# A Real-Time Linear Prediction Algorithm for Detecting Abnormal BDS-2/BDS-3 Satellite Clock Offsets

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Linear Clock Prediction Model and Prediction Threshold Set

^{−9}, 0.033 × 10

^{−9}. For MEO satellites in the real-time clock estimation process, the orbit error seems too small to consider setting another empirical threshold. The reason for setting different hour-boundary biases is that the real-time satellite clock is estimated with the hourly updated ultra-rapid orbit, and the IGSO/GEO satellite absorbs larger hour-boundary orbit error than the MEO satellite. Too large clock bias should be deleted since it will affect the positioning result due to large interpolation errors. Thus, this algorithm can automatically regulate the detection threshold to a reasonable range at hour-boundary epochs or other normal epochs.

#### 2.2. Linear Moving Short-Term Clock Prediction and Anomaly Detection Algorithm

## 3. Experiments, Results, and Discussion

#### 3.1. Abnormal Values in the Estimated Real-Time BDS-2/BDS-3 Clock Offsets

#### 3.2. Three Kinds of Typical Abnormal Real-Time Clock Offsets and Detection Algorithm Validation

#### 3.3. Improvement of Clock Performance after Removing Abnormal Values

#### 3.4. Performance of the Real-Time Linear Clock Prediction Algorithm

#### 3.5. PPP Validation

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Xu, A.G.; Xu, Z.Q.; Xu, X.C.; Zhu, H.Z.; Sui, X.; Sun, H.S. Precise Point Positioning Using the Regional BeiDou Navigation Satellite Constellation. J. Navig.
**2014**, 64, 523–537. [Google Scholar] [CrossRef] [Green Version] - Zhang, Z.T.; Li, B.F.; Nie, L.W.; Wei, C.X.; Jia, S.; Jiang, S.Q. Initial assessment of BeiDou-3 global navigation satellite system: Signal quality, RTK and PPP. GPS Solut.
**2019**, 23, 111. [Google Scholar] [CrossRef] - Hauschild, A.; Montenbruck, O.; Steigenberger, P. Short-term analysis of GNSS clocks. GPS Soult.
**2013**, 17, 295–307. [Google Scholar] [CrossRef] - Galleani, L.; Tavella, P. Detection and identification of atomic clock anomalies. Metrologia
**2008**, 45, S127–S133. [Google Scholar] [CrossRef] - El-Mowafy, A. Impact of predicting real-time clock corrections during their outages on precise point positioning. Surv. Rev.
**2019**, 51, 183–192. [Google Scholar] [CrossRef] [Green Version] - Wang, K.; El-Mowafy, A. LEO satellite clock analysis and prediction for positioning applications. Geospat. Inf. Sci.
**2021**, 25, 14–33. [Google Scholar] [CrossRef] - Hadas, T.; Bosy, J. IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Soult.
**2018**, 19, 93–105. [Google Scholar] [CrossRef] [Green Version] - Chen, M.L.; Zhan, X.Q.; Du, G.; Liu, M.H. Compass/BeiDou-2 spaceborne clock performance assessment and its error detection, mitigation. IEEJ Trans. Electr. Electron. Eng.
**2015**, 10, 438–446. [Google Scholar] [CrossRef] - Sesia, I.; Tavella, P. Estimating the Allan variance in the presence of long periods of missing data and outliers. Metrologia
**2008**, 45, S134–S142. [Google Scholar] [CrossRef] - Zhang, Q.Q.; Gui, Q.M. Bayesian methods for outliers detection in GNSS time series. J. Geod.
**2013**, 87, 609–627. [Google Scholar] - Yang, Y.F.; Pan, X.; Qing, C.X.; Mei, C.S.; Lai, Z.L. Detection and repair of outliers in BDS satellite clock offset based on semiparametric mean drift model. Chin. J. Sci. Instrum.
