Platinum-Cobalt Nanowires for Efficient Alcohol Oxidation Electrocatalysis
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of PtnCo100−n NWs
2.3. Characterizations
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. NW Morphology
3.2. Electrocatalytic Properties
3.3. Durability
Catalyst | Electrolyte | CA Stability (Activity Retention) | Potential | Reference |
---|---|---|---|---|
G@(PEI/Au) 3.5 @Pt | 0.5 M H2SO4 + 1 M methanol | ~5.4% after 2000 s | 0.60 V (vs. SCE) | [42] |
Pt95Co5 NWs | ~7.0% after 3600 s | 0.60 V (vs. SCE) | [43] | |
PdRuPt NWs | 0.1 M HClO4 + 0.5 M methanol | ~16.2% after 5000 s | 0.60 V (vs. SCE) | [44] |
Pt53Co47 NWs/C | ~22.3% after 5000 s | 0.65 V (vs. SCE) | This work |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.X.; Swihart, M.T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog. Mater. Sci. 2016, 82, 445–498. [Google Scholar] [CrossRef]
- Bu, L.; Feng, Y.; Yao, J.; Guo, S.; Guo, J.; Huang, X. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811–2821. [Google Scholar] [CrossRef]
- Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C.-J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2016, 5, 1808–1825. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y.M. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234. [Google Scholar] [CrossRef][Green Version]
- Stephens, I.E.L.; Rossmeisl, J.; Chorkendorff, I. Toward sustainable fuel cells. Science 2016, 354, 1378–1379. [Google Scholar] [CrossRef]
- Stamenkovic, V.R.; Mun, B.S.; Arenz, M.; Mayrhofer, K.J.; Lucas, C.A.; Wang, G.; Ross, P.N.; Markovic, N.M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247. [Google Scholar] [CrossRef]
- Qi, Z.; Xiao, C.; Liu, C.; Goh, T.W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y.; Li, X.; Curtiss, A.L.; Huang, W. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768. [Google Scholar] [CrossRef][Green Version]
- Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, A.J.; Mavrikakis, M. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef]
- Li, B.; Yan, Z.; Higgins, D.C.; Yang, D.; Chen, Z.; Ma, J.J. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells. Power Sources 2014, 262, 488–493. [Google Scholar] [CrossRef]
- Li, B.; Higgins, D.C.; Xiao, Q.; Yang, D.; Zhng, C.; Cai, M.; Chen, Z.; Ma, J. The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack. Appl. Catal. B 2015, 162, 133–140. [Google Scholar] [CrossRef]
- Chen, Z.; Waje, M.; Li, W.; Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen—reduction reactions. Angew. Chem. Int. Ed. 2007, 46, 4060–4063. [Google Scholar] [CrossRef]
- Mardle, P.; Ji, X.; Wu, J.; Guan, S.; Dong, H.; Du, S. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Appl. Catal. B 2020, 260, 118031. [Google Scholar] [CrossRef]
- Koenigsmann, C.; Wong, S.S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanolfuelcells. Energy Environ. Sci. 2011, 4, 1161–1176. [Google Scholar] [CrossRef]
- Li, Q.; Wu, L.; Wu, G.; Su, D.; Lv, H.; Zhang, S.; Zhu, W.; Casimir, A.; Zhu, H.; Mendoza-Garcia, A.; et al. New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electro-catalysis in Acid. Nano Lett. 2015, 15, 2468–2473. [Google Scholar] [CrossRef]
