# Non-Degeneracy of 2-Forms and Pfaffian

## Abstract

**:**

## 1. Introduction

## 2. Symplectic Vector Space and Pfaffian

#### Pfaffian and 2-Forms

**pf**$\left(A\right)={\left(-1\right)}^{n}\sqrt{detA}$ and in particular

**pf**$\left(J\right)={\left(-1\right)}^{n}$.

## 3. Rigidity of Symplectic Forms

**Lemma**

**1.**

**Proof.**

**Remark**

**1.**

**pf**$\left({\widehat{A}}_{ii}\right)=0,$ because ${\widehat{A}}_{ii}$ is a $\left(2n-1\right)\times \left(2n-1\right)$ skew symmetric matrix and its determinant vanishes.

**Lemma**

**2.**

**Proof.**

**pf**$\left(A\right)$ each term in

**pf**$\left(A\right)$ containing ${A}_{ki}$. In general, for $l<m$

**pf**$\left({\widehat{A}}_{lm}\right)$, by the previous lemma

**Lemma**

**3.**

**Proof.**

**Corollary**

**1.**

**Theorem**

**1.**

**Proof.**

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Dress, A.W.; Wenzel, W.A. A Simple Proof of an Identity Concerning Pfaffians of Skew Symmetric Matrices. Adv. Math.
**1995**, 112, 120–134. [Google Scholar] [CrossRef][Green Version] - Hamel, A.M. Pfaffian Identities: A Combinatorial Approach. J. Comb. Theory Ser. A
**2001**, 94, 205–217. [Google Scholar] [CrossRef][Green Version] - Lomont, J.S.; Cheema, M.S. Properties of Pfaffians. Rocky Mt. J. Math.
**1985**, 15, 493–512. [Google Scholar] [CrossRef] - Lee, J.H. Symplectic geometry on symplectic knot spaces. N. Y. J. Math.
**2007**, 13, 17–31. [Google Scholar] - Lee, J.H.; Leung, N.C. Grassmannians of symplectic subspaces. Manuscripta Math.
**2011**, 136, 383–410. [Google Scholar] [CrossRef] - Harvey, F.R. Spinors and Calibrations; Perspectives in Mathematics 9; Academic Press, Inc.: Boston, MA, USA, 1990. [Google Scholar]
- Bangert, V.; Katz, M.G.; Shnider, S.; Weinberger, S. E
_{7}, Wirtinger inequalites, Cayley 4-form, and homotopy. Duke Math. J.**2009**, 146, 35–70. [Google Scholar] [CrossRef][Green Version] - Hitchin, N. Stable forms and special metrics. Contemp. Math.
**2001**, 288, 70–89. [Google Scholar] - Silva, A.C. Lectures on Symplectic Geometry; Lecture Notes in Mathematics 1764; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lee, J.-H.
Non-Degeneracy of 2-Forms and Pfaffian. *Symmetry* **2020**, *12*, 280.
https://doi.org/10.3390/sym12020280

**AMA Style**

Lee J-H.
Non-Degeneracy of 2-Forms and Pfaffian. *Symmetry*. 2020; 12(2):280.
https://doi.org/10.3390/sym12020280

**Chicago/Turabian Style**

Lee, Jae-Hyouk.
2020. "Non-Degeneracy of 2-Forms and Pfaffian" *Symmetry* 12, no. 2: 280.
https://doi.org/10.3390/sym12020280