Next Article in Journal
Topological Analysis of Fibrations in Multidimensional (C, R) Space
Next Article in Special Issue
Existence of the Solutions of Nonlinear Fractional Differential Equations Using the Fixed Point Technique in Extended b-Metric Spaces
Previous Article in Journal
A Few Experimental Suggestions Using Minerals to Obtain Peptides with a High Concentration of L-Amino Acids and Protein Amino Acids
Previous Article in Special Issue
Some Fixed Point Theorems for (ap)-Quasicontractions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Some New Jungck–Fisher–Wardowski Type Fixed Point Results

1
Department of Mathematics, Faculty of Sciences, University of Priština-Kosovska Mitrovica, Lole Ribara 29, 38200 Kosovska Mitrovica, Serbia
2
Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia
*
Author to whom correspondence should be addressed.
Symmetry 2020, 12(12), 2048; https://doi.org/10.3390/sym12122048
Submission received: 11 November 2020 / Revised: 29 November 2020 / Accepted: 8 December 2020 / Published: 10 December 2020
(This article belongs to the Special Issue Fixed Point Theory and Computational Analysis with Applications)

Abstract

:
Many authors used the concept of F contraction introduced by Wardowski in 2012 in order to define and prove new results on fixed points in complete metric spaces. In some later papers (for example Proinov P.D., J. Fixed Point Theory Appl. (2020)22:21, doi:10.1007/s11784-020-0756-1) it is shown that conditions (F2) and (F3) are not necessary to prove Wardowski’s results. In this article we use a new approach in proving that the Picard–Jungck sequence is a Cauchy one. It helps us obtain new Jungck–Fisher–Wardowski type results using Wardowski’s condition (F1) only, but in a way that differs from the previous approaches. Along with that, we came to several new contractive conditions not known in the fixed point theory so far. With the new results presented in the article, we generalize, extend, unify and enrich methods presented in the literature that we cite.

1. Introduction and Preliminaries

In 1976, Jungck [1] proved the following result.
Theorem 1.
Let T and I be commuting mappings of a complete metric space Y , d Y into itself that satisfy the inequality
d Y T x ˜ , T y ˜ λ d Y I x ˜ , I y ˜
for all x ˜ , y ˜ Y , where 0 < λ < 1 . If the range of I contains the range of T and if I is continuous, then T and I have a unique common fixed point.
In 1981, Fisher [2] proved the common fixed point theorem for four mappings and thus obtained a genuine generalization of Jungck’s result from 1976.
Theorem 2.
Let S , I and T , J be pairs of commuting mappings of a complete metric space Y , d Y into itself that satisfies
d Y S x ˜ , T y ˜ λ d Y I x ˜ , J y ˜
for all x ˜ , y ˜ Y , where 0 < λ < 1 . If S x ˜ J Y and T x ˜ I Y for each x ˜ Y and if I and J are continuous, then all mappings S , T , I and J have a unique common fixed point.
Remark 1.
It is obvious that both previous Theorems holds true for λ = 0 alike. In addition, it is evident that Theorems 1 and 2 genuinely generalize the famous Banach contraction principle [3].
Since 2012., several research papers (for example [4,5,6,7,8,9,10,11,12,13,14,15,16]) considered a new type of contraction mapping introduced by Wardowski [17] . For other new-old types of contractive mappings see e.g., [18,19,20,21,22]. Firstly, in [17] the author introduced the following:
Definition 1.
Let F : 0 , + , + be a mapping satisfying:
( F 1 )
F is strictly increasing, i.e., for all a , b 0 , + , if a < b then F a < F b ;
( F 2 )
For each sequence x ˜ p p N 0 , + , lim p + x ˜ p = 0 if and only if lim p + F x ˜ p = ;
( F 3 )
There exists m 0 , 1 such that lim x ˜ 0 + x ˜ m F x ˜ = 0 .
A self-mapping A of a complete metric space ( Y , d Y ) into itself is said to be an F contraction if there exists τ > 0 such that
d Y A x ˜ , A y ˜ > 0 implies τ + F d Y A x ˜ , A y ˜ F d Y x ˜ , y ˜ ,
for all x ˜ , y ˜ Y
Remark 2.
