z | μ ) = i = 0 m H m i ( x , y , z | μ ) a i ( N , x , y , z | μ ) m ! ( m i ) ! .
From (35) with m = 0 one obtains the following corollary:
Corollary 3.
For N = 0 , 1 , 2 , , one obtains
H N ( x , y , z | μ ) = a 0 ( N , x , y , z | μ ) ,
where
a 0 ( N + 1 , x , y , z | μ ) = 1 , a 0 ( N + 1 , x , y , z | μ ) = i = 0 N x log ( 1 + μ ) μ i a 1 ( N i , x , y , z | μ ) + log ( 1 + μ ) μ N + 1 x N + 1 .
The first 3-variable degenerate Hermite Kampé de Feŕiet polynomials read
H 0 ( x , y , z | μ ) = 1 , H 1 ( x , y , z | μ ) = x log ( 1 + μ ) μ , H 2 ( x , y , z | μ ) = x 2 ( log ( 1 + μ ) ) 2 μ 2 + 2 y log ( 1 + μ ) μ , H 3 ( x , y , z | μ ) = x 3 ( log ( 1 + μ ) ) 3 μ 3 + 6 x y ( log ( 1 + μ ) ) 2 μ 2 + 6 z ( log ( 1 + μ ) ) 2 μ 2 , H 4 ( x , y , z | μ ) = x 4 ( log ( 1 + μ ) ) 4 μ 4 + 12 x 2 y ( log ( 1 + μ ) ) 3 μ 3 + 24 x z ( log ( 1 + μ ) ) 2 μ 2 + 12 y 2 ( log ( 1 + μ ) ) 2 μ 2 , H 5 ( x , y , z | μ ) = x 5 ( log ( 1 + μ ) ) 5 μ 5 + 20 x 3 y ( log ( 1 + μ ) ) 4 μ 4 + 60 x 2 z ( log ( 1 + μ ) ) 3 μ 3 + 60 x y 2 ( log ( 1 + μ ) ) 3 μ 3 + 120 y z ( log ( 1 + μ ) ) 2 μ 2 .

4. Roots of the 3-Variable Degenerate Hermite Kampé de Fériet Equations

In this section we give a theoretical prediction via numerical experiments by finding a regular pattern for the roots of the 3-variable degenerate Hermite Kampé de Fériet equations H n ( x , y , z | μ ) = 0 . To do this, we examine examples of several cases.
We look for the roots of H n ( x , y , z | μ ) = 0 for n = 40 , y = 2 , 2 , 2 + i , 2 i , z = 2 , 2 , 2 + i , 2 i , μ = 1 / 3 , and x C (Figure 2).
In Figure 2a, we select n = 40 , y = 2 , and z = 2 . In Figure 2b, we select n = 40 , y = 2 , and z = 2 . In Figure 2c, we select n = 40 , y = 2 + i , and z = 2 + i . In Figure 2d, we select n = 40 , y = 2 i , and z = 2 i . A picture of the roots of the 3-variable degenerate Hermite Kampé de Fériet equation H n ( x , y , z | μ ) = 0 for 1 n 40 , μ = 1 / 3 from a 3-D structure are shown in Figure 3.
In Figure 3a, we select y = 2 and z = 2 . In Figure 3b, we select y = 2 and z = 2 . In Figure 3c, we select y = 2 + i and z = 2 + i . In Figure 3d, we select y = 2 i and z = 2 i . Our distributions for approximated solutions of real roots of equation H n ( x , y , z | μ ) = 0 are shown in Table 1 and Table 2.
We can observe a regular pattern of the complex roots of the 3-variable degenerate Hermite Kampé de Fériet equation H n ( x , y , z | μ ) = 0 . We hope to prove regular pattern of the complex roots of the 3-variable degenerate Hermite Kampé de Fériet equations H n ( x , y , z | μ ) = 0 (Table 1).
A picture of real roots of equations H n ( x , y , z | μ ) = 0 for 1 n 40 , μ = 1 / 3 are displayed in Figure 4.
In Figure 4a, we select y = 2 and z = 2 . In Figure 4b, we select y = 2 and z = 2 . In Figure 4c, we select y = 2 and z = 2 . In Figure 4d, we select y = 2 and z = 2 .
Next, we obtain an approximate solution satisfying H n ( x , y , z | μ ) = 0 , x C for given n , y = 2 , z = 2 , and μ = 1 / 3 in the Table 2.

