Machine Learning for Halide Perovskite Materials ABX3 (B = Pb, X = I, Br, Cl) Assessment of Structural Properties and Band Gap Engineering for Solar Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. DFT
2.2. Machine Learning
2.2.1. MATLAB: Classification Learner App
- Validated Model: Use a validation strategy to train a model. Cross-validation is used by default to prevent overfitting. We also have the option of using holdout validation. The app displays the verified model.
- Full Model: Without validation, a model is trained on full data. This model is being trained at the same time as the verified model. Nevertheless, the software does not show the model that was trained on all the data. Classification Learner sends the whole model when you pick a classifier to export to the workspace.
- Cross-Validation: This approach provides a reasonable assessment of the prediction accuracy of the final model trained using all available data. It necessitates several fits yet efficiently utilizes all the data, making it ideal for smallish datasets. To split the dataset, choose a number of folds (or divisions).
- Holdout Validation: The program uses the training set to train a model and the validation set to measure its performance. Because the validation model is only based on a fraction of the data, holdout validation is only advised for big datasets. The complete dataset is used to train the final model. To utilize as a validation set, choose a proportion of the data.
- Re-substitution Validation: The program trains on all the data and computes the error rate using the same data. You obtain an inflated estimate of the model’s performance on fresh data if there is no separate validation data. That is, the accuracy of the training sample is likely to be unreasonably high, while the predicted accuracy is likely to be lower. There is no safeguard against overfitting.
2.2.2. Clustering in WEKA
3. Results and Discussions
3.1. Formation Energy and Structural Stability
3.1.1. Data Clustering
- For ΔH, compounds in Cluster1 have the highest value, while compounds in Cluster2 have the lowest value.
- For Eg, the highest values are for compounds in Cluster1, but the lowest values are in Cluster3.
- For ε0, compounds in Cluster4 have the highest values, but the lowest values are in Cluster1.
3.1.2. Data Classifying
3.2. Stability of Structure: Clustering and Classification of Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldtd, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, J.; Pradhan, B.; Gaur, S.; Thomas, J. Predictions and Strategies Learned from Machine Learning to Develop High-Performing Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1901891. [Google Scholar] [CrossRef]
- Tao, Q.; Xu, P.; Li, M.; Lu, W. Machine learning for perovskite materials design and discovery. NPJ Comput. Mater. 2021, 7, 23. [Google Scholar] [CrossRef]
- Zhang, L.; He, M.; Shao, S. Machine learning for halide perovskite materials. Nano Energy 2020, 78, 105380. [Google Scholar] [CrossRef]
- Haque, M.A.; Kee, S.; Villalva, D.R.; Ong, W.L.; Baran, D. Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Adv. Sci. 2020, 7, 1903389. [Google Scholar] [CrossRef][Green Version]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235. [Google Scholar]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Belous, A.G.; Ishchenko, A.A.; V’yunov, O.I.; Torchyniuk, P.V. Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl, Br, I) for Solar Cells: A Review. Theor. Exp. Chem. 2021, 56, 359–386. [Google Scholar] [CrossRef]
- Pitaro, M.; Tekelenburg, E.K.; Shao, S.; Loi, M.A. Tin Halide Perovskites: From Fundamental Properties to Solar Cells. Adv. Mater. 2022, 34, 2105844. [Google Scholar] [CrossRef]
- Yin, W.J.; Yang, J.H.; Kang, J.; Yan, Y.; Wei, S.H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Umari, P.; Mosconi, E.; de Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Sci. Rep. 2014, 4, 4467. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P.A.; Vej-Hansen, U.G.; et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 2020, 32, 015901. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Setten, M.; Giantomassi, M.; Bousquet, E.; Verstraete, M.; Hamann, D.; Gonze, X.; Rignanese, G.-M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39–54. [Google Scholar] [CrossRef][Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Train Classification Models in Classification Learner App—MATLAB & Simulink—MathWorks China. Available online: https://ww2.mathworks.cn/help/stats/train-classification-models-in-classification-learner-app.html (accessed on 29 December 2021).
- Select Data and Validation for Classification Problem—MATLAB & Simulink—MathWorks China. Available online: https://ww2.mathworks.cn/help/stats/select-data-and-validation-for-classification-problem.html (accessed on 29 December 2021).
- Classification Learner App—MATLAB & Simulink—MathWorks China. Available online: https://ww2.mathworks.cn/help/stats/classification-learner-app.html?s_tid=srchtitle_Classification%20Learner%20App_1 (accessed on 29 December 2021).
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-8-3. 2018. Available online: http://www.gnu.org/licenses/gpl-3.0-standalone.html (accessed on 31 May 2022).