Since inequality F t 0 F t F t + 0 holds for all t 0 , + , one can conclude (using(F1)property only) that there are lim c t F c = F t 0 and lim c t + F c = F t + 0 .
In addition, from property (F1) it follows either
(1)
F 0 + 0 = lim x ˜ 0 + F x ˜ = m , m , + , or
(2)
F 0 + 0 = lim x ˜ 0 + F x ˜ = (for more details see [13,23]).
Additionally, in [17] Wardowski proved and generalized the Banach contraction principle in the following form:
Theorem 3.
Let Y , d Y be a complete metric space and A : Y Y an F contraction. Then A has a unique fixed point, say x ˜ * in Υ and for every x ˜ Y the sequence A p x ˜ , p N converges to x ˜ * .
Note that in 2013., Turinci [24] noticed that condition (F2) can be weakened as follows:
( T )
lim t 0 + F t = .
Other details of property (F2) can be found in Secelean’s work ([12] [Lemma 2 and Remark 3.1]). Further, Wardowski in [15] introduced a concept of τ , F contraction on metric space. A self mapping A : Y Y is said to be τ , F contraction if for some F : 0 , + , + and τ : 0 , + 0 , + the following conditions apply
( τ 1 )
F satisfies (F1) and (T);
( τ 2 )
lim inf c t + τ c > 0 for all t 0 ;
( τ 3 )
τ d Y x ˜ , y ˜ + F d Y A x ˜ , A y ˜ F d Y x ˜ , y ˜ for all x ˜ , y ˜ Y such that A x ˜ A y ˜ .
Among other things, he generalized the result from [17] and proved the following theorem [15].
Theorem 4.
Let A : Y Y be a τ , F contraction on complete metric space Y , d Y . Then A has a unique fixed point.
Recently, in [14], we proved the Theorem 4 using only the condition (F1) and the following two lemmas [9,10] .
Lemma 1.
Let x ˜ p be a sequence in a metric space Y , d Y such that lim p + d Y x ˜ p , x ˜ p + 1 = 0 . If x ˜ p is not a Cauchy sequence, then there exist ε > 0 and two sequences p s and q s of positive integers such that p s > q s > s and the sequences:
d Y x ˜ p s , x ˜ q s , d Y x ˜ p s + 1 , x ˜ q s , d Y x ˜ p s , x ˜ q s 1 ,
d Y x ˜ p s + 1 , x ˜ q s 1 , d Y x ˜ p s + 1 , x ˜ q s + 1 ,
tend to ε + , as s + .
Lemma 2.
Let x ˜ p + 1 = A x ˜ p = A p x ˜ 0 , p N 0 , A 0 x ˜ 0 = x ˜ 0 be a Picard sequence in a metric space Y , d Y induced by a mapping A : Y Y and let x ˜ 0 Y be an initial point. If d Y x ˜ p , x ˜ p + 1 < d Y x ˜ p 1 , x ˜ p for all p N then x ˜ p x ˜ q whenever p q .
Proof. 
Suppose the opposite, let x ˜ p = x ˜ q for some p , q N with p < q . Then x ˜ p + 1 = A x ˜ p = A x ˜ q = x ˜ q + 1 . Further, we get
d Y x ˜ p , x ˜ p + 1 = d Y x ˜ q , x ˜ q + 1 < d Y x ˜ q 1 , x ˜ q < . . . < d Y x ˜ p , x ˜ p + 1 ,
and that is a contradiction.   □
At the end of this section, let us recall the following terms and results (for more information, see [25,26]). Let A and B be self mappings of a nonempty set Y . If y ˜ = A x ˜ = B x ˜ for some x ˜ Y , then x ˜ is called a coincidence point of A and B , and y ˜ is called a point of coincidence of A and B . A pair of self mappings A , B is said to be a compatible if lim p + d Y AB x ˜ p , BA x ˜ p = 0 , for every sequence x ˜ p in Y for which lim p + A x ˜ p = lim p + B x ˜ p = t , for some t Y . The pair A , B is weakly compatible if mappings A and B commute at their coincidence points. A sequence x ˜ p in Y is said to be a Picard–Jungck sequence of the pair A , B (based on x ˜ 0 ) if y ˜ p = A x ˜ p = B x ˜ p + 1 for all p N 0 .
