Investigation of Cross-Linked Chitosan-Based Membranes as Potential Adsorbents for the Removal of Cu2+ Ions from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis and Characterization of Cross-Linked Chitosan-Based Membranes
3.2. Adsorption Studies
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherms
3.2.3. Regeneration and Reusability of Adsorbent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ioelovich, M. Chitosan: Derivatives, Composites and Applications; Ahmed, S., Ikram, S., Eds.; Willey: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Wang, L.; Ma, M.-G.; Wang, B. Review of recent development on preparation, properties and applications of cellulose-based functional materials. Int. J. Polym. Sci. 2018, 2018, 8973643. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019, 263, 131–194. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Xiao, L.; Shi, X. Injectable drug-loaded polysaccharide hybrid hydrogels for hemostasis. RSC Adv. 2019, 63, 36858–36866. [Google Scholar] [CrossRef][Green Version]
- Zamboulis, A.; Nanaki, S.; Michailidou, G.; Koumentakou, I.; Lazaridou, M.; Ainali, N.M.; Xanthopoulou, E.; Bikiaris, D.N. Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments. Polymers 2020, 12, 1519. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Mu, M.; Fan, R.; Zou, B.; Guo, G. Functionalized chitosan as a promising platform for cancer immunotherapy. Carbohydr. Polym. 2022, 290, 119452. [Google Scholar] [CrossRef]
- Wijesena, R.N.; Tissera, N.D.’; Nalin de Silva, K.M. Coloration of cotton fibers using nano chitosan. Carbohydr. Polym. 2015, 134, 182–189. [Google Scholar] [CrossRef]
- Shahid-ul-Islam; Butola, B.S. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol. 2019, 121, 905–912. [Google Scholar] [CrossRef]
- Silva, I.O.; Ladchumananandasivam, R.; Heriberto, J.; Nascimento, O.; Karina, K.; Silva, O.S.; Oliveira, F.R.; Souto, A.P.; Felgueiras, H.P.; Zille, A. Multifunctional chitosan/gold nanoparticles coatings for biomedical textiles. Nanomaterials 2019, 9, 1064. [Google Scholar] [CrossRef][Green Version]
- Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl. Sci. 2019, 9, 2409. [Google Scholar] [CrossRef][Green Version]
- Priyadarshi, R.; Rhim, J.W. Chitosan-based biodegradable functional films for food packaging applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Raza, Z.A.; Khalil, S.; Ayub, A.; Banat, I.M. Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydr. Res. 2020, 492, 108004. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Montes, E.; Castro-Muñoz, R. Trends in chitosan as a primary biopolymer for functional films and coatings manufacture for food and natural products. Polymers 2021, 13, 767. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, J.; Mao, J.; Chen, Z.; Chen, G.; Lai, Y. Transparent antibacterial nanofiber air filters with highly efficient moisture resistance for sustainable particulate matter. iScience 2019, 19, 214–223. [Google Scholar] [CrossRef][Green Version]
- Wan Ngah, W.S.; Teong, L.C.; Hanafifiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2331–2386. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N.; Mitropoulos, A.C. Chitosan adsorbents for dye removal: A review. Polym. Int. 2017, 66, 1800–1811. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H.; Hummadi, E.H. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr. Polym. 2020, 247, 116690. [Google Scholar] [CrossRef]
- Pal, P.; Pal, A.; Nakashima, K.; Yadav, B.K. Applications of chitosan in environmental remediation: A review. Chemosphere 2021, 266, 128934. [Google Scholar] [CrossRef]
