4-Mercaptopyridine-Modified Sensor for the Sensitive Electrochemical Detection of Mercury Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Preparation of 4-MPY-Modified Gold Electrode
2.3. Computational Method and Models of Hg(pyridine)2 Complex
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Electrochemical Performance Characterizations of 4-MPY-Modified Electrode
3.2. XPS Characterizations of 4-MPY/Au
3.3. Computational Method and Models of Pyridine Complex
3.4. Optimization of Experimental Conditions
3.5. Analytical Performance for Hg2+ Detection
3.6. Repeatability, Reproducibility and Reusability Studies
3.7. Selectivity and Anti-Interference Ability Studies
3.8. Detection of Hg2+ in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, P.; Feng, X.B.; Qiu, G.L.; Li, Z.G.; Fu, X.W.; Sakamoto, M.S.; Liu, X.J.; Wanga, D.Y. Mercury exposures and symptoms in smelting workers of artisanal mercury mines in Wuchuan, Guizhou, China. Environ. Res. 2008, 107, 108–114. [Google Scholar] [CrossRef]
- Ando, S.; Koide, K. Development and Applications of Fluorogenic Probes for Mercury(II) Based on Vinyl Ether Oxymercuration. J. Am. Chem. Soc. 2011, 133, 2556–2566. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aragay, G.; Pons, J.; Merkoci, A. Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chem. Rev. 2011, 111, 3433–3458. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, W.X. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton. Environ. Pollut. 2011, 159, 3097–3105. [Google Scholar] [CrossRef]
- Li, T.; Dong, S.J.; Wang, E. Label-Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+) Using Hg2+-Modulated G-Quadruplex-Based DNAzymes. Anal. Chem. 2009, 81, 2144–2149. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, A.; Vaiano, P.; Caporale, A.; Consales, M.; Ruvo, M.; Cusano, A. Fluorescent chemosensors for Hg2+ detection in aqueous environment. Sens. Actuators B Chem. 2017, 247, 727–735. [Google Scholar] [CrossRef]
- Guo, X.Y.; Chen, F.; Wang, F.; Wu, Y.P.; Ying, Y.; Wen, Y.; Yang, H.F.; Ke, Q.F. Recyclable Raman chip for detection of trace Mercury ions. Chem. Eng. J. 2020, 390, 124528. [Google Scholar] [CrossRef]
- Jia, S.; Bian, C.; Tong, J.H.; Sun, J.Z.; Xia, S.H. A Fiber-optic Sensor Based on Plasmon Coupling Effects in Gold Nanoparticles Core-satellites Nanostructure for Determination of Mercury Ions (II). Chin. J. Anal. Chem. 2017, 45, 785–790. [Google Scholar] [CrossRef]
- Kim, E.B.; Imran, M.; Akhtar, M.S.; Shin, H.S.; Ameen, S. Enticing 3D peony-like ZnGa2O4 microstructures for electrochemical detection of N, N-dimethylmethanamide chemical. J. Hazard. Mater. 2021, 404, 124069. [Google Scholar] [CrossRef]
- Cirrincione, M.; Zanfrognini, B.; Pigani, L.; Protti, M.; Mercolini, L.; Zanardi, C. Development of an electrochemical sensor based on carbon black for the detection of cannabidiol in vegetable extracts. Analyst 2021, 146, 612–619. [Google Scholar] [CrossRef]
- Xu, J.T.; Zhao, C.; Chau, Y.; Lee, Y.K. The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry. Biosens. Bioelectron. 2020, 151, 111914. [Google Scholar] [CrossRef] [PubMed]
- Stoian, I.A.; Iacob, B.C.; Dudas, C.L.; Barbu-Tudoran, L.; Bogdan, D.; Marian, I.O.; Bodoki, E.; Oprean, R. Biomimetic electrochemical sensor for the highly selective detection of azithromycin in biological samples. Biosens. Bioelectron. 2020, 155, 112098. [Google Scholar] [CrossRef] [PubMed]
- Cidu, R.; Frau, F.; Tore, P. Drinking water quality: Comparing inorganic components in bottled water and Italian tap water. J. Food Compos. Anal. 2011, 24, 184–193. [Google Scholar] [CrossRef]