Proposition 1.
[26] If weakly compatible self mappings A and B of a set Υ have a unique point of coincidence y ˜ = A x ˜ = B x ˜ , then y ˜ is a unique common fixed point of A and B .

2. Results

In the following theorem, we bring forward first of our results for four self-mappings in a complete metric space.
Theorem 5.
Let S , I and T , J be a pair of compatible self-mappings of a complete metric space Y , d Y into itself and F : 0 , + , + is a strictly increasing mapping such that
τ + F d Y S x ˜ , T y ˜ F M S , T I , J x ˜ , y ˜ ,
for all x ˜ , y ˜ Y with d Y S x ˜ , T y ˜ > 0 , where
M S , T I , J x ˜ , y ˜ = max d Y I x ˜ , J y ˜ , d Y S x ˜ , I x ˜ , d Y T y ˜ , J y ˜ , d Y S x ˜ , J y ˜ + d Y T y ˜ , I x ˜ 2 ,
and τ is a given positive constant. If I , J , S and T are continuous and if S Y J Y , T Y I Y then mappings I , J , S and T have a unique common fixed point.
Proof. 
First of all we show the uniqueness of a possible common fixed point. Suppose that I , J , S and T have two distinct common fixed points x ˜ and y ˜ in Y . Since d Y x ˜ , y ˜ = d Y S x ˜ , T y ˜ > 0 we get according to (6):
τ + F d Y S x ˜ , T y ˜ F M S , T I , J x ˜ , y ˜ ,
where
M S , T I , J ( x ˜ , y ˜ ) = max d Y ( I x ˜ , J y ˜ ) , d Y ( S x ˜ , I x ˜ ) , d Y ( T y ˜ , J y ˜ ) , d Y ( S x ˜ , J y ˜ ) + d Y ( T y ˜ , I x ˜ ) 2 = max d Y ( x ˜ , y ˜ ) , d Y ( x ˜ , x ˜ ) , d Y ( y ˜ , y ˜ ) , d Y ( x ˜ , y ˜ ) + d Y ( y ˜ , x ˜ ) 2 = d Y ( x ˜ , y ˜ ) .
Hence,
τ + F d Y x ˜ , y ˜ F d Y x ˜ , y ˜ .
Since τ > 0 and x ˜ y ˜ we get a contradiction. So, if there exists a common fixed point, it is unique. We further prove the existence of this common fixed point. Let x ˜ 0 Y be arbitrary. Since S x ˜ 0 J Y , there is x ˜ 1 Y such that J x ˜ 1 = S x ˜ 0 , and also as T x ˜ 1 I Y , let x ˜ 2 Y be such that I x ˜ 2 = T x ˜ 1 . In general, there are x ˜ 2 p + 1 and x ˜ 2 p + 2 in Y such that J x ˜ 2 p + 1 = S x ˜ 2 p and I x ˜ 2 p + 2 = T x ˜ 2 p + 1 , p = 0 , 1 , 2 , . . . . Denote a sequence z ˜ p with
z ˜ 2 p = J x ˜ 2 p + 1 = S x ˜ 2 p
z ˜ 2 p + 1 = I x ˜ 2 p + 2 = T x ˜ 2 p + 1 ,
p = 0 , 1 , 2 , . . . . We will show that z ˜ p is a Cauchy sequence. Due to the condition d Y S x ˜ , T y ˜ > 0 it follows that d Y z ˜ 2 p , z ˜ 2 p + 1 > 0 for all x ˜ , y ˜ Y and p N 0 . Replacing x ˜ and y ˜ respectively with x ˜ 2 p and x ˜ 2 p + 1 in (6) we obtain
