The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip
Abstract
:1. General Introduction
- The case of fluids being driven by light which manifests on the practical level as particles and fluids manipulation.
- Or conversely light manipulation by fluid which mainly manifests as the analysis of biological and chemical samples on the LoC level.
2. OMLoC: On-Chip Fluids Manipulation by Light
2.1. Introduction
2.2. Theory: Analytical Solutions and Numerical Simulations
- (1)
- a scattering force , in the direction of light propagation
- (2)
- a gradient force , in the direction of the spatial light gradient.
- Rayleigh Regime: for , hence for particles smaller than the wavelength. The theory for the evaluation of each one of them separately is based on electromagnetic model or what is also called the dipole approximation [49],
- Lorenz-Mie Regime: and finally for , when the particle’s size is comparable to that of the wavelength of light, the generalised and more complex Lorenz-Mie theory, from which the first two regimes decline, must be applied.
2.2.1. Rayleigh Regime
2.2.2. Mie Regime
2.2.3. Lorentz-Mie Regime
2.2.4. The Trapping Potential and Particle’s Dynamics
- the approximation of PDF from Brownian dynamics simulation of a sufficiently large number of independent trajectories,
- the resolution of the Flokker-Planck first order differential equation,
- the approximation of at equilibrium (), by the use of a Boltzmann distribution knowing the field potential.
2.3. 2D Optical Manipulation: Actuators
2.4. 3D Optical Manipulation: Traps and Tweezers
2.4.1. Waveguide Traps (WGTs)
2.4.2. Resonant Cavity Traps (RCTs)
2.4.3. Plasmonic Optical Traps (POT)
2.5. Deformation of Liquid-Liquid (L2) Interfaces and Membranes
2.6. Summary
3. OMLoC: On-Chip Optic Enabled Fluidic Analysis
3.1. Absorbance
3.1.1. Optical Path Length
3.1.2. Material Transmittance
3.1.3. Optical Waveguiding
3.2. Luminescence (Fluorescence/Chemiluminescence)
3.3. Refractive Index Variation Detection
3.4. Summary
4. Perspectives and Trends
4.1. Materials
4.2. Modular Optofluidics
5. General Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
LoC | Lab-on-Chip |
OM-LoC | Opto-Microfluidic Lab-on-Chip |
UV | Ultraviolet |
IR | Infrared |
OET | Opto-Electronic Tweezer |
COT | Conventional Optical Tweezer |
ITO | Indium Tin Oxide |
DEP | Dielectrophoresis |
MST | Maxwell Stress Tensor |
SIBA | Self-Induced Back-Action |
HHD | Helmholtz–Hodge decomposition |
Probability Density Function | |
PS | Polystyrene |
PDMS | poly(dimethylsiloxane) |
WGT | Waveguide Trap |
RCT | Resonant Cavity Trap |
POT | Plasmonic Optical Trap |
nSWAT | nanophotonic Standing Wave Array Trap |
SOI | Silicon-on-insulator |
WGM | Whispering Gallery Mode |
L2 | Liquid–Liquid |
RBC | Red Blood Cell |
RI | Refractive Index |
LOD | Limit of Detection |
POC | Point-of-Care |
F-P | Fabry–Perot |
NA | Numerical Aperture |
TIR | Total Internal Reflection |
PMMA | Poly(methylmethacrylate) |
COC | Cyclic Olefin Copolymer |
WCID | Whole Channel Imaging Detection |
LED | Light-Emitting Diode |
ARROW | Antiresonant Reflecting Optical Waveguides |
CV | Coefficient of Variation |
PCF | Photonic Crystal Fibres |
MZI | Mach–Zender Interferometers |
FSL | Femtosecond Laser |
FLICE | Femtosecond Laser Irradiation followed by Chemical Etching |
PD | Photodiode |
IoT | Internet of Things |
PTFE | Polytetrafluoroethylene |
MFIC | Microfluidic Instrumentation Components |
MDPI | Multidisciplinary Digital Publishing Institute |
References
- Psaltis, D.; Quake, S.R.; Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 2006, 442, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Monat, C.; Domachuk, P.; Eggleton, B. Integrated optofluidics: A new river of light. Nat. Photonics 2007, 1, 106. [Google Scholar] [CrossRef]
- Hawkins, A.R.; Schmidt, H. Handbook of Optofluidics; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Gibson, B.K. Liquid Mirror Telescopes-History. J. R. Astron. Soc. Can. 1991, 85, 158. [Google Scholar]
- Schäfer, F.P. 1. Principles of dye laser operation. In Dye Lasers; Springer: Berlin/Heidelberg, Germany, 1973; pp. 1–89. [Google Scholar]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of microfluidic droplets. Lab Chip 2010, 10, 2032–2045. [Google Scholar] [CrossRef][Green Version]
- Fan, X.; White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 2011, 5, 591. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Persichetti, G.; Sarro, P.M.; Bernini, R. A hybrid silicon-PDMS optofluidic platform for sensing applications. Biomed. Opt. Express 2014, 5, 417–426. [Google Scholar] [CrossRef][Green Version]
- Parks, J.W.; Cai, H.; Zempoaltecatl, L.; Yuzvinsky, T.D.; Leake, K.; Hawkins, A.R.; Schmidt, H. Hybrid optofluidic integration. Lab Chip 2013, 13, 4118–4123. [Google Scholar] [CrossRef][Green Version]