**2020**, 41, 47–54. [Google Scholar] - Pan, X.; Lv, Y.T.; Wang, Y.; Luo, J.; Xu, J.T. Research of the Location and Valuation of Gross Offsets Based on Semi-parametric Adjustment Model. Geomat. Inf. Sci. Wuhan Univ.
**2016**, 41, 1421–1426. [Google Scholar] - Louni, H. Outier Detection in ARMA Models. J. Time Ser. Anal.
**2008**, 29, 1057–1065. [Google Scholar] [CrossRef] - Ma, C.Z.; Zhu, J.Q.; Han, S.H. Model Selection Method Based on ARIMA Model in Outliers Detection of Satellite Clock Offset. Geomat. Inf. Sci. Wuhan Univ.
**2020**, 45, 167–172. [Google Scholar] - Huang, B.H.; Ji, Z.X.; Zhai, R.J.; Xiao, C.F.; Yang, F.; Yang, B.H.; Wang, Y.P. Clock bias prediction algorithm for navigation satellites based on a supervised learning long short-term memory neural network. GPS Soult.
**2021**, 25, 80. [Google Scholar] [CrossRef] - Wen, T.L.; Ou, G.; Tang, X.M.; Zhang, P.Y.; Wang, P.C. A Novel Long Short-Term Memory Predicted Algorithm for BDS Short-Term Satellite Clock Offsets. Int. J. Aerosp. Eng.
**2021**, 4066275. [Google Scholar] [CrossRef] - Kirsten, L.; Penina, A. Improved prediction of GPS satellite clock sub-daily variations based on daily repeat. GPS Soult.
**2018**, 22, 58. [Google Scholar] - Lee, S.W.; Kim, J.; Jeong, M.S.; Lee, Y.J. Monitoring atomic clocks on board GNSS satellites. Adv. Space Res.
**2011**, 47, 1654–1663. [Google Scholar] [CrossRef] - Huang, G.W.; Zhang, Q.; Xu, G.C. Real-time clock offset prediction with an improved model. GPS Soult.
**2014**, 18, 95–104. [Google Scholar] [CrossRef] - Ye, Y.U.; Zhang, H.; Xiaohui, L.I. A new method of GM(1,1)satellite clock bias prediction with error prediction correction. Sci. Surv. Mapp.
**2019**, 44, 814. [Google Scholar] - Ge, H.B.; Li, B.F.; Wu, T.H.; Jiang, S.H. Prediction models of GNSS satellite clock errors: Evaluation and application in PPP. Adv. Space Res.
**2021**, 6, 2470–2487. [Google Scholar] [CrossRef] - Yu, H.L.; Hao, J.M.; Liu, W.P.; Tian, Y.G.; Zhang, H. Analysis of Model In Ultra Short-term Predicting Satellite Clock Error. J. Geod. Geodyn.
**2014**, 34, 161–164. [Google Scholar] - Wang, B.; Lou, Y.D.; Liu, J.N.; Zhao, Q.L.; Su, X. Analysis of BDS satellite clocks in orbit. GPS Soult.
**2016**, 20, 783–794. [Google Scholar] [CrossRef] - Fu, W.J.; Wang, L.; Chen, R.Z.; Han, Y.; Zhou, H.T.; Li, T. Combined BDS-2/BDS-3 real-time satellite clock estimation with the overlapping B1I/B3I signals. Adv. Space Res.
**2021**, 68, 4470–4483. [Google Scholar] [CrossRef] - Chen, G.; Gao, Y.P.; Fu, W.J.; Chen, X.; Yang, J.L. Availability and Prediction Performance Evaluation of BDS-3 Satellite Clock Error Products. In China Satellite Navigation Conference (CSNC 2021) Proceedings; Lecture Notes in Electrical Engineering; Springer: Singapore, 2021; Volume 772. [Google Scholar]
- Chen, L.; Zhao, Q.; Hu, Z.; Jiang, X.; Geng, C.; Ge, M.; Shi, C. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis. Adv. Space Res.
**2018**, 61, 367–384. [Google Scholar] [CrossRef] - Yu, D.Y.; Ji, B.; Liu, Y.; Wu, S.G.; Li, H.P.; Bian, S.F. Performance assessment of RTPPP positioning with SSR corrections and PPP-AR positioning with FCB for multi-GNSS from MADOCA products. Adv. Space Res.
**2023**, 6, P2924–P2937. [Google Scholar] [CrossRef]

**Figure 1.**Flowchart of the linear moving short-term clock prediction and detection algorithm at one epoch.

**Figure 2.**Clock difference of the C05, C06, and C24 satellites between real-time estimated clock offsets and WHU final products.