τ + F d Y z ˜ 2 p , z ˜ 2 p + 1 F M S , T I , J x ˜ 2 p , x ˜ 2 p + 1 ,
where
M S , T I , J ( x ˜ 2 p , x ˜ 2 p + 1 ) = max { d Y ( I x ˜ 2 p , J x ˜ 2 p + 1 ) , d Y ( S x ˜ 2 p , I x ˜ 2 p ) , d Y ( T x ˜ 2 p + 1 , J x ˜ 2 p + 1 ) , d Y ( S x ˜ 2 p , J x ˜ 2 p + 1 ) + d Y ( T x ˜ 2 p + 1 , I x ˜ 2 p ) 2 } = max { d Y ( z ˜ 2 p 1 , z ˜ 2 p ) , d Y ( z ˜ 2 p , z ˜ 2 p 1 ) , d Y ( z ˜ 2 p + 1 , z ˜ 2 p ) , d Y ( z ˜ 2 p , z ˜ 2 p ) + d Y ( z ˜ 2 p + 1 , z ˜ 2 p 1 ) 2 } max d Y ( z ˜ 2 p 1 , z ˜ 2 p ) , d Y ( z ˜ 2 p + 1 , z ˜ 2 p ) , 0 + d Y ( z ˜ 2 p + 1 , z ˜ 2 p ) + d Y ( z ˜ 2 p , z ˜ 2 p 1 ) 2 max { d Y ( z ˜ 2 p 1 , z ˜ 2 p ) , d Y ( z ˜ 2 p , z ˜ 2 p + 1 ) } .
Hence, (9) transforms into
τ + F d Y z ˜ 2 p , z ˜ 2 p + 1 F max d Y z ˜ 2 p 1 , z ˜ 2 p , d Y z ˜ 2 p , z ˜ 2 p + 1 .
It is clear that max d Y z ˜ 2 p 1 , z ˜ 2 p , d Y z ˜ 2 p , z ˜ 2 p + 1 = d Y z ˜ 2 p 1 , z ˜ 2 p . Finally, since F is a strictly increasing mapping and d Y z ˜ 2 p , z ˜ 2 p + 1 < d Y z ˜ 2 p 1 , z ˜ 2 p for all p N we have
τ + F d Y z ˜ 2 p , z ˜ 2 p + 1 F d Y z ˜ 2 p 1 , z ˜ 2 p .
Similarly, replacing x ˜ with x ˜ 2 p + 2 and y ˜ with x ˜ 2 p + 1 in (6), it follows d Y z ˜ 2 p + 2 , z ˜ 2 p + 1 < d Y z ˜ 2 p + 1 , z ˜ 2 p , for all p N . So,
d Y z ˜ p + 1 , z ˜ p < d Y z ˜ p , z ˜ p 1
for all p N , which, further, implies that lim p + d Y z ˜ p + 1 , z ˜ p = d Y * 0 . If d Y * > 0 from (11) follows
τ + F d Y * + 0 F d Y * + 0 ,
and that is a contradiction. Hence, lim p + d Y z ˜ p + 1 , z ˜ p = 0 . To prove that z ˜ p is a Cauchy sequence, it suffices proving that for the sequence z ˜ 2 p . Indeed, according to Lemma 1, puting x ˜ = x ˜ 2 p s , y ˜ = x ˜ 2 q s + 1 in (6), we get
τ + F d Y S x ˜ 2 p s , T x ˜ 2 q s + 1 F M S , T I , J x ˜ 2 p s , x ˜ 2 q s + 1 ,
where
M S , T I , J ( x ˜ 2 p ( s ) , x ˜ 2 q ( s ) + 1 ) = max { d Y ( I x ˜ 2 p ( s ) , J x ˜ 2 q ( s ) + 1 ) , d Y ( S x ˜ 2 p ( s ) , I x ˜ 2 p ( s ) , d Y ( T x ˜ 2 q ( s ) + 1 , J x ˜ 2 q ( s ) + 1 ) , d Y ( S x ˜ 2 p ( s ) , J x ˜ 2 q ( s ) + 1 ) + d Y ( T x ˜ 2 q ( s ) + 1 , I x ˜ 2 p ( s ) ) 2 } = max { d Y ( z ˜ 2 p ( s ) 1 , z ˜ 2 q ( s ) ) , d Y ( z ˜ 2 p ( s ) , z ˜ 2 q ( s ) 1 ) , d Y ( z ˜ 2 q ( s ) + 1 , z ˜ 2 q ( s ) ) , d Y ( z ˜ 2 p ( s ) , z ˜ 2 q ( s ) ) + d Y ( z ˜ 2 q ( s ) + 1 , z ˜ 2 p ( s ) 1 ) 2 } max ε , ε , 0 , ε + ε 2 = ε ,
when s + . Taking the limit in (13) as s + , we get a contradiction
τ + F ε + 0 F ε + 0 .