- Osellame, R.; Hoekstra, H.J.; Cerullo, G.; Pollnau, M. Femtosecond laser microstructuring: An enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 2011, 5, 442–463. [Google Scholar] [CrossRef]
- Bettella, G.; Zamboni, R.; Pozza, G.; Zaltron, A.; Montevecchi, C.; Pierno, M.; Mistura, G.; Sada, C.; Gauthier-Manuel, L.; Chauvet, M. LiNbO3 integrated system for opto-microfluidic sensing. Sens. Actuators B Chem. 2019, 282, 391–398. [Google Scholar] [CrossRef]
- Özbakır, Y.; Jonas, A.; Kiraz, A.; Erkey, C. Aerogels for optofluidic waveguides. Micromachines 2017, 8, 98. [Google Scholar] [CrossRef][Green Version]
- Jo, K.; Chen, Y.L.; de Pablo, J.J.; Schwartz, D.C. Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows. Lab Chip 2009, 9, 2348–2355. [Google Scholar] [CrossRef][Green Version]
- Ahluwalia, B.S.; McCourt, P.; Oteiza, A.; Wilkinson, J.S.; Huser, T.R.; Hellesø, O.G. Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst 2015, 140, 223–229. [Google Scholar] [CrossRef] [PubMed][Green Version]
- van de Stolpe, A.; Pantel, K.; Sleijfer, S.; Terstappen, L.W.; Den Toonder, J.M. Circulating tumor cell isolation and diagnostics: Toward routine clinical use. Cancer Res. 2011, 71, 5955–5960. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cheng, X.; Irimia, D.; Dixon, M.; Sekine, K.; Demirci, U.; Zamir, L.; Tompkins, R.G.; Rodriguez, W.; Toner, M. A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip 2007, 7, 170–178. [Google Scholar] [CrossRef]
- Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24, 156. [Google Scholar] [CrossRef][Green Version]
- Ohta, A.T.; Chiou, P.Y.; Han, T.H.; Liao, J.C.; Bhardwaj, U.; McCabe, E.R.; Yu, F.; Sun, R.; Wu, M.C. Dynamic cell and microparticle control via optoelectronic tweezers. J. Microelectromech. Syst. 2007, 16, 491–499. [Google Scholar] [CrossRef][Green Version]
- Neale, S.L.; MacDonald, M.P.; Dholakia, K.; Krauss, T.F. All-optical control of microfluidic components using form birefringence. Nat. Mater. 2005, 4, 530. [Google Scholar] [CrossRef]
- Biddiss, E.; Erickson, D.; Li, D. Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal. Chem. 2004, 76, 3208–3213. [Google Scholar] [CrossRef]
- Huang, P.H.; Xie, Y.; Ahmed, D.; Rufo, J.; Nama, N.; Chen, Y.; Chan, C.Y.; Huang, T.J. An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip 2013, 13, 3847–3852. [Google Scholar] [CrossRef]
- Kumemura, M.; Collard, D.; Yamahata, C.; Sakaki, N.; Hashiguchi, G.; Fujita, H. Single DNA molecule isolation and trapping in a microfluidic device. ChemPhysChem 2007, 8, 1875–1880. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Tu, E.; Raymond, D.E.; Yang, J.M.; Zhang, H.; Hagen, N.; Dees, B.; Mercer, E.M.; Forster, A.H.; Kariv, I.; et al. Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 2005, 23, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, A.; Rufo, J.; Guo, F.; Gu, Y.; Li, P.; Lata, J.; Huang, T.J. Acoustic tweezers for the life sciences. Nat. Methods 2018, 15, 1021–1028. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, L.R.; Tegenfeldt, J.O.; Kraeft, J.J.; Sturm, J.C.; Austin, R.H.; Cox, E.C. A DNA prism for high-speed continuous fractionation of large DNA molecules. Nat. Biotechnol. 2002, 20, 1048–1051. [Google Scholar] [CrossRef]
- Rosenthal, A.; Voldman, J. Dielectrophoretic traps for single-particle patterning. Biophys. J. 2005, 88, 2193–2205. [Google Scholar] [CrossRef][Green Version]
- Wu, M.C. Optoelectronic tweezers. Nat. Photonics 2011, 5, 322–324. [Google Scholar] [CrossRef]
- Ashkin, A. Atomic-beam deflection by resonance-radiation pressure. Phys. Rev. Lett. 1970, 25, 1321. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef][Green Version]
- Kawata, S.; Sugiura, T. Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt. Lett. 1992, 17, 772–774. [Google Scholar] [CrossRef]
- Pin, C.; Jager, J.B.; Tardif, M.; Picard, E.; Hadji, E.; de Fornel, F.; Cluzel, B. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide. Lab Chip 2018, 18, 1750–1757. [Google Scholar] [CrossRef][Green Version]
- Hatano, T.; Kaneta, T.; Imasaka, T. Application of optical chromatography to immunoassay. Anal. Chem. 1997, 69, 2711–2715. [Google Scholar] [CrossRef]
- Imasaka, T. Optical chromatography. A new tool for separation of particles. Analusis 1998, 26, 53. [Google Scholar] [CrossRef][Green Version]
- Terray, A.; Arnold, J.; Hart, S. Enhanced optical chromatography in a PDMS microfluidic system. Opt. Express 2005, 13, 10406–10415. [Google Scholar] [CrossRef] [PubMed]
- Casner, A.; Delville, J.P. Giant deformations of a liquid-liquid interface induced by the optical radiation pressure. Phys. Rev. Lett. 2001, 87, 054503. [Google Scholar] [CrossRef]
- Casner, A.; Delville, J.P. Laser-induced hydrodynamic instability of fluid interfaces. Phys. Rev. Lett. 2003, 90, 144503. [Google Scholar] [CrossRef][Green Version]
- Casner, A.; Delville, J.P. Laser-sustained liquid bridges. EPL (Europhys. Lett.) 2004, 65, 337. [Google Scholar] [CrossRef]
- Vogel, A.; Busch, S.; Parlitz, U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 1996, 100, 148–165. [Google Scholar] [CrossRef]
- Li, Z.; Ando, K.; Yu, J.; Liu, A.; Zhang, J.; Ohl, C. Fast on-demand droplet fusion using transient cavitation bubbles. Lab Chip 2011, 11, 1879–1885. [Google Scholar] [CrossRef]
- Chen, Y.; Chung, A.J.; Wu, T.H.; Teitell, M.A.; Di Carlo, D.; Chiou, P.Y. Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. Small 2014, 10, 1746–1751. [Google Scholar] [CrossRef][Green Version]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Prasad, P.N. Nanophotonics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kawata, S.; Ohtsu, M.; Irie, M. Near-Field Optics and Surface Plasmon Polaritons; Springer Science & Business Media: Cham, Switzerland, 2001; Volume 81, pp. 124–125. [Google Scholar]
- Valley, J.K.; Jamshidi, A.; Ohta, A.T.; Hsu, H.Y.; Wu, M.C. Operational regimes and physics present in optoelectronic tweezers. J. Microelectromech. Syst. 2008, 17, 342–350. [Google Scholar] [CrossRef][Green Version]
- Yang, S.M.; Yu, T.M.; Huang, H.P.; Ku, M.Y.; Hsu, L.; Liu, C.H. Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. Opt. Lett. 2010, 35, 1959–1961. [Google Scholar] [CrossRef]
- Pauzauskie, P.J.; Jamshidi, A.; Valley, J.K.; Satcher, J.H., Jr.; Wu, M.C. Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers. Appl. Phys. Lett. 2009, 95, 113104. [Google Scholar] [CrossRef][Green Version]
- Zaman, M.A.; Padhy, P.; Cheng, Y.T.; Galambos, L.; Hesselink, L. Optoelectronic tweezers with a non-uniform background field. Appl. Phys. Lett. 2020, 117, 171102. [Google Scholar] [CrossRef]
- Irvine, W.M. Light scattering by spherical particles: Radiation pressure, asymmetry factor, and extinction cross section. J. Opt. Soc. Am. 1965, 55, 16–21. [Google Scholar] [CrossRef]
- Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 1992, 61, 569–582. [Google Scholar] [CrossRef][Green Version]
- Wright, W.; Sonek, G.; Berns, M. Radiation trapping forces on microspheres with optical tweezers. Appl. Phys. Lett. 1993, 63, 715–717. [Google Scholar] [CrossRef][Green Version]
- Ng, L.N.; Luff, B.J.; Zervas, M.N.; Wilkinson, J.S. Forces on a Rayleigh particle in the cover region of a planar waveguide. J. Light. Technol. 2000, 18, 388–400. [Google Scholar] [CrossRef][Green Version]
- Ng, L.; Luff, B.; Zervas, M.; Wilkinson, J. Propulsion of gold nanoparticles on optical waveguides. Opt. Commun. 2002, 208, 117–124. [Google Scholar] [CrossRef]
- Roosen, G. La levitation optique de spheres. Can. J. Phys. 1979, 57, 1260–1279. [Google Scholar] [CrossRef]
- Almaas, E.; Brevik, I. Radiation forces on a micrometer-sized sphere in an evanescent field. J. Opt. Soc. Am. B 1995, 12, 2429–2438. [Google Scholar] [CrossRef]
- Walz, J.Y. Ray optics calculation of the radiation forces exerted on a dielectric sphere in an evanescent field. Appl. Opt. 1999, 38, 5319–5330. [Google Scholar] [CrossRef]
- Helle, Ø.I.; Ahluwalia, B.S.; Hellesø, O.G. Optical transport, lifting and trapping of micro-particles by planar waveguides. Opt. Express 2015, 23, 6601–6612. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jaising, H.Y.; Hellesø, O.G. Radiation forces on a Mie particle in the evanescent field of an optical waveguide. Opt. Commun. 2005, 246, 373–383. [Google Scholar] [CrossRef]
- Hellesø, O.G. Optical pressure and numerical simulation of optical forces. Appl. Opt. 2017, 56, 3354–3358. [Google Scholar] [CrossRef] [PubMed]
- Lester, M.; Nieto-Vesperinas, M. Optical forces on microparticles in an evanescent laser field. Opt. Lett. 1999, 24, 936–938. [Google Scholar] [CrossRef]
- Juan, M.L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 2009, 5, 915–919. [Google Scholar] [CrossRef]
- Neumeier, L.; Quidant, R.; Chang, D.E. Self-induced back-action optical trapping in nanophotonic systems. New J. Phys. 2015, 17, 123008. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Hansen, P.C.; Hesselink, L. Extracting the potential-well of a near-field optical trap using the Helmholtz-Hodge decomposition. Appl. Phys. Lett. 2018, 112, 091103. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Hesselink, L. Near-field optical trapping in a non-conservative force field. Sci. Rep. 2019, 9, 649. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Hesselink, L. Solenoidal optical forces from a plasmonic Archimedean spiral. Phys. Rev. A 2019, 100, 013857. [Google Scholar] [CrossRef] [PubMed]
- Risken, H. Fokker-planck equation. In The Fokker-Planck Equation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 63–95. [Google Scholar]
- Tatarkova, S.A.; Sibbett, W.; Dholakia, K. Brownian particle in an optical potential of the washboard type. Phys. Rev. Lett. 2003, 91, 038101. [Google Scholar] [CrossRef] [PubMed]
- Volpe, G.; Volpe, G. Simulation of a Brownian particle in an optical trap. Am. J. Phys. 2013, 81, 224–230. [Google Scholar] [CrossRef][Green Version]
- Ermak, D.L.; McCammon, J.A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69, 1352–1360. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Hesselink, L. Fokker-Planck analysis of optical near-field traps. Sci. Rep. 2019, 9, 9557. [Google Scholar] [CrossRef]
- Kawata, S.; Tani, T. Optically driven Mie particles in an evanescent field along a channeled waveguide. Opt. Lett. 1996, 21, 1768–1770. [Google Scholar] [CrossRef]
- Bradac, C. Nanoscale optical trapping: A review. Adv. Opt. Mater. 2018, 6, 1800005. [Google Scholar] [CrossRef][Green Version]
- Gaugiran, S.; Gétin, S.; Fedeli, J.M.; Colas, G.; Fuchs, A.; Chatelain, F.; Dérouard, J. Optical manipulation of microparticles and cells on silicon nitride waveguides. Opt. Express 2005, 13, 6956–6963. [Google Scholar] [CrossRef]
- Grujic, K.; Hellesø, O.G.; Hole, J.P.; Wilkinson, J.S. Sorting of polystyrene microspheres using a Y-branched optical waveguide. Opt. Express 2005, 13, 1–7. [Google Scholar] [CrossRef][Green Version]
- Almeida, V.R.; Xu, Q.; Barrios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar] [CrossRef]
- Yang, A.H.; Moore, S.D.; Schmidt, B.S.; Klug, M.; Lipson, M.; Erickson, D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009, 457, 71–75. [Google Scholar] [CrossRef]
- Yang, A.H.; Lerdsuchatawanich, T.; Erickson, D. Forces and transport velocities for a particle in a slot waveguide. Nano Lett. 2009, 9, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.S.; Yang, A.H.; Erickson, D.; Lipson, M. Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Opt. Express 2007, 15, 14322–14334. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Erickson, D.; Serey, X.; Chen, Y.F.; Mandal, S. Nanomanipulation using near field photonics. Lab Chip 2011, 11, 995–1009. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, N.; Shi, Y.; Xin, H.; Li, B. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation. Micromachines 2020, 11, 114. [Google Scholar] [CrossRef][Green Version]
- Mandal, S.; Serey, X.; Erickson, D. Nanomanipulation using silicon photonic crystal resonators. Nano Lett. 2010, 10, 99–104. [Google Scholar] [CrossRef]
- Quidant, R.; Girard, C. Surface-plasmon-based optical manipulation. Laser Photonics Rev. 2008, 2, 47–57. [Google Scholar] [CrossRef]
- Righini, M.; Volpe, G.; Girard, C.; Petrov, D.; Quidant, R. Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 2008, 100, 186804. [Google Scholar] [CrossRef][Green Version]
- Soltani, M.; Lin, J.; Forties, R.A.; Inman, J.T.; Saraf, S.N.; Fulbright, R.M.; Lipson, M.; Wang, M.D. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nat. Nanotechnol. 2014, 9, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Badman, R.P.; Inman, J.T.; Soltani, M.; Killian, J.L.; Wang, M.D. Biocompatible and high stiffness nanophotonic trap array for precise and versatile manipulation. Nano Lett. 2016, 16, 6661–6667. [Google Scholar] [CrossRef][Green Version]
- Bellini, N.; Vishnubhatla, K.; Bragheri, F.; Ferrara, L.; Minzioni, P.; Ramponi, R.; Cristiani, I.; Osellame, R. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt. Express 2010, 18, 4679–4688. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.; Keng, D.; Shopova, S.; Holler, S.; Zurawsky, W.; Vollmer, F. Whispering gallery mode carousel–a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express 2009, 17, 6230–6238. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pin, C.; Renaut, C.; Tardif, M.; Jager, J.B.; Delamadeleine, E.; Picard, E.; Peyrade, D.; Hadji, E.; de Fornel, F.; Cluzel, B. On-chip photonic tweezers for photonics, microfluidics, and biology. Opt. Manip. Conf. Int. Soc. Opt. Photonics 2017, 10252, 1025212. [Google Scholar]
- Pin, C.; Cluzel, B.; Renaut, C.; Picard, E.; Peyrade, D.; Hadji, E.; de Fornel, F. Optofluidic near-field optical microscopy: Near-field mapping of a silicon nanocavity using trapped microbeads. ACS Photonics 2015, 2, 1410–1415. [Google Scholar] [CrossRef]
- Yoo, D.; Gurunatha, K.L.; Choi, H.K.; Mohr, D.A.; Ertsgaard, C.T.; Gordon, R.; Oh, S.H. Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap. Nano Lett. 2018, 18, 3637–3642. [Google Scholar] [CrossRef]
- Mivelle, M.; Grosjean, T.; Burr, G.W.; Fischer, U.C.; Garcia-Parajo, M.F. Strong modification of magnetic dipole emission through diabolo nanoantennas. ACS Photonics 2015, 2, 1071–1076. [Google Scholar] [CrossRef]
- Novotny, L.; Bian, R.X.; Xie, X.S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 1997, 79, 645. [Google Scholar] [CrossRef][Green Version]
- Righini, M.; Zelenina, A.S.; Girard, C.; Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys. 2007, 3, 477–480. [Google Scholar] [CrossRef]
- Grigorenko, A.; Roberts, N.; Dickinson, M.; Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2008, 2, 365–370. [Google Scholar] [CrossRef][Green Version]
- Zhang, W.; Huang, L.; Santschi, C.; Martin, O.J. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 2010, 10, 1006–1011. [Google Scholar] [CrossRef][Green Version]