5. Conclusions and Future Directions

In this article, we constructed the 3-variable degenerate Hermite Kampé de Fériet polynomials and got symmetric identities for 3-variable degenerate Hermite Kampé de Fériet polynomials. We also made the differential equations which are related to the generating function of H n ( x , y , z | μ ) . We also studied the symmetry of pattern of the roots of the 3-variable degenerate Hermite Kampé de Fériet equations H n ( x , y , z | μ ) = 0 for various variables x , y , and z. As a result, we found that the distribution of the roots of 3-variable degenerate Hermite Kampé de Fériet equations H n ( x , y , z | μ ) = 0 has regular pattern. So, we make the following series of conjectures with numerical experiments:
We use some notations. R H n ( x , y , z | μ ) denotes the number of real zeros of H n ( x , y , z | μ ) = 0 on the real plane, that is, I m ( x ) = 0 , and C H n ( x , y , z | μ ) denotes the number of complex zeros of H n ( x , y , z | μ ) = 0 . Since n is the degree of the polynomial H n ( x , y , z | μ ) , we obtaine R H n ( x , y , z | μ ) = n C H n ( x , y , z | μ ) .
We can see a regular pattern of the complex roots of the 3-variable degenerate Hermite Kampé de Fériet equations H n ( x , y , z | μ ) = 0 for y , z , and μ . Therefore, we can make thebelow conjecture.
Conjecture 1.
Let n = 2 , 3 , , and y C . Prove or disprove that
R H n ( x , y , z | μ ) = 0 , C H n ( x , y , z | μ ) = n ,
where C is the set of complex numbers.
Conjecture 2.
For n = 2 , 3 , , and z C , prove or disprove that
R H n ( x , y , z | μ ) = 0 , C H n ( x , y , z | μ ) = n .
The Conjectures 1 and 2 are unsolved problems for all variables y , z and μ .
We see that the solutions of the 3-variable degenerate Hermite Kampé de Fériet equations H n ( x , y , z | μ ) = 0 does not show reflection symmetry about R e ( x ) = a for a R (see Figure 2, Figure 3 and Figure 4).
Conjecture 3.
Prove that H n ( x , y , z | μ ) , x C , y , z R as an analytic complex function has reflection symmetry I m ( x ) = 0 .
Finally, we consider the more general problems. How many roots does H n ( x , y , z | μ ) = 0 have? We are not able to decide whether H n ( x , y , z | μ ) = 0 has n distinct solutions. We would like to know the number of complex roots C H n ( x , y , z | μ ) of H n ( x , y , z | μ ) = 0 .
Conjecture 4.
Prove or disprove that H n ( x , y , z | μ ) = 0 has n distinct solutions.
The conjecture 4 is unsolved problem for all variables n (see Table 1 and Table 2).
If we can theoretically prove the above problems by drawing new ideas from various numerical results, we look forward to contributing to research related to the 3-variable degenerate Hermite Kampé de Fériet equations H n ( x , y , z | μ ) = 0 in applied mathematics, mathematical physics, and engineering.

Author Contributions

C.-S.R. and K.-W.H. did typing together; C.-S.R. and Y.-S.S. draw pictures by using computor. K.-W.H., C.-S.R., and Y.-S.S. made Section 1. Y.-S.S. made Section 2. K.-W.H. made Section 3. C.-S.R. made Section 4. These authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Dong-A university research fund.