- Wang, K.; Tang, Z.; Wu, W.; Xi, P.; Liu, D.; Ding, Z.; Chen, X.; Wu, X.; Chen, S. Nanocomposites CoPt-x/Diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: Diatomite boosted the catalytic activity and durability. Electrochim. Acta 2018, 284, 119–127. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Vallés, E. Facile electrochemical synthesis, using microemulsions with ionic liquid, of highly mesoporous CoPt nanorods with enhanced electrocatalytic performance for clean energy. Int. J. Hydrogen Energy 2015, 40, 8062–8070. [Google Scholar] [CrossRef][Green Version]
- Xia, B.Y.; Wu, H.B.; Yan, Y.; Lou, X.W.; Wang, X. Ultrathin and Ultralong Single-Crystal Platinum Nanowire Assemblies with Highly Stable Electrocatalytic Activity. J. Am. Chem. Soc. 2013, 135, 9480–9485. [Google Scholar] [CrossRef]
- Zhang, N.; Bu, L.; Guo, S.; Guo, J.; Huang, X. Screw Thread-Like Platinum–Copper Nanowires Bounded with High-Index Facets for Efficient Electrocatalysis. Nano Lett. 2016, 16, 5037–5043. [Google Scholar] [CrossRef]
- Serrà, A.; Montiel, M.; Gómez, E.; Vallés, E. Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation. Nanomaterials 2014, 4, 189–202. [Google Scholar] [CrossRef][Green Version]
- Bertin, E.; Garbarino, S.; Ponrouch, A.; Guay, D. Synthesis and characterization of PtCo nanowires for the electro-oxidation of methanol. J. Power Sources 2012, 206, 20–28. [Google Scholar] [CrossRef]
- Xia, T.; Liu, J.; Wang, S.; Wang, C.; Sun, Y.; Wang, R. Nanomagnetic CoPt truncated octahedrons: Facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. Sci. China Mater. 2016, 60, 57–67. [Google Scholar] [CrossRef][Green Version]
- Lu, W.B.; Ge, J.; Tao, L.; Cao, X.W.; Dong, J.; Qian, W.P. Large-scale synthesis of ultrathin Au-Pt nanowires assembled on thionine/graphene with high conductivity and sensitivity for electrochemical immunosensor. Electrochim. Acta 2014, 130, 335–343. [Google Scholar] [CrossRef]
- Shan, S.Y.; Petkov, V.; Yang, L.F.; Luo, J.; Joseph, P.; Mayzel, D.; Prasai, B.; Wang, L.Y.; Engelhard, M.; Zhong, C.J.J. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium–Nickel Nanoalloys. Am. Chem. Soc. 2014, 136, 7140–7151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-R.; Wöllner, S. Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions. Appl. Catal. B: Environ. 2018, 222, 26–34. [Google Scholar] [CrossRef]
- Hang, Y.; Janyasupab, M.; Liu, C.-W.; Li, X.; Xu, J.; Liu, C.-C. Three Dimensional PtRh Alloy Porous Nanostructures: Tuning the Atomic Composition and Controlling the Morphology for the Application of Direct Methanol Fuel Cells. Adv. Funct. Mater. 2012, 22, 3570. [Google Scholar]
- Narayanamoorthy, B.; Datta, K.K.R.; Eswaramoorthy, M.; Balaji, S. Highly Active and Stable Pt3Rh Nanoclusters as Supportless Electrocatalyst for Methanol Oxidation in Direct Methanol Fuel Cells. ACS Catal. 2014, 4, 3621. [Google Scholar] [CrossRef]
- Xia, M.R.; Ding, W.; Xiong, K.; Li, L.; Qi, X.Q.; Chen, S.G.; Hu, B.S.; Wei, Z.D.J. Anchoring Effect of Exfoliated-Montmorillonite-Supported Pd Catalyst for the Oxygen Reduction Reaction. Phys. Chem. C 2013, 117, 10581–10588. [Google Scholar] [CrossRef]