- Singh, S.; Numan, A.; Zhan, Y.Q.; Singh, V.; Hung, T.V.; Nam, N.D. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework. J. Hazard. Mater. 2020, 399, 123042. [Google Scholar] [CrossRef]
- Wang, Y.G.; Wang, Y.Y.; Wang, F.Z.; Chi, H.; Zhao, G.H.; Zhang, Y.; Li, T.D.; Wei, Q. Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions. J. Colloid Interface Sci. 2022, 606, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.Y.; Wang, S.L.; Wang, W.W.; Niu, Z.J.; Rodas-Gonzalez, A.; Li, K.K.; Li, L.; Yang, Q. CoNi bimetallic metal-organic framework and gold nanoparticles-based aptamer electrochemical sensor for enrofloxacin detection. Appl. Surf. Sci. 2022, 604, 154369. [Google Scholar] [CrossRef]
- Sakthi Priya, T.; Chen, T.-W.; Chen, S.-M.; Kokulnathan, T. Bismuth Molybdate/Graphene Nanocomposite for Electrochemical Detection of Mercury. ACS Appl. Nano Mater. 2022, 5, 12518–12526. [Google Scholar] [CrossRef]
- Arulraj, A.D.; Devasenathipathy, R.; Chen, S.M.; Vasantha, V.S.; Wang, S.F. Femtomolar detection of mercuric ions using polypyrrole, pectin and graphene nanocomposites modified electrode. J. Colloid Interface Sci. 2016, 483, 268–274. [Google Scholar] [CrossRef]
- Ziolkowski, R.; Uscinska, A.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Malinowska, E. Directly-thiolated graphene based electrochemical sensor for Hg(II) ion. Electrochim. Acta 2019, 305, 329–337. [Google Scholar] [CrossRef]
- Jeromiyas, N.; Elaiyappillai, E.; Kumar, A.S.; Huang, S.T.; Mani, V. Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection. J. Taiwan Inst. Chem. Eng. 2019, 95, 466–474. [Google Scholar] [CrossRef]
- Xia, Y.X.; Li, J.T.; Zhu, G.B.; Yi, Y.H. Innovative strategy based on novel Ti3C2Tx MXenes nanoribbons/carbon nanotubes hybrids for anodic stripping voltammetry sensing of mercury ion. Sens. Actuators B Chem. 2022, 355, 131247. [Google Scholar] [CrossRef]
- Bao, Q.W.; Li, G.; Yang, Z.C.; Pan, P.; Liu, J.; Chang, J.Y.; Wei, J.; Lin, L. Electrochemical performance of a three-layer electrode based on Bi nanoparticles, multi-walled carbon nanotube composites for simultaneous Hg(II) and Cu(II) detection. Chin. Chem. Lett. 2020, 31, 2752–2756. [Google Scholar] [CrossRef]
- Memon, A.G.; Zhou, X.H.; Liu, J.C.; Wang, R.Y.; Liu, L.H.; Yu, B.F.; He, M.; Shi, H.C. Utilization of unmodified gold nanoparticles for label-free detection of mercury (II): Insight into rational design of mercury-specific oligonucleotides. J. Hazard. Mater. 2017, 321, 417–423. [Google Scholar] [CrossRef]
- Bala, A.; Gorski, L. Determination of mercury cation using electrode modified with phosphorothioate oligonucleotide. Sens. Actuators B Chem. 2016, 230, 731–735. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.F.; Wang, Y.X.; Li, W.; Chen, Z.B. Electrochemical DNA sensor based on T-Hg-T pairs and exonuclease III for sensitive detection of Hg2+. Sens. Actuators B Chem. 2021, 343, 130151. [Google Scholar] [CrossRef]
- Mariyappan, V.; Manavalan, S.; Chen, S.M.; Jaysiva, G.; Veerakumar, P.; Keerthi, M. Sr@FeNi-S Nanoparticle/Carbon Nanotube Nanocomposite with Superior Electrocatalytic Activity for Electrochemical Detection of Toxic Mercury(II). Acs Appl. Electron. Mater. 2020, 2, 1943–1952. [Google Scholar] [CrossRef]
- Teodoro, K.B.R.; Migliorini, F.L.; Facure, M.H.M.; Correa, D.S. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury (II) (vol 207, 747, 2019). Carbohydr. Polym. 2020, 229, 115495. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xie, K.F.; Wang, A.W.; Lyu, F.C.; Ge, J.Y.; Zhang, L.X.; Zhang, H.W.; Su, W.T.; Hou, Y.L.; Zhou, C.T.; et al. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Anal. Chim. Acta 2019, 1081, 51–58. [Google Scholar] [CrossRef]