Acknowledgments

The authors would like to thank the referees for their valuable comments, which improved the original manuscript in its present form.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Andrews, L.C. Special Functions for Engineers and Mathematicians; Macmillan. Co.: New York, NY, USA, 1985. [Google Scholar]
  2. Appell, P.; de Fériet, J.H.K. Fonctions Hypergéométriques et Hypersphériques: Polynomes d Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
  3. Dattoli, G. Generalized Polynomials Operational Identities and Their Applications. J. Comput. Appl. Math. 2000, 118, 111–123. [Google Scholar] [CrossRef] [Green Version]
  4. Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Krieger: New York, NY, USA, 1981; Volume 3. [Google Scholar]
  5. Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
  6. Arfken, G. Mathematical Methods for Physicists, 3rd ed.; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
  7. Khan, S.; Yasmin, G.; Khan, R.; Hassan, N.A.M. Hermite-based Appell polynomials: Properties and applications. J. Math. Anal. Appl. 2009, 351, 756–764. [Google Scholar] [CrossRef] [Green Version]
  8. Carlitz, L. Degenerate Stiling, Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
  9. Young, P.T. Degenerate Bernoulli polynomials, generalized factorial sums, and their applications. J. Number Theorey 2008, 128, 738–758. [Google Scholar] [CrossRef] [Green Version]
  10. Cenkci, M.; Howard, F.T. Notes on degenerate numbers. Discrete Math. 2007, 307, 2375–2395. [Google Scholar] [CrossRef]
  11. Ryoo, C.S. Notes on degenerate tangent polynomials. Glob. J. Pure Appl. Math. 2015, 11, 3631–3637. [Google Scholar]
  12. Haroon, H.; Khan, W.A. Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials. Commun. Korean Math. Soc. 2018, 33, 651–669. [Google Scholar]
  13. Hwang, K.W.; Ryoo, C.S. Some identities involving two-variable partially degenerate Hermite polynomials induced from differential equations and structure of their roots. Mathematics 2020, 8, 632. [Google Scholar] [CrossRef] [Green Version]
  14. Kim, T.; Kim, D.S.; Kwon, H.I.; Ryoo, C.S. Differential equations associated with Mahler and Sheffer-Mahler polynomials. Nonlinear Funct. Anal. Appl. 2019, 24, 453–462. [Google Scholar]
  15. Ryoo, C.S. A numerical investigation on the structure of the zeros of the degenerate Euler-tangent mixed-type polynomials. J. Nonlinear Sci. Appl. 2017, 10, 4474–4484. [Google Scholar] [CrossRef] [Green Version]
  16. Ryoo, C.S. Differential equations associated with tangent numbers. J. Appl. Math. Inform. 2016, 34, 487–494. [Google Scholar] [CrossRef]
  17. Ryoo, C.S. Some identities involving Hermitt Kampé de Fériet polynomials arising from differential equations and location of their zeros. Mathematics 2019, 7, 23. [Google Scholar] [CrossRef] [Green Version]
  18. Ryoo, C.S.; Agarwal, R.P.; Kang, J.Y. Differential equations associated with Bell-Carlitz polynomials and their zeros. Neural Parallel Sci. Comput. 2016, 24, 453–462. [Google Scholar]
Figure 1. The surface for the solution F ( t , x , y , z | μ ) .
Figure 1. The surface for the solution F ( t , x , y , z | μ ) .
Symmetry 13 00007 g001
Figure 2. Zeros of H n ( x , y , z | μ ) = 0 .
Figure 2. Zeros of H n ( x , y , z | μ ) = 0 .
Symmetry 13 00007 g002
Figure 3. Stacks of zeros of H n ( x , y , z | μ ) = 0 , 1 n 40 .
Figure 3. Stacks of zeros of H n ( x , y , z | μ ) = 0 , 1 n 40 .
Symmetry 13 00007 g003
Figure 4. Real zeros of H n ( x , y , z | μ ) = 0   for   1 n 40 .
Figure 4. Real zeros of H n ( x , y , z | μ ) = 0   for   1 n 40 .
Symmetry 13 00007 g004
Table 1. Numbers of real and complex zeros of H n ( x , y , z | μ ) = 0 .
Table 1. Numbers of real and complex zeros of H n ( x , y , z | μ ) = 0 .
Degree n y = 2 , z = 2 , μ = 1 / 3 y = 2 i , z = 2 i , μ = 1 / 3
Real ZerosComplex ZerosReal ZerosComplex Zeros
11010
20202
31203
40404
51405
62406
71607
82608
91809
1028010
Table 2. Approximate roots of H n ( x , y , z | μ ) = 0 , x C , y = 2 , z = 2 ,   and   μ = 1 / 3 .
Table 2. Approximate roots of H n ( x , y , z | μ ) = 0 , x C , y = 2 , z = 2 ,   and   μ = 1 / 3 .
Degree nx
10
2−2.1528 i,    2.1528 i
3−1.0705,    0.5352 + 3.8424 i,    0.5352 − 3.8424 i
4−1.1238 − 0.9119 i,    −1.1238 + 0.9119 i,    1.1238 + 5.4316 i
1.1238 − 5.4316 i
5−2.6937,    −0.3500 − 2.3168 i,    −0.3500 + 2.3168 i
1.6969 + 6.9000 i,    1.6969 − 6.9000 i
6−3.6974,    −1.1016,    0.1447 − 3.6924 i
0.1447 + 3.6924 i,    2.2548 + 8.2725 i,    2.2548 − 8.2725 i
7−4.8260,    −1.0340 + 1.3912 i,    −1.0340 − 1.3912 i,    0.6498 + 4.9794 i
0.6498 − 4.9794 i,    2.7972 − 9.5687 i,    2.7972 + 9.5687 i
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Hwang, K.-W.; Seol, Y.-S.; Ryoo, C.-S. Explicit Identities for 3-Variable Degenerate Hermite Kampé de Fériet Polynomials and Differential Equation Derived from Generating Function. Symmetry 2021, 13, 7. https://doi.org/10.3390/sym13010007

AMA Style

Hwang K-W, Seol Y-S, Ryoo C-S. Explicit Identities for 3-Variable Degenerate Hermite Kampé de Fériet Polynomials and Differential Equation Derived from Generating Function. Symmetry. 2021; 13(1):7. https://doi.org/10.3390/sym13010007

Chicago/Turabian Style

Hwang, Kyung-Won, Young-Soo Seol, and Cheon-Seoung Ryoo. 2021. "Explicit Identities for 3-Variable Degenerate Hermite Kampé de Fériet Polynomials and Differential Equation Derived from Generating Function" Symmetry 13, no. 1: 7. https://doi.org/10.3390/sym13010007

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop