# On a Class of Optimal Fourth Order Multiple Root Solvers without Using Derivatives

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Formulation of Method

**Theorem**

**1.**

**Proof.**

**Theorem**

**2.**

**Proof.**

**Theorem**

**3.**

**Theorem**

**4.**

**Theorem**

**5.**

**Remark**

**1.**

## 3. Main Result

**Theorem**

**6.**

**Proof.**

**Remark**

**2.**

**Remark**

**3.**

#### Some Special Cases

- $(1)$
- Let us choose the function$$H({x}_{k},{y}_{k})={x}_{k}+m\phantom{\rule{0.166667em}{0ex}}{x}_{k}^{2}+(m-1){y}_{k}+m\phantom{\rule{0.166667em}{0ex}}{x}_{k}\phantom{\rule{0.166667em}{0ex}}{y}_{k},$$$${t}_{k+1}={z}_{k}-\left({x}_{k}+m\phantom{\rule{0.166667em}{0ex}}{x}_{k}^{2}+(m-1){y}_{k}+m\phantom{\rule{0.166667em}{0ex}}{x}_{k}\phantom{\rule{0.166667em}{0ex}}{y}_{k}\right)\frac{f({t}_{k})}{f[{s}_{k},{t}_{k}]}.$$
- $(2)$
- Next, consider the rational function$$H({x}_{k},{y}_{k})=-\frac{{x}_{k}+m\phantom{\rule{0.166667em}{0ex}}{x}_{k}^{2}-(m-1){y}_{k}(m\phantom{\rule{0.166667em}{0ex}}{y}_{k}-1)}{m\phantom{\rule{0.166667em}{0ex}}{y}_{k}-1},$$$${t}_{k+1}={z}_{k}+\frac{{x}_{k}+m\phantom{\rule{0.166667em}{0ex}}{x}_{k}^{2}-(m-1){y}_{k}(m\phantom{\rule{0.166667em}{0ex}}{y}_{k}-1)}{m\phantom{\rule{0.166667em}{0ex}}{y}_{k}-1}\frac{f({t}_{k})}{f[{s}_{k},{t}_{k}]}.$$
- $(3)$
- Consider another rational function satisfying the conditions of Theorems 1, 2 and 6, which is given by$$\begin{array}{cc}\hfill H({x}_{k},{y}_{k})=& \phantom{\rule{4pt}{0ex}}\frac{{x}_{k}-{y}_{k}+m\phantom{\rule{0.166667em}{0ex}}{y}_{k}+2m\phantom{\rule{0.166667em}{0ex}}{x}_{k}\phantom{\rule{0.166667em}{0ex}}{y}_{k}-{m}^{2}\phantom{\rule{0.166667em}{0ex}}{x}_{k}\phantom{\rule{0.166667em}{0ex}}{y}_{k}}{1-m\phantom{\rule{0.166667em}{0ex}}{x}_{k}+{x}_{k}^{2}}.\hfill \end{array}$$$${t}_{k+1}={z}_{k}-\frac{{x}_{k}-{y}_{k}+m\phantom{\rule{0.166667em}{0ex}}{y}_{k}+2m\phantom{\rule{0.166667em}{0ex}}{x}_{k}\phantom{\rule{0.166667em}{0ex}}{y}_{k}-{m}^{2}\phantom{\rule{0.166667em}{0ex}}{x}_{k}\phantom{\rule{0.166667em}{0ex}}{y}_{k}}{1-m\phantom{\rule{0.166667em}{0ex}}{x}_{k}+{x}_{k}^{2}}\frac{f({t}_{k})}{f[{s}_{k},{t}_{k}]}.$$