- Wang, K.; Schonbrun, E.; Steinvurzel, P.; Crozier, K.B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2011, 2, 469. [Google Scholar] [CrossRef][Green Version]
- Kang, J.H.; Kim, K.; Ee, H.S.; Lee, Y.H.; Yoon, T.Y.; Seo, M.K.; Park, H.G. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. Nat. Commun. 2011, 2, 582. [Google Scholar] [CrossRef][Green Version]
- Ivinskaya, A.; Petrov, M.I.; Bogdanov, A.A.; Shishkin, I.; Ginzburg, P.; Shalin, A.S. Plasmon-assisted optical trapping and anti-trapping. Light. Sci. Appl. 2017, 6, e16258. [Google Scholar] [CrossRef]
- Guck, J.; Ananthakrishnan, R.; Moon, T.; Cunningham, C.; Käs, J. Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 2000, 84, 5451. [Google Scholar] [CrossRef] [PubMed]
- Guck, J.; Ananthakrishnan, R.; Mahmood, H.; Moon, T.J.; Cunningham, C.C.; Käs, J. The optical stretcher: A novel laser tool to micromanipulate cells. Biophys. J. 2001, 81, 767–784. [Google Scholar] [CrossRef][Green Version]
- Guck, J.; Schinkinger, S.; Lincoln, B.; Wottawah, F.; Ebert, S.; Romeyke, M.; Lenz, D.; Erickson, H.M.; Ananthakrishnan, R.; Mitchell, D.; et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 2005, 88, 3689–3698. [Google Scholar] [CrossRef][Green Version]
- Huisjes, R.; Bogdanova, A.; van Solinge, W.W.; Schiffelers, R.M.; Kaestner, L.; Van Wijk, R. Squeezing for life–properties of red blood cell deformability. Front. Physiol. 2018, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Sraj, I.; Eggleton, C.D.; Jimenez, R.; Hoover, E.E.; Squier, J.A.; Chichester, J.; Marr, D.W. Cell deformation cytometry using diode-bar optical stretchers. J. Biomed. Opt. 2010, 15, 047010. [Google Scholar] [CrossRef][Green Version]
- Henon, S.; Lenormand, G.; Richert, A.; Gallet, F. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 1999, 76, 1145–1151. [Google Scholar] [CrossRef][Green Version]
- Sleep, J.; Wilson, D.; Simmons, R.; Gratzer, W. Elasticity of the red cell membrane and its relation to hemolytic disorders: An optical tweezers study. Biophys. J. 1999, 77, 3085–3095. [Google Scholar] [CrossRef][Green Version]
- Dao, M.; Lim, C.T.; Suresh, S. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 2003, 51, 2259–2280. [Google Scholar] [CrossRef]
- Martinez Vazquez, R.; Nava, G.; Veglione, M.; Yang, T.; Bragheri, F.; Minzioni, P.; Bianchi, E.; Di Tano, M.; Chiodi, I.; Osellame, R.; et al. An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells. Integr. Biol. 2015, 7, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Bellini, N.; Bragheri, F.; Cristiani, I.; Guck, J.; Osellame, R.; Whyte, G. Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher. Biomed. Opt. Express 2012, 3, 2658–2668. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Applegate, R.W.; Squier, J.; Vestad, T.; Oakey, J.; Marr, D.W. Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Opt. Express 2004, 12, 4390–4398. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, B.S.; McCourt, P.; Huser, T.; Hellesø, O.G. Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express 2010, 18, 21053–21061. [Google Scholar] [CrossRef][Green Version]
- Kozma, P.; Kehl, F.; Ehrentreich-Förster, E.; Stamm, C.; Bier, F.F. Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosens. Bioelectron. 2014, 58, 287–307. [Google Scholar] [CrossRef]
- Kuswandi, B.; Huskens, J.; Verboom, W. Optical sensing systems for microfluidic devices: A review. Anal. Chim. Acta 2007, 601, 141–155. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Pearson Education: Gosport, UK, 2010. [Google Scholar]
- Chervet, J.; Van Soest, R.; Ursem, M. Z-shaped flow cell for UV detection in capillary electrophoresis. J. Chromatogr. A 1991, 543, 439–449. [Google Scholar] [CrossRef]
- Tranter, G. UV-Visible Absorption and Fluorescence Spectrometers. In Encyclopedia of Spectroscopy and Spectrometry; Academic Press: Cambridge, UK, 2016. [Google Scholar]
- Liang, Z.; Chiem, N.; Ocvirk, G.; Tang, T.; Fluri, K.; Harrison, D.J. Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices. Anal. Chem. 1996, 68, 1040–1046. [Google Scholar] [CrossRef]
- Verpoorte, E.; Manz, A.; Lüdi, H.; Bruno, A.; Maystre, F.; Krattiger, B.; Widmer, H.; Van der Schoot, B.; De Rooij, N. A silicon flow cell for optical detection in miniaturized total chemical analysis systems. Sens. Actuators B Chem. 1992, 6, 66–70. [Google Scholar] [CrossRef]
- Salimi-Moosavi, H.; Jiang, Y.; Lester, L.; McKinnon, G.; Harrison, D.J. A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis Int. J. 2000, 21, 1291–1299. [Google Scholar] [CrossRef]
- Zhu, J.; Shi, Y.; Zhu, X.; Yang, Y.; Jiang, F.; Sun, C.; Zhao, W.; Han, X. Optofluidic marine phosphate detection with enhanced absorption using a Fabry–Pérot resonator. Lab Chip 2017, 17, 4025–4030. [Google Scholar] [CrossRef] [PubMed]
- Edmund Optics. Available online: https://www.edmundoptics.com/ (accessed on 14 May 2021).