- Michailidou, G.; Koumentakou, I.; Liakos, E.V.; Lazaridou, M.; Lambropoulou, D.A.; Bikiaris, D.N.; Kyzas, G.Z. Adsorption of uranium, mercury, and rare earth elements from aqueous solutions onto magnetic chitosan adsorbents: A review. Polymers 2021, 13, 3137. [Google Scholar] [CrossRef]
- Saheed, I.O.; Oh, W.D.; Suah, F.B.M. Chitosan modifications for adsorption of pollutants—A review. J. Hazard. Mater. 2021, 408, 124899. [Google Scholar] [CrossRef] [PubMed]
- Druvari, D.; Koromilas, N.; Lainioti, G.; Bokias, G.; Vasilopoulos, G.; Vantarakis, A.; Baras, I.; Dourala, N.; Kallitsis, J.K. Polymeric quaternary ammonium-containing coatings with potential dual contact-based and release-based antimicrobial activity. ACS Appl. Mater. Interfaces 2016, 8, 35593–35605. [Google Scholar] [CrossRef] [PubMed]
- Druvari, D.; Koromilas, N.D.; Bekiari, V.; Bokias, G.; Kallitsis, J.K. Polymeric antimicrobial coatings based on quaternary ammonium compounds. Coatings 2018, 8, 8. [Google Scholar] [CrossRef][Green Version]
- Druvari, D.; Antonopoulou, A.; Lainioti, G.; Vlamis-Gardikas, A.; Bokias, G.; Kallitsis, J.K. Preparation of antimicrobial coatings from cross-linked copolymers containing quaternary dodecyl-ammonium compounds. Int. J. Mol. Sci. 2021, 22, 13236. [Google Scholar] [CrossRef] [PubMed]
- Druvari, D.; Tzoumani, I.; Piperigkou, Z.; Tzaferi, K.; Tselentis, D.; Vlamis-Gardikas, A.; Karamanos, N.; Bokias, G.; Kallitsis, J.K. Development of environmentally friendly biocidal coatings based on water-soluble copolymers for air-cleaning filters. ACS Omega 2022, 7, 35204–35216. [Google Scholar] [CrossRef]
- Shanmugam, S.; Boyer, C. Stereo temporal and chemical control through photoactivation of living radical polymerization: Synthesis of block and gradient copolymers. J. Am. Chem. Soc. 2015, 137, 9988–9999. [Google Scholar] [CrossRef][Green Version]
- Doudin, K.; Ahmad, A.; Al-Malaika, S. Reactive processing of polymers: Structural characterisation of products by NMR spectroscopy for glycidyl methacrylate grafting onto EPR in the absence and presence of a reactive comonomer. Polym. Degrad. Stab. 2009, 94, 1599–1614. [Google Scholar] [CrossRef]
- Yoshida, E. Selective controlled/living photoradical polymerization of glycidyl methacrylate using a nitroxide mediator in the presence of a photosensitive triarylsulfonium salt. Polymers 2012, 4, 1580–1589. [Google Scholar] [CrossRef][Green Version]
- Osicka, J.; Mrlk, M.; Ilcikova, M.; Hanulikova, B.; Urbanek, P.; Sedlacik, M.; Mosnacek, J. Reversible actuation ability upon light stimulation of the smart systems with controllably grafted graphene oxide with poly (glycidyl methacrylate) and PDMS elastomer: Effect of compatibility and graphene oxide reduction on the photo-actuation performance. Polymers 2018, 10, 832. [Google Scholar] [CrossRef][Green Version]
- Tzoumani, I.; Iatridi, Z.; Fidelli, A.M.; Krassa, P.; Kallitsis, J.K.; Bokias, G. Room-Temperature Self-Healable Blends of Waterborne Polyurethanes with 2-HydroxyethylMethacrylate-Based Polymers. Int. J. Mol. Sci. 2023, 24, 2575. [Google Scholar] [CrossRef]
- Hansen, T.; Vermeeren, P.; Haim, A.; Dorp, M.J.H.; Codée, J.D.C.; Bickelhaupt, F.M.; Hamlin, T.A. Regioselectivity of epoxide ring-openings via SΝ2 reactions under basic and acidic conditions. Eur. J. Org. Chem. 2020, 2020, 3822–3828. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, Q.; Yin, X.; Zeng, D. Trace amounts of aqueous copper(II) chloride complexes in hypersaline solutions: Spectrophotometric and thermodynamic studies. J. Solut. Chem. 2014, 43, 326–339. [Google Scholar] [CrossRef]
- American Water Works Association. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Baird, R., Eaton, A., Rice, E., Eds.; American Water Works Association: Denver, CO, USA, 2017. [Google Scholar]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, Y.; Liu, Z.; Huang, Q. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard. Mater. 2009, 161, 995–1002. [Google Scholar] [CrossRef]