## 4. Numerical Results

**Example**

**1.**

**Example**

**2.**

**Example**

**3.**

**Example**

**4.**

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann.
**1870**, 2, 317–365. [Google Scholar] [CrossRef] - Hansen, E.; Patrick, M. A family of root finding methods. Numer. Math.
**1977**, 27, 257–269. [Google Scholar] [CrossRef] - Victory, H.D.; Neta, B. A higher order method for multiple zeros of nonlinear functions. Int. J. Comput. Math.
**1983**, 12, 329–335. [Google Scholar] [CrossRef] - Dong, C. A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math.
**1987**, 21, 363–367. [Google Scholar] [CrossRef] - Osada, N. An optimal multiple root-finding method of order three. J. Comput. Appl. Math.
**1994**, 51, 131–133. [Google Scholar] [CrossRef] - Neta, B. New third order nonlinear solvers for multiple roots. App. Math. Comput.
**2008**, 202, 162–170. [Google Scholar] [CrossRef] - Li, S.; Liao, X.; Cheng, L. A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput.
**2009**, 215, 1288–1292. [Google Scholar] - Li, S.G.; Cheng, L.Z.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput Math. Appl.
**2010**, 59, 126–135. [Google Scholar] [CrossRef] - Sharma, J.R.; Sharma, R. Modified Jarratt method for computing multiple roots. Appl. Math. Comput.
**2010**, 217, 878–881. [Google Scholar] [CrossRef] - Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. J. Comput. Appl. Math.
**2011**, 235, 4199–4206. [Google Scholar] [CrossRef] - Sharifi, M.; Babajee, D.K.R.; Soleymani, F. Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl.
**2012**, 63, 764–774. [Google Scholar] [CrossRef] - Soleymani, F.; Babajee, D.K.R.; Lotfi, T. On a numerical technique for finding multiple zeros and its dynamics. J. Egypt. Math. Soc.
**2013**, 21, 346–353. [Google Scholar] [CrossRef] - Geum, Y.H.; Kim, Y.I.; Neta, B. A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput.
**2015**, 270, 387–400. [Google Scholar] [CrossRef] - Kansal, M.; Kanwar, V.; Bhatia, S. On some optimal multiple root-finding methods and their dynamics. Appl. Appl. Math.
**2015**, 10, 349–367. [Google Scholar] - Behl, R.; Zafar, F.; Alshormani, A.S.; Junjua, M.U.D.; Yasmin, N. An optimal eighth-order scheme for multiple zeros of unvariate functions. Int. J. Comput. Meth.
**2019**, 16, 1843002. [Google Scholar] [CrossRef] - Traub, J.F. Iterative Methods for the Solution of Equations; Chelsea Publishing Company: New York, NY, USA, 1982. [Google Scholar]
- Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach.
**1974**, 21, 643–651. [Google Scholar] [CrossRef] - Wolfram, S. The Mathematica Book, 5th ed.; Wolfram Media: Bengaluru, India, 2003. [Google Scholar]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett.
**2000**, 13, 87–93. [Google Scholar] [CrossRef] - Bradie, B. A Friendly Introduction to Numerical Analysis; Pearson Education Inc.: New Delhi, India, 2006. [Google Scholar]
- Jäntschi, L.; Bolboacă, S.D. Conformational study of C
_{24}cyclic polyyne clusters. Int. J. Quantum Chem.**2018**, 118, e25614. [Google Scholar] [CrossRef] - Azad, H.; Anaya, K.; Al-Dweik, A.Y.; Mustafa, M.T. Invariant solutions of the wave equation on static spherically symmetric spacetimes admitting G7 isometry algebra. Symmetry
**2018**, 10, 665. [Google Scholar] [CrossRef] - Matko, V.; Brezovec, B. Improved data center energy efficiency and availability with multilayer node event processing. Energies
**2018**, 11, 2478. [Google Scholar] [CrossRef] - Jäntschi, L. The eigenproblem translated for alignment of molecules. Symmetry
**2019**, 11, 1027. [Google Scholar] [CrossRef][Green Version]

Method | k | $|{\mathit{t}}_{2}-{\mathit{t}}_{1}|$ | $|{\mathit{t}}_{3}-{\mathit{t}}_{2}|$ | $|{\mathit{t}}_{4}-{\mathit{t}}_{3}|$ | CCO | CPU-Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

LLC | 4 | $1.51\times {10}^{-5}$ | $1.47\times {10}^{-23}$ | $1.30\times {10}^{-95}$ | 4.000 | 0.4993 | ||||||