Thus, z ˜ p is a Cauchy sequence in a complete metric space Y , d Y . Having in mind that Y is a complete, we conclude that there exists z ˜ Y such that lim p + z ˜ p = z ˜ or
lim p + I x ˜ 2 p + 2 = lim p + T x ˜ 2 p + 1 = lim p + J x ˜ 2 p + 1 = lim p + S x ˜ 2 p = z ˜ .
Further, due to the continuity and compatibility of mappings J and T , we obtain
d Y J z ˜ , T z ˜ d Y J z ˜ , JT x ˜ 2 p + 1 + d Y JT x ˜ 2 p + 1 , T z ˜ d Y J z ˜ , JT x ˜ 2 p + 1 + d Y JT x ˜ 2 p + 1 , TJ x ˜ 2 p + 1 + d Y TJ x ˜ 2 p + 1 , T z ˜ 0 + 0 + 0 = 0
as p + , because T x ˜ 2 p + 1 z ˜ implies J T x ˜ 2 p + 1 J z ˜ and d Y JT x ˜ 2 p + 1 , TJ x ˜ 2 p + 1 0 since T x ˜ 2 p + 1 and J x ˜ 2 p + 1 converge to the same z ˜ , so due to their compatibility, we obtain d Y J T x ˜ 2 p + 1 , TJ x ˜ 2 p + 1 0 and, finally T J x ˜ 2 p + 1 T z ˜ . So, J z ˜ = T z ˜ .
Similarly, we have I z ˜ = S z ˜ . Indeed,
d Y I z ˜ , S z ˜ d Y I z ˜ , IS x ˜ 2 p + d Y IS x ˜ 2 p , S z ˜ d Y I z ˜ , IS x ˜ 2 p + d Y I S x ˜ 2 p , SI x ˜ 2 p + d Y SI x ˜ 2 p , S z ˜ 0 + 0 + 0 = 0 .
If S z ˜ T z ˜ from (6) we obtain
τ + F d Y S z ˜ , T z ˜ F M S , T I , J z ˜ , z ˜ ,
where
M S , T I , J z ˜ , z ˜ = max d Y I z ˜ , J z ˜ , d Y S z ˜ , I z ˜ , d Y T z ˜ , J z ˜ , d Y S z ˜ , J z ˜ + d Y T z ˜ , I z ˜ 2 = max d Y I z ˜ , J z ˜ , 0 , 0 , d Y I z ˜ , J z ˜ + d Y J z ˜ , I z ˜ 2 = d Y I z ˜ , J z ˜ = d Y S z ˜ , T z ˜ .
Now, (15) can be written in the form
τ + F d Y S z ˜ , T z ˜ F d Y S z ˜ , T z ˜ ,
which is a contradiction. Therefore, S z ˜ = T z ˜ . This further entails equality I z ˜ = S z ˜ = J z ˜ = T z ˜ . Let w ˜ = I z ˜ = S z ˜ = J z ˜ = T z ˜ . Then we get
S w ˜ = SI z ˜ = IS z ˜ = I w ˜
and
T w ˜ = TJ z ˜ = JT z ˜ = J w ˜ .