- Scandurra, A.; Ruffino, F.; Urso, M.; Grimaldi, M.G.; Mirabella, S. Disposable and Low-Cost Electrode Based on Graphene Paper-Nafion-Bi Nanostructures for Ultra-Trace Determination of Pb(II) and Cd(II). Nanomaterials 2020, 10, 1620. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.F.; Xamxikamar, M.; Li, Y.T.; Hu, X.; Cheng, H.; Hu, G.Z. A composite with botryoidal texture prepared from nitrogen-doped carbon spheres and carbon nanotubes for voltammetric sensing of copper(II). Microchem. J. 2020, 153, 104299. [Google Scholar] [CrossRef]
- He, H.N.; Huang, D.; Tang, Y.G.; Wang, Q.; Ji, X.B.; Wang, H.Y.; Guo, Z.P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.L.; Zhou, M.; Fu, Q.; Zhao, C.X.; Wu, M.H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mizutani, G.; Ushioda, S. Normal mode analysis of surface adsorbed and coordinated pyridine molecule. J. Chem. Phys. 1989, 91, 598–602. [Google Scholar] [CrossRef]
- Akyuz, S.; Dempster, A.B.; Suzuki, S. Infrared and raman spectroscopic study of some metal pyridine tetracyanonickelate complexes. J. Mol. Struct. 1973, 17, 105–125. [Google Scholar] [CrossRef]
- Zhou, M.L.; Tang, T.F.; Qin, D.F.; Cheng, H.; Wang, X.Z.; Chen, J.B.; Wagberg, T.; Hu, G.Z. Hematite nanoparticle decorated MIL-100 for the highly selective and sensitive electrochemical detection of trace-level paraquat in milk and honey. Sens. Actuators B Chem. 2023, 376, 132931. [Google Scholar] [CrossRef]
- Egan, J.G.; Hynes, A.J.; Fruehwald, H.M.; Ebralidze, I.I.; King, S.D.; Esfahani, R.A.M.; Naumkin, F.Y.; Easton, E.B.; Zenkina, O.V. A novel material for the detection and removal of mercury(II) based on a 2,6-bis(2-thienyl)pyridine receptor. J. Mater. Chem. C 2019, 7, 10187–10195. [Google Scholar] [CrossRef]
- Muneyasu, R.; Yamada, T.; Akai-Kasaya, M.; Kato, H.S. Self-assembly of heterogeneous bilayers stratified by Au-S and hydrogen bonds on Au(111). Phys. Chem. Chem. Phys. 2022, 24, 22222–22230. [Google Scholar] [CrossRef]
- Fu, Q.B.; Zhang, T.T.; Sun, X.; Zhang, S.K.; Waterhouse, G.I.N.; Sun, C.; Li, H.S.; Ai, S.Y. Pyridine-based covalent organic framework for efficient and selective removal of Hg(II) from water: Adsorption behavior and adsorption mechanism investigations. Chem. Eng. J. 2023, 454, 140154. [Google Scholar] [CrossRef]
- Tanaka, M.; Tabata, M. Stability Constants of Metal(II) Complexes with Amines and Aminocarboxylates with Special Reference to Chelation. Bull. Chem. Soc. Jpn. 2009, 82, 1258–1265. [Google Scholar] [CrossRef][Green Version]
- Kurihara, M.; Ozutsumi, K.; Kawashima, T. Complexation of manganese(II) and zinc(II) ions with pyridine, 3-methylpyridine and 4-methylpyridine in dimethylformamide. J. Chem. Soc.-Dalton Trans. 1993, 22, 3379–3382. [Google Scholar] [CrossRef]
- Bjerrum, J. Metal Ammine Formation in Solution. 15. Silver(I) Pyridine and Mercury(II) Pyridine and Some Other Mercury(II) Amine Systems. Acta Chem. Scand. 1972, 26, 2734–2742. [Google Scholar] [CrossRef][Green Version]
- Kučera, J.; Gross, A. Adsorption of 4-Mercaptopyridine on Au(111): A Periodic DFT Study. Langmuir 2008, 24, 13985–13992. [Google Scholar] [CrossRef] [PubMed]
- Brolo, A.G.; Odziemkowski, M.; Irish, D.E. An in situ Raman spectroscopic study of electrochemical processes in mercury-solution interphases. J. Raman Spectrosc. 1998, 29, 713–719. [Google Scholar] [CrossRef]
- Huang, Y.L.; Gao, Z.F.; Jia, J.; Luo, H.Q.; Li, N.B. A label-free electrochemical sensor for detection of mercury(II) ions based on lthe direct growth of guanine nanowire. J. Hazard. Mater. 2016, 308, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Majumder, S. Fabrication of a Label-free Femtomolar Electrochemical Mercury Ion Biosensor Based on Oligonucleotide Receptor Layers Hybridized with Multi-walled Carbon Nanotubes. Electroanalysis 2022, 34, 1673–1681. [Google Scholar] [CrossRef]