**Figure 5.**Frequency modulation on the C02 satellite and abnormal clock detection results in the frequency (top) and phase (bottom) domains. The frequency modulation causes the real-time estimated clock offsets to be unavailable after about UTC 11:00.

**Figure 6.**Phase jump on the C03 satellite and abnormal clock detection results in the frequency (top) and phase (bottom) domains. The phase jump causes the real-time estimated clock offsets to be unavailable from UTC 05:00 to 06:00.

**Figure 7.**Daily clock STD accuracy improvement of the GEO satellite C05, the IGSO satellite C06, and the MEO satellite C24.

**Figure 9.**Frequency histogram of the clock STD improvement of the GEO, IGSO, and MEO satellites with the linear model.

**Figure 10.**Clock accuracy of predicting 0.5 h, 1.0 h, and 2.0 h satellite clock offsets with the linear model, the grey model, and the ARIMA model.

**Figure 11.**Average clock prediction accuracy for different prediction time lengths with the three models for different orbit types.

Orbit Type | Linear Model | GM(1,1) | ARIMA |
---|---|---|---|

GEO | 22.4% (0.048 ns) | 17.1% (0.037 ns) | 20.1% (0.048 ns) |

IGSO | 16.9% (0.014 ns) | 10.7% (0.009 ns) | 9.7% (0.009 ns) |

MEO | 5.9% (0.002 ns) | 1.5% (0.001 ns) | 2.8% (0.001 ns) |

BDS-2 | 19.7% (0.032 ns) | 13.9% (0.023 ns) | 14.9% (0.029 ns) |

BDS-3 | 5.9% (0.002 ns) | 1.5% (0.001 ns) | 2.8% (0.001 ns) |

Items | PPP |
---|---|

Observations | Undifferenced B1I/B3I phase and code ionosphere-free combination observation |

Elevation mask | 10° |

Observation weight | Elevation-dependent weight, 1 for E > 30° otherwise 2sin(E) |

Phase-windup effect | corrected |

Satellite antenna phase center and variation | igs14_2136.atx |

Receiver antenna phase center and variation | igs14_2136.atx |

Station displacement | Solid Earth tide, pole tide, ocean tide, loading: IERS Convention 2010 |

Relativistic effects | Corrected: IERS Convention 2010 |

Items | PPP |

Station | E (cm) | N (cm) | U (cm) |
---|---|---|---|

PTGG | 0.7 | 1.1 | 1.7 |

SIN1 | 1.2 | 0.1 | 3.3 |

STR1 | 0.6 | 0.1 | 0.1 |

GAMG | 0.6 | 0.2 | 0.4 |

NNOR | 0.3 | 0.3 | 3.4 |

MAL2 | 1.4 | 1.4 | 4.5 |

Average | 0. 8 | 0. 6 | 2.2 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gao, Y.; Chen, G.; Fu, W.; Chen, X.; Ma, L.; Luo, T.; Xue, D.
A Real-Time Linear Prediction Algorithm for Detecting Abnormal BDS-2/BDS-3 Satellite Clock Offsets. *Remote Sens.* **2023**, *15*, 1831.
https://doi.org/10.3390/rs15071831

**AMA Style**

Gao Y, Chen G, Fu W, Chen X, Ma L, Luo T, Xue D.
A Real-Time Linear Prediction Algorithm for Detecting Abnormal BDS-2/BDS-3 Satellite Clock Offsets. *Remote Sensing*. 2023; 15(7):1831.
https://doi.org/10.3390/rs15071831

**Chicago/Turabian Style**

Gao, Yaping, Guo Chen, Wenju Fu, Xi Chen, Liangliang Ma, Tong Luo, and Dongdong Xue.
2023. "A Real-Time Linear Prediction Algorithm for Detecting Abnormal BDS-2/BDS-3 Satellite Clock Offsets" *Remote Sensing* 15, no. 7: 1831.
https://doi.org/10.3390/rs15071831