If S z ˜ T w ˜ from (6) it follows
τ + F d Y S z ˜ , T w ˜ F M S , T I , J z ˜ , w ˜ ,
where
M S , T I , J z ˜ , w ˜ = max d Y S z ˜ , T w ˜ , d Y S z ˜ , S z ˜ , d Y T w ˜ , T w ˜ , d Y S z ˜ , T w ˜ + d Y T w ˜ , S z ˜ 2 = d Y S z ˜ , T w ˜ ,
and now (18) can be written as
τ + F d Y S z ˜ , T w ˜ F d Y S z ˜ , T w ˜ ,
which is a contradiction. Therefore, it must be S z ˜ = T w ˜ . Hence, T w ˜ = w ˜ and from (17) it follows that w ˜ is a common fixed point for T and J . Similarly as in previous case, assumption S w ˜ T z ˜ implies a contradiction, since from (6) we get
τ + F d Y S w ˜ , T z ˜ F d Y S w ˜ , T z ˜ .
Therefore, S w ˜ = T z ˜ . Suppose, further, that S w ˜ = w ˜ . Then from (16) it follows that w ˜ is a common fixed point for S and J . We proved that w ˜ is unique common fixed point for S , T , I and J .   □
It is worth to notice that Theorem 5 generalizes Theorems 1 and 2 in several directions. Namely, putting J = I and S = T in (6) we get the following Jungck–Wardowski type result:
Theorem 6.
Let T , I be a pair of compatible self-mappings of a complete metric space Y , d Y into itself and F : 0 , + , + is strictly increasing mapping such that
τ + F d Y T x ˜ , T y ˜ F M T I x ˜ , y ˜ ,
for all x ˜ , y ˜ Y with d Y T x ˜ , T y ˜ > 0 , where
M T I x ˜ , y ˜ = max d Y I x ˜ , I y ˜ , d Y T x ˜ , I x ˜ , d Y T y ˜ , I y ˜ , d Y T x ˜ , I y ˜ + d Y T y ˜ , I x ˜ 2 ,
τ is a given positive constant. If T and I are continuous and T Y I Y then T , I have a unique common fixed point.
Remark 3.
Replacing M T I x ˜ , y ˜ with
max d Y I x ˜ , I y ˜ , d Y T x ˜ , I x ˜ , d Y T y ˜ , I y ˜ ,
or
max d Y I x ˜ , I y ˜ , d Y T x ˜ , I x ˜ + d Y T y ˜ , I y ˜ 2 , d Y T x ˜ , I y ˜ + d Y T y ˜ , I x ˜ 2 ,
in (6) we also find Theorem 6 to be true.
As a result of Theorems 5 and 6 in the following we introduce new contractive conditions that complement the ones given in [11,27,28,29,30].
Corollary 1.
Suppose that S , I and T , J are the pairs of compatible self-mappings of a complete metric space Y , d Y into itself such that for all x ˜ , y ˜ Y with d Y S x ˜ , T y ˜ > 0 there exist τ i > 0 , i = 1 , 7 ¯ and the following inequalities hold true:
τ 1 + d Y S x ˜ , T y ˜ M T I x ˜ , y ˜
τ 2 + exp d Y S x ˜ , T y ˜ exp M T I x ˜ , y ˜
τ 3 1 d Y S x ˜ , T y ˜ 1 M T I x ˜ , y ˜
τ 4 1 d Y S x ˜ , T y ˜ + d Y S x ˜ , T y ˜ 1 M T I x ˜ , y ˜ + M T I x ˜ , y ˜
τ 5 + 1 1 exp d Y S x ˜ , T y ˜ 1 1 exp M T I x ˜ , y ˜
τ 6 + 1 exp d Y S x ˜ , T y ˜ exp d Y S x ˜ , T y ˜ 1 exp M T I x ˜ , y ˜ exp M T I x ˜ , y ˜
τ 7 + d Y S x ˜ , T y ˜ d Y I x ˜ , J y ˜
where M T I x ˜ , y ˜ is one of the sets
max d Y I x ˜ , J y ˜ , d Y S x ˜ , I x ˜ , d Y T y ˜ , J y ˜ , d Y S x ˜ , J y ˜ + d Y T y ˜ , I x ˜ 2 ,
max d Y I x ˜ , J y ˜ , d Y S x ˜ , I x ˜ + d Y T y ˜ , J y ˜ 2 , d Y S x ˜ , J y ˜ + d Y T y ˜ , I x 2
or
max d Y I x ˜ , J y ˜ = d Y I x ˜ , J y ˜ .