LCN | 4 | $1.55\times {10}^{-5}$ | $1.73\times {10}^{-23}$ | $2.65\times {10}^{-95}$ | 4.000 | 0.5302 | ||||||

SS | 4 | $1.52\times {10}^{-5}$ | $1.51\times {10}^{-23}$ | $1.47\times {10}^{-95}$ | 4.000 | 0.6390 | ||||||

ZCS | 4 | $1.57\times {10}^{-5}$ | $1.87\times {10}^{-23}$ | $3.75\times {10}^{-95}$ | 4.000 | 0.6404 | ||||||

SBL | 4 | $1.50\times {10}^{-5}$ | $1.43\times {10}^{-23}$ | $1.19\times {10}^{-95}$ | 4.000 | 0.8112 | ||||||

KKB | fails | - | - | - | - | - | ||||||

NM1 | 3 | $5.59\times {10}^{-6}$ | $1.35\times {10}^{-25}$ | 0 | 4.000 | 0.3344 | ||||||

NM2 | 3 | $5.27\times {10}^{-6}$ | $9.80\times {10}^{-26}$ | 0 | 4.000 | 0.3726 | ||||||

NM3 | 3 | $5.43\times {10}^{-6}$ | $1.16\times {10}^{-25}$ | 0 | 4.000 | 0.3475 |

Method | k | $|{\mathit{t}}_{2}-{\mathit{t}}_{1}|$ | $|{\mathit{t}}_{3}-{\mathit{t}}_{2}|$ | $|{\mathit{t}}_{4}-{\mathit{t}}_{3}|$ | CCO | CPU-Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

LLC | 6 | $9.09\times {10}^{-2}$ | $8.03\times {10}^{-3}$ | $2.33\times {10}^{-5}$ | 4.000 | 0.0780 | ||||||

LCN | 6 | $9.09\times {10}^{-2}$ | $8.03\times {10}^{-3}$ | $2.33\times {10}^{-5}$ | 4.000 | 0.0784 | ||||||

SS | 6 | $9.26\times {10}^{-2}$ | $8.58\times {10}^{-3}$ | $3.11\times {10}^{-5}$ | 4.000 | 0.0945 | ||||||

ZCS | 6 | $9.62\times {10}^{-2}$ | $9.84\times {10}^{-3}$ | $5.64\times {10}^{-5}$ | 4.000 | 0.0792 | ||||||

SBL | 6 | $9.09\times {10}^{-2}$ | $8.03\times {10}^{-3}$ | $2.33\times {10}^{-5}$ | 4.000 | 0.0797 | ||||||

KKB | 6 | $8.97\times {10}^{-2}$ | $7.62\times {10}^{-3}$ | $1.68\times {10}^{-5}$ | 4.000 | 0.0934 | ||||||

NM1 | 6 | $9.91\times {10}^{-2}$ | $1.08\times {10}^{-2}$ | $8.79\times {10}^{-5}$ | 4.000 | 0.0752 | ||||||

NM2 | 6 | $8.06\times {10}^{-2}$ | $5.08\times {10}^{-3}$ | $2.81\times {10}^{-5}$ | 4.000 | 0.0684 | ||||||

NM3 | 6 | $8.78\times {10}^{-2}$ | $7.02\times {10}^{-3}$ | $1.31\times {10}^{-5}$ | 4.000 | 0.0788 |

Method | k | $|{\mathit{t}}_{2}-{\mathit{t}}_{1}|$ | $|{\mathit{t}}_{3}-{\mathit{t}}_{2}|$ | $|{\mathit{t}}_{4}-{\mathit{t}}_{3}|$ | CCO | CPU-Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

LLC | 4 | $1.11\times {10}^{-4}$ | $9.02\times {10}^{-19}$ | $3.91\times {10}^{-75}$ | 4.000 | 2.5743 | ||||||

LCN | 4 | $1.11\times {10}^{-4}$ | $8.93\times {10}^{-19}$ | $3.72\times {10}^{-75}$ | 4.000 | 2.6364 | ||||||

SS | 4 | $1.11\times {10}^{-4}$ | $8.71\times {10}^{-19}$ | $3.29\times {10}^{-75}$ | 4.000 | 2.8718 | ||||||