- Ren, M.; Chang, F.; Miao, R.; He, X.; Yang, L.; Wang, X.; Bai, Z. Strained lattice platinum–palladium alloy nanowires for efficient electrocatalysis. Inorg. Chem. Front. 2020, 7, 1713–1718. [Google Scholar] [CrossRef]
- Chang, F.; Bai, Z.; Li, M.; Ren, Y.; Liu, T.; Yang, L.; Zhong, C.-J.; Lu, J. Strain-Modulated Platinum–Palladium Nanowires for Oxygen Reduction Reaction. Nano Lett. 2020, 20, 2416–2422. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Shan, S.; Petkov, V.; Skeete, Z.; Lu, A.; Ravid, J.; Wu, J.; Luo, J.; Yu, G.; Ren, Y.; et al. Composition Tunability and (111)-Dominant Facets of Ultrathin Platinum–Gold Alloy Nanowires toward Enhanced Electrocatalysis. J. Am. Chem. Soc. 2016, 138, 12166–12175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qiu, J.; Wu, J.; Deng, Y.; Wu, Y.; Yan, L.J. Morphological tuning engineering of Pt@TiO2/graphene catalysts with optimal active surfaces of support for boosting catalytic performance for methanol oxidation. Mater. Chem. A. 2022, 10, 4254–4265. [Google Scholar] [CrossRef]
- Kuo, C.C.; Chou, S.C.; Chang, Y.C.; Hsieh, Y.C.; Wu, P.W.; Wu, W.W. Core-Shell Pd9Ru@Pt on Functionalized Graphene for Methanol Electrooxidation. J. Electrochem. Soc. 2018, 165, H365. [Google Scholar] [CrossRef]
- Miao, R.-F.; Chang, F.F.; Ren, M.Y.; He, X.H.; Yang, L.; Wang, X.L.; Bai, Z.Y. Platinum-palladium alloy nano-tetrahedra with tuneable lattice-strain for enhanced intrin-sic activity. Catal. Sci. Technol. 2020, 10, 6173–6179. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Y.; Huang, B. Ultrathin PtNiM (M = Rh, Os and Ir) Nanowires as Efficient Fuels Oxidation Electrocatalytic Materials. Adv. Mater. 2019, 31, 1805833. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tian, X.L.; Xu, Y.; Zaman, S.; Qi, K.; Liu, H.; Xia, B.Y.J. Engineering one-dimensional and hierarchical PtFe alloy assemblies towards durable methanol electrooxidation. Mater. Chem. A 2019, 7, 13090–13095. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, D.; Peng, M.; Yu, Z.; Wang, X.; Guo, G.; Sun, Y. Microfluidic Synthesis Enables Dense and Uniform Loading of Surfactant-Free PtSn Nanocrystals on Carbon Supports for Enhanced Ethanol Oxidation. Angew. Chem. Int. Ed. 2016, 55, 4952–4956. [Google Scholar] [CrossRef]
- Song, P.; Cui, X.; Shao, Q.; Feng, Y.; Zhu, X.; Huang, X.J. Networked Pt–Sn nanowires as efficient catalysts for alcohol electrooxidation. Mater. Chem. A 2017, 5, 24626–24630. [Google Scholar] [CrossRef]
- Erini, N.; Rudi, S.; Beermann, V.; Krause, P.; Yang, R.; Strasser, Y.P. Exceptional Activity of a Pt–Rh–Ni Ternary Nanostructured Catalyst for the Electrochemical Oxidation of Ethanol. ChemElectroChem 2015, 2, 903–908. [Google Scholar] [CrossRef][Green Version]
- Wang, H.; Chang, F.; Gu, J.; Xie, X.; Chen, H.; Bai, Z.; Yang, L.; Yang, X. Highly efficient catalytic CoS1.097 embedded in biomass nanosheets for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 2765–2773. [Google Scholar] [CrossRef]