- Dragan, E.S.; Dinu, M.V.; Timpu, D. Preparation and characterization of novel composites based on chitosan and clinoptilolite with enhanced adsorption properties for Cu2+. Bioresour. Technol. 2010, 101, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modeling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef][Green Version]
- Zhang, G.; Qu, R.; Sun, C.; Ji, C.; Chen, H.; Wang, C.; Niu, Y. Adsorption for metal ions of chitosan coated cotton fiber. J. Appl. Polym. Sci. 2008, 110, 2321–2327. [Google Scholar] [CrossRef]
- Li, N.; Bai, R. Copper adsorption on chitosan-cellulose hydrogel beads: Behaviors and mechanisms. Sep. Purif. Technol. 2005, 42, 237–247. [Google Scholar] [CrossRef]
- Sun, X.; Peng, B.; Ji, Y.; Chen, J.; Li, D. Chitosan(chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE J. 2009, 55, 2062–2069. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Endud, C.S.; Mayanar, R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 2002, 50, 181–190. [Google Scholar] [CrossRef]
- Chen, A.H.; Liu, S.C.; Chen, C.Y.; Chen, C.Y. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 2008, 154, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.H.; Hu, J.; Wang, J.L. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J. Hazard. Mater. 2012, 222, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Ngah, W.S.W.; Fatinathan, S. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem. Eng. J. 2008, 143, 62–72. [Google Scholar] [CrossRef]
- Huang, C.H.; Hsieh, T.H.; Chiu, W.Y. Evaluation of thermally crosslinkable chitosan-based nanofibrous mats for the removal of metal ions. Carbohydr. Polym. 2015, 116, 249–254. [Google Scholar] [CrossRef]
- Veera, M.B.; Krishnaiah, A.; Ann, J.R.; Edgar, D.S. Removal of copper(II)and nickel (II) ions from aqueous solutions by a composite chitosan biosorbent. Sep. Sci. Technol. 2008, 43, 1365–1381. [Google Scholar] [CrossRef]
- Masih, M.; Anthony, P.; Siddiqui, S.H. Removal of Cu (II) ion from aqueous solutions by rice husk carbon-chitosan composite gel (CCRH) using response surface methodology. Environ. Nanotechnol. Monit. Manag. 2018, 10, 189–198. [Google Scholar] [CrossRef]
- Sargin, I.; Arslan, G. Effect of glutaraldehyde cross-linking degree of chitosan/sporopollenin microcapsules on removal of copper(II) from aqueous solution. Desalination Water Treat. 2016, 57, 10664–10676. [Google Scholar] [CrossRef]
- Ge, H.; Huang, S. Microwave preparation and adsorption properties of EDTA modified cross-linked chitosan. J. Appl. Polym. Sci. 2010, 115, 514–519. [Google Scholar] [CrossRef]
- Luo, J.; Fan, C.; Xiao, Z.; Sun, T.; Zhou, X. Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123584. [Google Scholar] [CrossRef]
- Kalyani, S.; Veera, M.B.; Siva, K.N.; Krishnaiah, A. Competitive adsorption of Cu(II), Co(II) and Ni(II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. J. Hazard. Mater. 2009, 170, 680–689. [Google Scholar] [CrossRef]
- Paulino, A.T.; Belfiore, L.A.; Kubota, L.T.; Muniz, E.C.; Almeida, V.C.; Tambourgi, E.B. Effect of magnetite on the adsorption behavior of Pb(II), Cd(II), and Cu(II) in chitosan-based hydrogels. Desalination 2011, 275, 187–196. [Google Scholar] [CrossRef]
- Ge, H.C.; Chen, H.; Huang, S.Y. Microwave preparation and properties of O-crosslinked maleic acyl chitosan adsorbent for Pb2+ and Cu2+. J. Appl. Polym. Sci. 2012, 125, 2716–2723. [Google Scholar] [CrossRef]
- Igberase, E.; Osifo, P.; Ofomaja, A. The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: Equilibrium, kinetic, thermodynamic, and desorption studies. Int. J. Anal. Chem. 2017, 2017, 6150209. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, B.; Liu, Y.; Qiu, C.; Hu, J.; Qian, G.; Guo, W.; Ngo, H.H. Preparation and adsorption properties of magnetic chitosan composite adsorbent for Cu2+ removal. J. Clean. Prod. 2017, 158, 51–58. [Google Scholar] [CrossRef]