If I , J , S and T are continuous and S Y J Y , T Y I Y , then in every of these cases mappings I , J , S and T have a unique common fixed point in Υ.
Proof. 
Take, in Theorems 5 and 6 F c = c , F c = exp c , F c = 1 c , F c = 1 c + c , F c = 1 1 exp c , F c = 1 exp c exp c respectively. Since every one of the functions c F c is strictly increasing on 0 , + the result follows by Theorems 5 and 6.   □
The next example supports Theorem 5. In fact, it is a modification of an example given in [31].
Example 1.
Let Y = 0 , 1 and d Y x ˜ , y ˜ = x ˜ y ˜ be a standard metric on it. Let us define the mappings I , J , S , T : Y Y for all x ˜ Y as
I x ˜ = x ˜ 3 8 , J x ˜ = x ˜ 3 4 , S x ˜ = x ˜ 3 16 and T x ˜ = x ˜ 3 8 .
Obviously, I , J , S , T are self mappings and inclusions S Y J Y , T Y I Y are valid. Further, a pair S , I is compatible. Really, if x ˜ p is a sequence in Υ such that
lim p + S x ˜ p = lim p + I x ˜ p = x ˜ , for some x ˜ Y ,
then due to the continuity of S and I it follows
lim p + d Y S I x ˜ p , I S x ˜ p = lim p + S I x ˜ p I S x ˜ p = S x ˜ I x ˜ = x ˜ 3 16 x ˜ 3 8 = x ˜ 3 8 x ˜ 3 4 1 x ˜ 3 4 + 1 = 0 ,
only for x ˜ = 0 . Similarly we can prove that the second pair T , J is compatible. Furthermore, it is easy to show that both pairs are not commuting.
For x ˜ , y ˜ Y , we obtain
d Y S x ˜ , T y ˜ = S x ˜ T y ˜ = x ˜ 3 16 y ˜ 3 8 = x ˜ 3 8 + y ˜ 3 4 x ˜ 3 8 y ˜ 3 4 1 6561 + 1 81 d Y I x ˜ , J y ˜ = 82 6561 d Y I x ˜ , J y ˜ .
Putting τ = ln 6561 82 , F ω = ln ω we get that the condition (6) holds true. Based on Theorem 5, this means that the mappings I , J , S and T have a unique common fixed point x ˜ = 0 .
Finaly, we believe that the following problem may be interesting for some future research:
Conjecture: Prove or disprove that Theorem 5 holds true if for the set M S , T I , J x ˜ , y ˜ we put
M S , T I , J x ˜ , y ˜ = max d Y I x ˜ , J y ˜ , d Y S x ˜ , I x ˜ , d Y T y ˜ , J y ˜ , d Y S x ˜ , J y ˜ , d Y T y ˜ , I x ˜ .