- Neyco. Available online: https://www.neyco.fr/ (accessed on 14 May 2021).
- Sigma-Aldrich, Analytical, Material Supplier. Sigma: Website (Public Access). Available online: https://www.sigmaaldrich.com (accessed on 14 May 2021).
- Murray, E.; Roche, P.; Harrington, K.; McCaul, M.; Moore, B.; Morrin, A.; Diamond, D.; Paull, B. Low cost 235 nm ultra-violet light-emitting diode-based absorbance detector for application in a portable ion chromatography system for nitrite and nitrate monitoring. J. Chromatogr. A 2019, 1603, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R. When PDMS isn’t the best. Anal. Chem. 2007, 79, 3248–3253. [Google Scholar] [CrossRef]
- Ma, B.; Zhou, X.; Wang, G.; Dai, Z.; Qin, J.; Lin, B. A hybrid microdevice with a thin PDMS membrane on the detection window for UV absorbance detection. Electrophoresis 2007, 28, 2474–2477. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Stavrakis, S.; deMello, A. A high-sensitivity, integrated absorbance and fluorescence detection scheme for probing picoliter-volume droplets in segmented flows. Anal. Chem. 2017, 89, 12880–12887. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Glawdel, T.; Ren, C.L.; Pawliszyn, J. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins. Lab Chip 2009, 9, 1926–1932. [Google Scholar] [CrossRef]
- Chang-Yen, D.A.; Eich, R.K.; Gale, B.K. A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J. Light. Technol. 2005, 23, 2088. [Google Scholar] [CrossRef][Green Version]
- Wolfe, D.B.; Conroy, R.S.; Garstecki, P.; Mayers, B.T.; Fischbach, M.A.; Paul, K.E.; Prentiss, M.; Whitesides, G.M. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl. Acad. Sci. USA 2004, 101, 12434–12438. [Google Scholar] [CrossRef][Green Version]
- Llobera, A.; Demming, S.; Wilke, R.; Büttgenbach, S. Multiple internal reflection poly (dimethylsiloxane) systems for optical sensing. Lab Chip 2007, 7, 1560–1566. [Google Scholar] [CrossRef]
- Cai, Z.; Qiu, W.; Shao, G.; Wang, W. A new fabrication method for all-PDMS waveguides. Sens. Actuators A Phys. 2013, 204, 44–47. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Lassemono, S.; Chollet, F.A. Optical detection for droplet size control in microfluidic droplet-based analysis systems. Sens. Actuators B Chem. 2006, 117, 431–436. [Google Scholar] [CrossRef]
- Suriano, R.; Kuznetsov, A.; Eaton, S.M.; Kiyan, R.; Cerullo, G.; Osellame, R.; Chichkov, B.N.; Levi, M.; Turri, S. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl. Surf. Sci. 2011, 257, 6243–6250. [Google Scholar] [CrossRef]
- Xiao, L.; Birks, T.A. Optofluidic microchannels in aerogel. Opt. Lett. 2011, 36, 3275–3277. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kanamori, K. Monolithic silsesquioxane materials with well-defined pore structure. J. Mater. Res. 2014, 29, 2773–2786. [Google Scholar] [CrossRef]
- Zamboni, R.; Zaltron, A.; Izzo, E.; Bottaro, G.; Ferraro, D.; Sada, C. Opto-Microfluidic System for Absorbance Measurements in Lithium Niobate Device Applied to pH Measurements. Sensors 2020, 20, 5366. [Google Scholar] [CrossRef]
- Dittrich, P.S.; Manz, A. Single-molecule fluorescence detection in microfluidic channels—The Holy Grail in μTAS? Anal. Bioanal. Chem. 2005, 382, 1771–1782. [Google Scholar] [CrossRef]
- Chabinyc, M.L.; Chiu, D.T.; McDonald, J.C.; Stroock, A.D.; Christian, J.F.; Karger, A.M.; Whitesides, G.M. An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications. Anal. Chem. 2001, 73, 4491–4498. [Google Scholar] [CrossRef]
- Yin, D.; Deamer, D.W.; Schmidt, H.; Barber, J.P.; Hawkins, A.R. Single-molecule detection sensitivity using planar integrated optics on a chip. Opt. Lett. 2006, 31, 2136–2138. [Google Scholar] [CrossRef]
- Cao, X.; Du, Y.; Küffner, A.; Van Wyk, J.; Arosio, P.; Wang, J.; Fischer, P.; Stavrakis, S.; DeMello, A. A Counter Propagating Lens-Mirror System for Ultrahigh Throughput Single Droplet Detection. Small 2020, 16, 1907534. [Google Scholar] [CrossRef]