- Li, X.; Zhou, H.; Wu, W.; Wei, S.; Xu, Y.; Kuang, Y. Studies of heavy metal ion adsorption on chitosan/sulfydryl functionalized graphene oxide composites. J. Colloid Interface Sci. 2015, 448, 389–397. [Google Scholar] [CrossRef]
- Dandil, S.; Sahbaz, D.A.; Acikgoz, C. Adsorption of Cu(II) ions onto crosslinked chitosan/waste active sludge char (WASC) beads: Kinetic, equilibrium, and thermodynamic study. Int. J. Biol. Macromol. 2019, 136, 668–675. [Google Scholar] [CrossRef]
- Dinu, M.V.; Dragan, E.S. Evaluation of Cu2+, Co2+, and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composites: Kinetics and isotherms. Chem. Eng. J. 2010, 160, 157–163. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
Kinetic Models | Kinetic Parameters of Membranes Ch-NH2/P(DMAM-co-GMA) | ||
---|---|---|---|
9:1 with Magnetic Stirring | 9:1 without Magnetic Stirring | 8:2 without Magnetic Stirring | |
Pseudo-second order Qe (mmol/mg) | Qe = 8.01 × 10−4 R2 = 0.999 | Qe = 7.84 × 10−4 R2 = 0.993 | Qe = 5.11 × 10−4 R2 = 0.98 |
Elovich a (mg/(g·day)) b (g/mg) | a = 144.7 × 10−4 b = 8980 R2 = 0.96 | a = 89.13 × 10−4 b = 8693 R2 = 0.95 | a = 0.643 × 10−4 b = 10,624 R2 = 0.99 |
Intraparticle Diffusion (Weber & Morris) Ki1, Ki2 (mg/(g·min0.5)) | Ki1 = 0.64 Ki2 = 4.2 × 10−2 R12 = 0.98 R22 = 0.996 | Ki1 = 0.69 Ki2 = 4.6 × 10−2 R12 = 0.98 R22 = 0.98 | Ki1 = 0.68 Ki2 = 0.18 R12 = 0.96 R22 = 0.9996 |
Isothermal Model | Composition of Membranes | ||
---|---|---|---|
9:1 | 5:5 | 8:2 | |
Langmuir KL (L/mg), Qm (mg/g) | ΚL = 1.1 Qm = 130 R2 = 0.99 | ΚL = 3.5 Qm = 66 R2 = 0.99 | KL = 0.5 Qm = 90 R2 = 0.94 |
Freundlich Kf (L/mg) | Kf = 7.5 × 10−4 n = 1.5 R2 = 0.89 | Kf = 7.9 × 10−4 N = 1.7 R2 = 0.88 | Kf = 4.9 × 10−4 N = 1.8 R2 = 0.95 |
Chitosan-Based Adsorbents | Qm (mg/g) | Reference |
---|---|---|
Chitosan/cotton fiber | 25 | [39] |
Chitosan/cellulose | 53.2, 26.5 | [40,41] |
Chitosan or cross-linked chitosan | 46–81, 35.5 | [42,43] |
Xanthate-modified magnetic chitosan | 34.5 | [44] |
Chitosan/thiourea | 66.7 | [36] |
Chitosan/alginate | 67.7 | [45] |
Composite chitosan-based nanofibrous mats | 79 | [46] |
Chitosan/ceramic alumina | 86 | [47] |
Chitosan/activated carbon | 90.9 | [48] |
Chitosan/glutaraldehyde microcapsules | 100 | [49] |
Chitosan/EDTA | 135 | [50] |
Carboxymethyl chitosan/graphene oxide | 146 | [51] |
Chitosan-coated perlite beads | 156 | [52] |
Chitosan/poly(acrylic acid) cross-linked | 163 | [53] |
Chitosan/maleic anhydride | 166 | [54] |
Chitosan/4-aminobenzoic acid | 183 | [55] |
Magnetic chitosan/activated carbon composite | 216.6 | [56] |
Chitosan/sulfydryl-functionalized graphene oxide | 425 | [57] |
Cross-linked chitosan/waste active sludge char | 490 | [58] |
Chitosan/linoptilolite | 574, 719 | [37,59] |
Chitosan/P(MAM-co-GMA) membranes | 66–130 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachou, I.; Bokias, G. Investigation of Cross-Linked Chitosan-Based Membranes as Potential Adsorbents for the Removal of Cu2+ Ions from Aqueous Solutions. Materials 2023, 16, 1926. https://doi.org/10.3390/ma16051926
Vlachou I, Bokias G. Investigation of Cross-Linked Chitosan-Based Membranes as Potential Adsorbents for the Removal of Cu2+ Ions from Aqueous Solutions. Materials. 2023; 16(5):1926. https://doi.org/10.3390/ma16051926
Chicago/Turabian StyleVlachou, Irene, and Georgios Bokias. 2023. "Investigation of Cross-Linked Chitosan-Based Membranes as Potential Adsorbents for the Removal of Cu2+ Ions from Aqueous Solutions" Materials 16, no. 5: 1926. https://doi.org/10.3390/ma16051926