ZCS | 4 | $1.11\times {10}^{-4}$ | $8.16\times {10}^{-19}$ | $2.38\times {10}^{-75}$ | 4.000 | 2.8863 | ||||||

SBL | 4 | $1.11\times {10}^{-4}$ | $8.63\times {10}^{-19}$ | $3.15\times {10}^{-75}$ | 4.000 | 3.2605 | ||||||

KKB | 4 | $1.11\times {10}^{-4}$ | $9.80\times {10}^{-19}$ | $5.87\times {10}^{-75}$ | 4.000 | 2.9011 | ||||||

NM1 | 4 | $2.31\times {10}^{-5}$ | $4.04\times {10}^{-21}$ | $3.78\times {10}^{-84}$ | 4.000 | 2.2935 | ||||||

NM2 | 4 | $2.07\times {10}^{-5}$ | $1.32\times {10}^{-21}$ | $2.18\times {10}^{-86}$ | 4.000 | 2.5287 | ||||||

NM3 | 4 | $2.11\times {10}^{-5}$ | $1.66\times {10}^{-21}$ | $6.36\times {10}^{-86}$ | 4.000 | 2.4964 |

Method | k | $|{\mathit{t}}_{2}-{\mathit{t}}_{1}|$ | $|{\mathit{t}}_{3}-{\mathit{t}}_{2}|$ | $|{\mathit{t}}_{4}-{\mathit{t}}_{3}|$ | CCO | CPU-Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

LLC | 4 | $2.64\times {10}^{-4}$ | $2.13\times {10}^{-15}$ | $9.11\times {10}^{-60}$ | 4.000 | 1.7382 | ||||||

LCN | 4 | $2.64\times {10}^{-4}$ | $2.14\times {10}^{-15}$ | $9.39\times {10}^{-60}$ | 4.000 | 2.4035 | ||||||

SS | 4 | $2.64\times {10}^{-4}$ | $2.18\times {10}^{-15}$ | $1.01\times {10}^{-59}$ | 4.000 | 2.5431 | ||||||

ZCS | 4 | $2.65\times {10}^{-4}$ | $2.24\times {10}^{-15}$ | $1.14\times {10}^{-59}$ | 4.000 | 2.6213 | ||||||

SBL | 4 | $2.66\times {10}^{-4}$ | $2.28\times {10}^{-15}$ | $1.23\times {10}^{-59}$ | 4.000 | 3.2610 | ||||||

KKB | 4 | $2.61\times {10}^{-4}$ | $2.00\times {10}^{-15}$ | $6.83\times {10}^{-60}$ | 4.000 | 2.6524 | ||||||

NM1 | 4 | $1.43\times {10}^{-4}$ | $1.29\times {10}^{-16}$ | $8.61\times {10}^{-65}$ | 4.000 | 0.5522 | ||||||

NM2 | 4 | $4.86\times {10}^{-5}$ | $5.98\times {10}^{-20}$ | $1.36\times {10}^{-79}$ | 4.000 | 0.6996 | ||||||

NM3 | 4 | $6.12\times {10}^{-5}$ | $6.69\times {10}^{-19}$ | $9.54\times {10}^{-75}$ | 4.000 | 0.6837 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sharma, J.R.; Kumar, S.; Jäntschi, L.
On a Class of Optimal Fourth Order Multiple Root Solvers without Using Derivatives. *Symmetry* **2019**, *11*, 1452.
https://doi.org/10.3390/sym11121452

**AMA Style**

Sharma JR, Kumar S, Jäntschi L.
On a Class of Optimal Fourth Order Multiple Root Solvers without Using Derivatives. *Symmetry*. 2019; 11(12):1452.
https://doi.org/10.3390/sym11121452

**Chicago/Turabian Style**

Sharma, Janak Raj, Sunil Kumar, and Lorentz Jäntschi.
2019. "On a Class of Optimal Fourth Order Multiple Root Solvers without Using Derivatives" *Symmetry* 11, no. 12: 1452.
https://doi.org/10.3390/sym11121452