- Testa, G.; Collini, C.; Lorenzelli, L.; Bernini, R. Planar silicon-polydimethylsiloxane optofluidic ring resonator sensors. IEEE Photonics Technol. Lett. 2016, 28, 155–158. [Google Scholar] [CrossRef]
- Cai, H.; Parks, J.; Wall, T.; Stott, M.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R.; Carrion, R.; Patterson, J.; et al. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Sci. Rep. 2015, 5, 14494. [Google Scholar] [CrossRef]
- Black, J.A.; Hamilton, E.; Hueros, R.A.R.; Parks, J.W.; Hawkins, A.R.; Schmidt, H. Enhanced detection of single viruses on-chip via hydrodynamic focusing. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 7201206. [Google Scholar] [CrossRef] [PubMed]
- Yelleswarapu, V.R.; Jeong, H.H.; Yadavali, S.; Issadore, D. Ultra-high throughput detection (1 million droplets per second) of fluorescent droplets using a cell phone camera and time domain encoded optofluidics. Lab Chip 2017, 17, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, E.J.; Hsu, H.H.L.; Du, F.; Xiong, B.; Selvaganapathy, P.R.; Fang, Q. Optofluidic dissolved oxygen sensing with sensitivity enhancement through multiple reflections. IEEE Sens. J. 2019, 19, 10452–10460. [Google Scholar] [CrossRef]
- Li, C.; Bai, G.; Zhang, Y.; Zhang, M.; Jian, A. Optofluidics refractometers. Micromachines 2018, 9, 136. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ymeti, A.; Greve, J.; Lambeck, P.V.; Wink, T.; van Hövell, S.W.; Beumer, T.A.; Wijn, R.R.; Heideman, R.G.; Subramaniam, V.; Kanger, J.S. Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett. 2007, 7, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Huang, Y.; Sarro, P.M.; Zeni, L.; Bernini, R. High-visibility optofluidic Mach–Zehnder interferometer. Opt. Lett. 2010, 35, 1584–1586. [Google Scholar] [CrossRef]
- Crespi, A.; Gu, Y.; Ngamsom, B.; Hoekstra, H.J.; Dongre, C.; Pollnau, M.; Ramponi, R.; van den Vlekkert, H.H.; Watts, P.; Cerullo, G.; et al. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 2010, 10, 1167–1173. [Google Scholar] [CrossRef]
- Chauvet, M.; Al Fares, L.; Guichardaz, B.; Devaux, F.; Ballandras, S. Integrated optofluidic index sensor based on self-trapped beams in LiNbO3. Appl. Phys. Lett. 2012, 101, 181104. [Google Scholar] [CrossRef][Green Version]
- Tu, X.; Luo, Y.; Huang, T.; Gan, J.; Song, C. Optofluidic refractive index sensor based on asymmetric diffraction. Opt. Express 2019, 27, 17809–17818. [Google Scholar] [CrossRef]
- Liu, I.C.; Chen, P.C.; Chau, L.K.; Chang, G.E. Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing. Opt. Express 2018, 26, 273–283. [Google Scholar] [CrossRef]
- Yin, D.; Lunt, E.J.; Rudenko, M.I.; Deamer, D.W.; Hawkins, A.R.; Schmidt, H. Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 2007, 7, 1171–1175. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Haswell, S.; Gibson, I. Lab-on-a-chip or Chip-in-a-lab: Challenges of Commercialization Lost in Translation. Procedia Technol. 2015, 20, 54–59. [Google Scholar] [CrossRef][Green Version]
- Testa, G.; Persichetti, G.; Bernini, R. Optofluidic approaches for enhanced microsensor performances. Sensors 2015, 15, 465–484. [Google Scholar] [CrossRef][Green Version]
- McKee, M.; Stuckler, D. If the world fails to protect the economy, COVID-19 will damage health not just now but also in the future. Nat. Med. 2020, 26, 640–642. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yurtsever, G.; Považay, B.; Alex, A.; Zabihian, B.; Drexler, W.; Baets, R. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomed. Opt. Express 2014, 5, 1050–1061. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Testa, G.; Grimaldi, I.A.; Persichetti, G.; Bernini, R. Antiresonant Reflecting Optical Waveguides for Biosensing Applications. Available online: https://spie.org/news/6659-antiresonant-reflecting-optical-waveguides-for-biosensing-applications (accessed on 7 June 2021).