- Alzahrani, N.; Kanoun, M.B.; Kanoun, A.-A.; Goumri-Said, S. Design and numerical simulation of highly efficient mixed-organic cation mixed-metal cation perovskite solar cells. Int. J. Energy Res. 2022, 46, 15654–15664. [Google Scholar] [CrossRef]
- Kanoun, M.B.; Goumri-Said, S. Insights into the impact of Mn-doped inorganic CsPbBr3 perovskite on electronic structures and magnetism for photovoltaic application. Mater. Today Energy 2021, 21, 100796. [Google Scholar] [CrossRef]
- Kanoun-Bouayed, N.; Kanoun, M.B.; Kanoun, A.-A.; Goumri-Said, S. Insights into the impact of metal tin substitution on methylammonium lead bromide perovskite performance for photovoltaic application. Sol. Energy 2021, 224, 76–81. [Google Scholar] [CrossRef]
- Kanoun, A.-A.; Goumri-Said, S.; Kanoun, M.B. Device design for high-efficiency monolithic two-terminal, four-terminal mechanically stacked, and four-terminal optically coupled perovskite-silicon tandem solar cells. Int. J. Energy Res. 2021, 45, 10538–10545. [Google Scholar] [CrossRef]
- Kanoun, M.B.; Kanoun, A.-A.; Merad, A.E.; Goumri-Said, S. Device design optimization with interface engineering for highly efficient mixed cations and halides perovskite solar cells. Results Phys. 2021, 20, 103707. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Zhang, H. Exploring conditions for the optimality of naïve bayes. Int. J. Pattern Recognit. Artif. Intell. 2005, 19, 183–198. [Google Scholar] [CrossRef]
Formula | ΔH (eV) | V (Å3) | Eg (eV) | ε0 | Structure |
---|---|---|---|---|---|
‘MASnI3’ | −1.3763 | 231.2129 | 1.563 | 5.9 | ‘cubic’ |
‘MAPbI3’ | −0.9900 | 956.5107 | 1.5 | 6.6 | ‘tetragonal’ |
‘MASnCl3’ | −0.2766 | 738.4159 | 1.4 | 4.55 | ‘tetragonal’ |
‘MAGeI3’ | −1.3580 | 786.5942 | 1.12 | 6.85 | ‘tetragonal’ |
‘MAGeBr3’ | −1.5365 | 753.4887 | 1.48 | 4.9 | ‘tetragonal’ |
‘MAPbI3’ | −0.8101 | 919.0582 | 1.52 | 5.8 | ‘orthorhombic’ |
‘MASnBr3’ | −1.4514 | 779.5246 | 1.11 | 5.7 | ‘orthorhombic’ |
‘MASnCl3’ | −1.1491 | 681.0253 | 1.33 | 4.9 | ‘orthorhombic’ |
‘FAPbI3’ | −0.4778 | 250.7740 | 1.5 | 7.2 | ‘cubic’ |
‘DMAPbI3’ | −0.4925 | 259.4683 | 1.41 | 7 | ‘cubic’ |
‘DMASnI3’ | −0.7121 | 251.1712 | 1.1 | 7.5 | ‘cubic’ |
‘TMASnI3’ | −0.6336 | 286.3171 | 1.25 | 6.1 | ‘cubic’ |
‘EASnI3’ | −1.1689 | 249.8638 | 1.34 | 7 | ‘cubic’ |
‘GUAPbI3’ | −0.9293 | 255.4561 | 1.47 | 7.4 | ‘cubic’ |
‘AZPbI3’ | −1.0048 | 260.1068 | 1.33 | 7.21 | ‘cubic’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhashmi, A.; Kanoun, M.B.; Goumri-Said, S. Machine Learning for Halide Perovskite Materials ABX3 (B = Pb, X = I, Br, Cl) Assessment of Structural Properties and Band Gap Engineering for Solar Energy. Materials 2023, 16, 2657. https://doi.org/10.3390/ma16072657
Alhashmi A, Kanoun MB, Goumri-Said S. Machine Learning for Halide Perovskite Materials ABX3 (B = Pb, X = I, Br, Cl) Assessment of Structural Properties and Band Gap Engineering for Solar Energy. Materials. 2023; 16(7):2657. https://doi.org/10.3390/ma16072657
Chicago/Turabian StyleAlhashmi, Afnan, Mohammed Benali Kanoun, and Souraya Goumri-Said. 2023. "Machine Learning for Halide Perovskite Materials ABX3 (B = Pb, X = I, Br, Cl) Assessment of Structural Properties and Band Gap Engineering for Solar Energy" Materials 16, no. 7: 2657. https://doi.org/10.3390/ma16072657