- Yuan, W.; Fan, X.; Cui, Z.M.; Chen, T.; Dong, Z.; Li, C.M.J. Controllably self-assembled graphene-supported Au@Pt bimetallic nanodendrites as superior electrocatalysts for methanol oxidation in direct methanol fuel cells. Mater. Chem. A. 2016, 4, 7352–7364. [Google Scholar] [CrossRef]
- Lu, Q.; Sun, L.; Zhao, X.; Huang, J.; Han, C.; Yang, X. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562–2572. [Google Scholar] [CrossRef]
- Xiong, Y.; Ma, Y.; Li, J.; Huang, J.; Yan, Y.; Zhang, H.; Wu, J.; Yang, D. Strain-induced Stranski–Krastanov growth of Pd@Pt core–shell hexapods and octapods as electrocatalysts for methanol oxidation. Nanoscale 2017, 9, 11077–11084. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S.J. Shape-Control of Pt–Ru Nanocrystals: Tuning Surface Structure for Enhanced Electrocatalytic Methanol Oxidation. Am. Chem. Soc. 2018, 140, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Kakaei, K. Decoration of graphene oxide with Platinum Tin nanoparticles for ethanol oxidation. Electrochimica Acta 2015, 165, 330–337. [Google Scholar] [CrossRef]
- Sulaiman, J.E.; Zhu, S.; Xing, Z.; Chang, Q.; Shao, M. Pt–Ni Octahedra as Electrocatalysts for the Ethanol Electro-Oxidation Reaction. ACS Catal. 2017, 7, 5134–5141. [Google Scholar] [CrossRef]
Catalyst | Electrolyte | MA (A/mgPt) | SA (mA/cm2) | Reference |
---|---|---|---|---|
Pt69Ni16Rh15NWs/C | 0.1 M HClO4 + 0.5 M methanol | 1.72 | 2.49 | [32] |
UV-Pt@TONR/GN | 0.5 M H2SO4 + 1 M CH3OH | 1.94 | 3.16 | [33] |
Pd9Ru@Pt/FGN | 0.881 | - | [34] | |
1D PtFe alloy | 0.1 M HClO4 + 0.5 M Methanol | 1.65 | - | [35] |
Pt27Co73/C | 0.1 M HClO4 + 0.5 M ethanol | 1.56 | 3.31 | This work |
Pt53Co47/C | 2.15 | 2.00 | This work |
Catalyst | Electrolyte | MA (A/mgPt) | SA (mA/cm2) | Reference |
---|---|---|---|---|
PtSn/XC-72 | 0.5 M H2SO4 + 1 M ethanol | 0.76 | NA | [36] |
Pt-Mo-Ni NWs | 0.5 M H2SO4 + 2 M ethanol | 0.87 | 2.57 | [37] |
PtRhNi/C | 0.34 | NA | [38] | |
PtCu2.1 NWs | 1.02 | 2.16 | [39] | |
Pt27Co73/C | 0.1 M HClO4 + 0.5 M ethanol | 2.11 | 1.44 | This work |
Pt53Co47/C | 0.82 | 0.77 | This work |
Catalyst | Electrolyte | CA Stability (Activity Retention) | Potential | Reference |
---|---|---|---|---|
Pt HCCLV | 0.5 M H2SO4 + 1 M ethanol | ~27.0% after 2000 s | 0.60 V (vs. Ag/AgCl) | [45] |
Pt3Sn/GO | ~21.7% after 3000 s | peak potential | [46] | |
Octahedral Pt2.3Ni/C | 0.1 M HClO4 + 0.5 M methanol | ~14.7% after 1800 s | ~0.63 V (vs. RHE) | [47] |
Pt27Co73 NWs/C | ~25.7% after 5000 s | 0.65 V (vs. SCE) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Bai, X.; Yuan, X.; Liu, Y.; Yang, L.; Chang, F. Platinum-Cobalt Nanowires for Efficient Alcohol Oxidation Electrocatalysis. Materials 2023, 16, 840. https://doi.org/10.3390/ma16020840
Wang W, Bai X, Yuan X, Liu Y, Yang L, Chang F. Platinum-Cobalt Nanowires for Efficient Alcohol Oxidation Electrocatalysis. Materials. 2023; 16(2):840. https://doi.org/10.3390/ma16020840
Chicago/Turabian StyleWang, Wenwen, Xinyi Bai, Xiaochu Yuan, Yumin Liu, Lin Yang, and Fangfang Chang. 2023. "Platinum-Cobalt Nanowires for Efficient Alcohol Oxidation Electrocatalysis" Materials 16, no. 2: 840. https://doi.org/10.3390/ma16020840