- Bernini, R.; Campopiano, S.; Zeni, L.; Sarro, P.M. ARROW optical waveguides based sensors. Sens. Actuators B Chem. 2004, 100, 143–146. [Google Scholar] [CrossRef]
- Testa, G.; Huang, Y.; Sarro, P.M.; Zeni, L.; Bernini, R. Integrated silicon optofluidic ring resonator. Appl. Phys. Lett. 2010, 97, 131110. [Google Scholar] [CrossRef][Green Version]
- Galarza, M.; Moreno, J.; Lopez-Amo, M.; Christiaens, I.; Van Thourhout, D.; Baets, R. Simple low-loss waveguide bends using ARROW effect. Appl. Phys. B 2005, 80, 745–748. [Google Scholar] [CrossRef][Green Version]
- Panusa, G.; Pu, Y.; Wang, J.; Moser, C.; Psaltis, D. Photoinitiator-free multi-photon fabrication of compact optical waveguides in polydimethylsiloxane. Opt. Mater. Express 2019, 9, 128–138. [Google Scholar] [CrossRef]
- Panusa, G.; Pu, Y.; Wang, J.; Moser, C.; Psaltis, D. Fabrication of sub-micron polymer waveguides through two-photon polymerization in polydimethylsiloxane. Polymers 2020, 12, 2485. [Google Scholar] [CrossRef]
- Osellame, R.; Maselli, V.; Vazquez, R.M.; Ramponi, R.; Cerullo, G. Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Appl. Phys. Lett. 2007, 90, 231118. [Google Scholar] [CrossRef]
- Maselli, V.; Osellame, R.; Cerullo, G.; Ramponi, R.; Laporta, P.; Magagnin, L.; Cavallotti, P.L. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching. Appl. Phys. Lett. 2006, 88, 191107. [Google Scholar] [CrossRef]
- Dervisevic, E.; Voelcker, N.H.; Risbridger, G.; Tuck, K.L.; Cadarso, V.J. High-aspect-ratio SU-8-based optofluidic device for ammonia detection in cell culture media. ACS Sens. 2020, 5, 2523–2529. [Google Scholar] [CrossRef] [PubMed]
- Mechref, E.; Jabbour, J.; Calas-Etienne, S.; Amro, K.; Mehdi, A.; Tauk, R.; Zaouk, D.; Etienne, P. Synthesis and characterization of a photosensitive organic–inorganic, hybrid positive resin type material: Application to the manufacture of microfluidic devices by laser writing. RSC Adv. 2016, 6, 3951–3959. [Google Scholar] [CrossRef]
- Oubaha, M.; Kribich, R.; Copperwhite, R.; Etienne, P.; O’dwyer, K.; MacCraith, B.; Moreau, Y. New organic inorganic sol–gel material with high transparency at 1.55 μm. Opt. Commun. 2005, 253, 346–351. [Google Scholar] [CrossRef]
- Hassan, S.u.; Nightingale, A.M.; Niu, X. Micromachined optical flow cell for sensitive measurement of droplets in tubing. Biomed. Microdevices 2018, 20, 92. [Google Scholar] [CrossRef][Green Version]
- Vittayarukskul, K.; Lee, A.P. A truly Lego®-like modular microfluidics platform. J. Micromech. Microeng. 2017, 27, 035004. [Google Scholar] [CrossRef]
- Owens, C.E.; Hart, A.J. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip 2018, 18, 890–901. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, B.; Oh, I.; Choi, S. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems. Small 2018, 14, 1802769. [Google Scholar] [CrossRef]
- Bhargava, K.C.; Thompson, B.; Malmstadt, N. Discrete elements for 3D microfluidics. Proc. Natl. Acad. Sci. USA 2014, 111, 15013–15018. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Thompson, B.; Bhargava, K.C.; Czaja, A.T.; Pan, B.; Samuelsen, B.T.; Malmstadt, N. Spectrophotometry in modular microfluidic architectures. Biomicrofluidics 2019, 13, 064121. [Google Scholar] [CrossRef] [PubMed]
Material | * | Refractive Index | Cost (EUR) | Fabrication Method | |
---|---|---|---|---|---|
Quartz | 190 | 1.55 to 1.54 | 80 (75 mm diam) | Micro-milling Chemical etching | |
Fused Silica | 180 | 1.55 to 1.40 | 75 (25 mm diam) | Micro-milling Chemical etching | |
Borosilicate glass | 350 | 1.51 | 0, 10 (25 × 75 mm) | Micro-milling Chemical etching | |
SU-8 photoresist | 400 | 1.59 | 7, 5 (10 mL) | Photolithography | |
PDMS | 380 | 1.43 | 4 (25 × 75 mm) | Soft lithography | |
Polymethyl methacrylate (PMMA) | 400 | 1.49 | 2 (25 × 75 mm) | Hot embossing Injection moulding Laser machining | |
cyclic olefin copolymer (COC) | 350 | 1.53 | 12.3 (10 g) | Hot embossing Injection moulding Laser machining |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawson, H.; Elias, J.; Etienne, P.; Calas-Etienne, S. The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip. Micromachines 2021, 12, 1467. https://doi.org/10.3390/mi12121467
Dawson H, Elias J, Etienne P, Calas-Etienne S. The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip. Micromachines. 2021; 12(12):1467. https://doi.org/10.3390/mi12121467
Chicago/Turabian StyleDawson, Harry, Jinane Elias, Pascal Etienne, and Sylvie Calas-Etienne. 2021. "The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip" Micromachines 12, no. 12: 1467. https://doi.org/10.3390/mi12121467