- Eranjaneya, H.; Adarakatti, P.S.; Siddaramanna, A.; Thimmanna, C.G. Nickel tungstate nanoparticles: Synthesis, characterization and electrochemical sensing of mercury(II) ions. J. Mater. Sci. Mater. Electron. 2019, 30, 3574–3584. [Google Scholar] [CrossRef]
- Fayazi, M.; Taher, M.A.; Afzali, D.; Mostafavi, A. Fe3O4 and MnO2 assembled on halloysite nanotubes: A highly efficient solid-phase extractant for electrochemical detection of mercury(II) ions. Sens. Actuators B Chem. 2016, 228, 1–9. [Google Scholar] [CrossRef]
- Palanisamy, S.; Thangavelu, K.; Chen, S.M.; Velusamy, V.; Chang, M.H.; Chen, T.W.; Al-Hemaid, F.M.A.; Ali, M.A.; Ramaraj, S.K. Synthesis and characterization of polypyrrole decorated graphene/beta-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sens. Actuators B Chem. 2017, 243, 888–894. [Google Scholar] [CrossRef][Green Version]
- Zaitoun, M.A.; Lin, C.T. Chelating behavior between metal ions and EDTA in sol-gel matrix. J. Phys. Chem. B 1997, 101, 1857–1860. [Google Scholar] [CrossRef]
- Yang, X.; Han, X.; Zhang, Y.; Liu, J.; Tang, J.; Zhang, D.; Zhao, Y.; Ye, Y. Imaging Hg2+-Induced Oxidative Stress by NIR Molecular Probe with “Dual-Key-and-Lock” Strategy. Anal. Chem. 2020, 92, 12002–12009. [Google Scholar] [CrossRef]
- Guerrini, L.; Rodriguez-Loureiro, I.; Correa-Duarte, M.A.; Lee, Y.H.; Ling, X.Y.; de Abajo, F.J.G.; Alvarez-Puebla, R.A. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: Identification and quantification of inorganic- and methyl-mercury in water. Nanoscale 2014, 6, 8368–8375. [Google Scholar] [CrossRef] [PubMed]
Electrode | Sensing Material | Method | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Glassy carbon electrode | Sr@FeNi-S nanoparticles/carbon nanotubes | DPV | 10 μg/L–55.8 mg/L | 0.1 μg/L | [26] |
Fluorine tin-oxide electrode | Polyamide 6/cellulose/reduced graphene oxide | DPV | 500 μg/L–15 mg/L | 1 μg/L | [27] |
Gold electrode | Guanine nanowire | Chronoamperometry | 0.02 μg/L–20 μg/L | 0.007 μg/L | [44] |
Gold electrode | Carbon Nanotubes/oligonucleotide | SWV 1 | 0.2 pg/L–20 μg/L | 0.1 pg/L | [45] |
Glassy carbon electrode | Nickel tungstate nanoparticles | DPSV 2 | 2 μg/L–120 μg/L | 0.5 μg/L | [46] |
Magnetic carbon paste electrode | Fe3O4/MnO2/halloysite nanotubes | DPV | 0.5 μg/L–150 μg/L | 0.2 μg/L | [47] |
Screen-printed carbon electrode | Polypyrrole decorated graphene/β-cyclodextrin | DPV | 0.2 μg/L–10.3 mg/L | 0.09 μg/L | [48] |
Gold electrode | 4-Mercaptopyridine | DPV | 0.1 μg/L–500 μg/L | 0.02 μg/L | This work |
EIS | 0.01 μg/L–500 μg/L | 0.002 μg/L |
Added (μg/L) | Found (μg/L) | RSD (%, n = 3) | Recovery (%) | |
---|---|---|---|---|
Tap water | 0.01 | 0.0094 | 3.82 | 94.66% |
0.05 | 0.049 | 9.63 | 98.69% | |
10 | 11.169 | 0.52 | 111.69% | |
Pond water | 0.01 | 0.0092 | 5.39 | 92.02% |
0.05 | 0.059 | 1.41 | 118.68 | |
10 | 11.12 | 5.46 | 111.19% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Xie, Y.; Wang, R.; Li, Y.; Bian, C.; Xia, S. 4-Mercaptopyridine-Modified Sensor for the Sensitive Electrochemical Detection of Mercury Ions. Micromachines 2023, 14, 739. https://doi.org/10.3390/mi14040739
Han M, Xie Y, Wang R, Li Y, Bian C, Xia S. 4-Mercaptopyridine-Modified Sensor for the Sensitive Electrochemical Detection of Mercury Ions. Micromachines. 2023; 14(4):739. https://doi.org/10.3390/mi14040739
Chicago/Turabian StyleHan, Mingjie, Yong Xie, Ri Wang, Yang Li, Chao Bian, and Shanhong Xia. 2023. "4-Mercaptopyridine-Modified Sensor for the Sensitive Electrochemical Detection of Mercury Ions" Micromachines 14, no. 4: 739. https://doi.org/10.3390/mi14040739