reftitleReferences

Author Contributions

Conceptualization, S.R. (Stojan Radenović), J.V. and E.L.; methodology, J.V., S.R. (Slobodan Radojević) and E.L.; validation, S.R. (Stojan Radenović) and J.V.; investigation, S.R. (Stojan Radenović), J.V., E.L. and S.R. (Slobodan Radojević); All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Jungck, G. Commuting maps and fixed points. Am. Math. Mon. 1976, 83, 261–263. [Google Scholar] [CrossRef]
  2. Fisher, B. Four mappings with a common fixed point. Arab. Summ. J. Univ. Kuwait Sci. 1981, 8, 131–139. [Google Scholar]
  3. Banach, S. Sur les opérations dans les ensambles abstrait et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  4. Cosentino, M.; Vetro, P. Fixed point result for F-contractive mappings of Hardy-Rogers-Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef] [Green Version]
  5. Dey, L.K.; Kumam, P.; Senapati, T. Fixed point results concerning α-F-contraction mappings in metric spaces. Appl. Gen. Topol. 2019, 20, 81–95. [Google Scholar] [CrossRef] [Green Version]
  6. Karapinar, E.; Fulga, A.; Agarwal, R. A survey: F-contractions with related fixed point results. Fixed Point Theory Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
  7. Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef] [Green Version]
  8. Popescu, O.; Stan, G. Two fixed point theorems concerning F-contraction in complete metric spaces. Symmetry 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
  9. Radenović, S.; Vetro, F.; Vujaković, J. An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math. 2017, 5, 224–231. [Google Scholar] [CrossRef] [Green Version]
  10. Radenović, S.; Chandock, S. Simulation type functions and coincidence points. Filomat 2018, 32, 141–147. [Google Scholar] [CrossRef] [Green Version]
  11. Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
  12. Secelean, N.A. Iterated function system consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [Google Scholar] [CrossRef] [Green Version]
  13. Vujaković, J.; Radenović, S. On some F-contraction of Piri-Kumam-Dung type mappings in metric spaces. Vojnotehnički Glasnik 2020, 68, 697–714. [Google Scholar] [CrossRef]
  14. Vujaković, J.; Mitrović, S.; Pavlović, M.; Radenović, S. On recent results concerning F- contraction in generalized metric spaces. Mathematics 2020, 8, 767. [Google Scholar] [CrossRef]
  15. Wardowski, D.; Van Dung, N. Fixed points of F- weak contractions on complete metric spaces. Demonstr. Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
  16. Wardowski, D. Solving existence problems via F- contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
  17. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
  18. Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 1. [Google Scholar] [CrossRef]
  19. Proinov, P.D. A generalization of the Banach contraction principle with high order of convergence of successive approximations. Nonlinear Anal. 2007, 67, 2361–2369. [Google Scholar] [CrossRef]
  20. Lukács, A.; Kajánto, S. Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef] [Green Version]
  21. Skoff, F. Teoremi di punto fisso per applicazioni negli spazi metrici. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1977, 111, 323–329. [Google Scholar]
  22. Bianchini, R.M.; Grandolfi, M. Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1968, 45, 212–216. [Google Scholar]
  23. Aljančić, S. Uvod u Realnu i Funkcionalnu Analizu; Naučna Knjiga: Beograd, Srbija, 1969. [Google Scholar]
  24. Turinci, M. Wardowski implicit contractions in metric spaces. arXiv 2013, arXiv:1211.3164v2. [Google Scholar]
  25. Roldán-López-de-Hiero, A.F.; Karapinar, E.; Roldán-Lopéz-de-Hiero, C.; Martínez-Moreno, J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 2015, 275, 345–355. [Google Scholar] [CrossRef]
  26. Abbas, M.; Jungck, G. Common fixed point results for non-commuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 2008, 341, 416–420. [Google Scholar] [CrossRef] [Green Version]
  27. Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
  28. Collaco, P.; Silva, J.C. A complete comparison of 23 contraction conditions. Nonlinear Anal. TMA 1997, 30, 471–476. [Google Scholar] [CrossRef]
  29. Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; John Willey and Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
  30. Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014. [Google Scholar]
  31. Hussain, N.; Mitrović, Z.D.; Radenović, S. A common fixed point theorem of Fisher in b-metric spaces. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2018, 113, 949–956. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Vujaković, J.; Ljajko, E.; Radojević, S.; Radenović, S. On Some New Jungck–Fisher–Wardowski Type Fixed Point Results. Symmetry 2020, 12, 2048. https://doi.org/10.3390/sym12122048

AMA Style

Vujaković J, Ljajko E, Radojević S, Radenović S. On Some New Jungck–Fisher–Wardowski Type Fixed Point Results. Symmetry. 2020; 12(12):2048. https://doi.org/10.3390/sym12122048

Chicago/Turabian Style

Vujaković, Jelena, Eugen Ljajko, Slobodan Radojević, and Stojan Radenović. 2020. "On Some New Jungck–Fisher–Wardowski Type Fixed Point Results" Symmetry 12, no. 12: 2048. https://doi.org/10.3390/sym12122048

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop