# Investigation on High-Viscosity Chemical Waste Liquid Atomizer Based on VOF-DPM

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Geometry and Mesh

^{−7}s) are required. Therefore, in this article, to balance the accuracy and economy, AMR technology is applied to the gas-liquid phase interface area.

## 3. Numerical Methods

#### 3.1. Governing Equations

#### 3.2. Turbulence Models

#### 3.3. Multiphase Models

#### 3.4. Discrete Phase Model

#### 3.5. Model Transition

#### 3.6. Solution Solvers

^{−9}s, the time step is set to 1000, and the flow time is 1 × 10

^{−6}s after the calculation. Then change the time step advance type to Adaptive and the Total flow time to 1 ms. These will help to have a stable and reliable flow field at the beginning of the simulation. The Autosave function is used to prevent the calculation from crashing. Global Courant Number is set to 1 to avoid the flow distance of high-speed steam exceeding one grid in each time step. Although AMR is used to improve computational efficiency, the cost of atomization simulation in this paper is still high. Two 48-core processors are used for parallel computing, but each case still takes more than 22 h. The VOF-DPM model is used in the atomization simulation of Wen, and the calculation time is as long as one month because the droplet conversion diameter is about 10 μm, which requires a finer grid and smaller time step [28].

## 4. Results and Discussion

#### 4.1. Breakup of Liquids

#### 4.2. Effect of Steam Inlet Pressure on the Breakup Morphology of Liquid Film

#### 4.3. Effect of Steam Inlet Pressure on Particle Size Distribution

^{3}. As shown in Figure 13d,e, with the increase of the pressure, the particle size distribution curve gradually spreads to both sides, the number of peaks becomes more, but the peak value is smaller, so the particle size distribution is more uniform. The change in the number of peaks in the particle size distribution curve at 1 ms can be more intuitively observed in Figure 14. The percentage of small particles increases with the steam pressure increases, which is beneficial to combustion but not conducive to the economy.

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Blanco, D.E.; Dookhith, A.Z.; Modestino, M.A. Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. React. Chem. Eng.
**2019**, 4, 8–16. [Google Scholar] [CrossRef] - Betke, T.; Maier, M.; Gruber-Wölfler, H.; Gröger, H. Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nat. Commun.
**2018**, 9, 5112. [Google Scholar] [CrossRef][Green Version] - Eggers, J.; Villermaux, E. Physics of liquid jets. Rep. Prog. Phys.
**2008**, 71, 036601. [Google Scholar] [CrossRef][Green Version] - Dumouchel, C. On the experimental investigation on primary atomization of liquid streams. Exp. Fluids
**2008**, 45, 371–422. [Google Scholar] [CrossRef] - Aalburg, C.; van Leer, B.; Faeth, G.M.; Sallam, K.A. Properties of nonturbulent round liquid jets in uniform gaseous cross flows. At. Sprays
**2005**, 15, 271–294. [Google Scholar] [CrossRef] - Li, X.; Gao, H.; Soteriou, M.C. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations. Phys. Fluids
**2017**, 29, 082103. [Google Scholar] [CrossRef] - Vadivukkarasan, M.; Dhivyaraja, K.; Panchagnula, M.V. Breakup morphology of expelled respiratory liquid: From the perspective of hydrodynamic instabilities. Phys. Fluids
**2020**, 32, 094101. [Google Scholar] [CrossRef] - Li, B.; Wu, H.; Gu, F.; Wang, X.; Qian, Y. Cold-state Numerical Simulation and Optimization of the Process Burnerof Anthracite-based Coal Water Slurry Gasifier. Coal Chem. Ind.
**2014**, 42, 57–60. [Google Scholar] - Balasubramanian, A.K.; Kumar, V.; Nakod, P.; Schütze, J.; Rajan, A. Multiscale modelling of a doublet injector using hybrid VOF-DPM method. In AIAA Scitech 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar]
- Yu, H.; Jin, Y.-C.; Cheng, W.; Yang, X.; Peng, X.; Xie, Y. Multiscale simulation of atomization process and droplet particles diffusion of pressure-swirl nozzle. Powder Technol.
**2021**, 379, 127–143. [Google Scholar] [CrossRef] - Zheng, G.; Nie, W.; Feng, S.; Wu, G. Numerical Simulation of the Atomization Process of a Like-doublet Impinging Rocket Injector. Procedia Eng.
**2015**, 99, 930–938. [Google Scholar] [CrossRef][Green Version] - Gao, N.; Zhang, X. Research on the Numerical Effect of VTD Model in Cross Jet. J. Phys. Conf. Ser.
**2022**, 2381, 012016. [Google Scholar] [CrossRef] - Schtze, J.; Kumar, V.; Sonawane, R.; Braun, M.; Sami, M. A multimodel hybrid approach for the numerical simulation of fluid phasedispersion process. In Proceedings of the International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, 22–26 July 2018; Institute for Liquid Atomization and Spray Systems: Madison, WI, USA, 2018. [Google Scholar]
- Sami, M.; Schuetze, P.; Hutcheson, P.; Aguado, P. Best practices in the numerical modelling of liquid atomization processes. In Proceedings of the ILASS-Americas 30th Annual Conference on Liquid Atomization and Spray Systems, Tempe, AZ, USA, 12–15 May 2019; Institute for Liquid Atomization and Spray Systems: Madison, WI, USA, 2019. [Google Scholar]
- Zhou, R.; Shen, C.-b.; Jin, X. Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray. J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.)
**2020**, 21, 684–694. [Google Scholar] [CrossRef] - Kumar, V.; Jadeja, H.; Gupta, V.; Schuetze, J.; Nakod, P. A hybrid approach for modeling fully resolved liquid film formation by converting Lagrangian particles to Eulerian VOF structures. In Proceedings of the International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, 22–26 July 2018; Institute for Liquid Atomization and Spray Systems: Madison, WI, USA, 2018. [Google Scholar]
- Yu, Y.; Tian, M.; Zhang, G.; Liu, L. Numerical simulation of the influence of mixing chamber geometry on steam ejector performance. In Proceedings of the 31st National Conference on Hydrodynamics, Xiamen, China, 28–30 July 2020; pp. 80–85. [Google Scholar]
- Xu, P.; Wang, K.; Cui, F.; Li, Y.; Liu, J.; Ye, M.; Li, Y. Three-dimensional Simulation Study of Steam Ejectors with Different Geometric Dimensions. Shandong Chem. Ind.
**2021**, 50, 173–175. [Google Scholar] - Müller, T.; Sänger, A.; Habisreuther, P.; Jakobs, T.; Trimis, D.; Kolb, T.; Zarzalis, N. Simulation of the primary breakup of a high-viscosity liquid jet by a coaxial annular gas flow. Int. J. Multiph. Flow
**2016**, 87, 212–228. [Google Scholar] [CrossRef] - Wei, M.; Chen, S.; Sun, M.; Jing, L.; Liu, C.; Wang, M. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol.
**2020**, 367, 724–739. [Google Scholar] [CrossRef] - Luo, S.; Wang, H.; Gao, Z.; Wu, Y.; Wang, H. Interaction between high-velocity gas and liquid in gas atomization revealed by a new coupled simulation model. Mater. Des.
**2021**, 212, 110264. [Google Scholar] [CrossRef] - Krishna, R.; van Baten, J.M. Simulating the motion of gas bubbles in a liquid. Nature
**1999**, 398, 208. [Google Scholar] [CrossRef] - Jiang, B.; He, D.; Zhang, L.; Kang, Q.; Xiao, X.; Jiang, J. VOF-DPM Simulations of Gas-Liquid-Solid Scrubbing Chambers with Two Gas Intake Modes. J. Eng. Thermophys.
**2019**, 28, 345–358. [Google Scholar] [CrossRef] - Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys.
**1992**, 100, 335–354. [Google Scholar] [CrossRef] - Nazeer, Y.H.; Ehmann, M.; Sami, M.; Gavaises, M. Atomization Mechanism of Internally Mixing Twin-Fluid Y-Jet Atomizer. J. Energy Eng.
**2021**, 147, 04020075. [Google Scholar] [CrossRef] - Xu, Y.; Liu, M.; Tang, C. Three-dimensional CFD–VOF–DPM simulations of effects of low-holdup particles on single-nozzle bubbling behavior in gas–liquid–solid systems. Chem. Eng. J.
**2013**, 222, 292–306. [Google Scholar] [CrossRef] - Rossano, V.; De Stefano, G. Hybrid VOF-Lagrangian CFD Modeling of Droplet Aerobreakup. Appl. Sci.
**2022**, 12, 8302. [Google Scholar] [CrossRef] - Jin, W.; Xiao, J.; Ren, H.; Li, C.; Zheng, Q.; Tong, Z. Three-dimensional simulation of impinging jet atomization of soft mist inhalers using the hybrid VOF-DPM model. Powder Technol.
**2022**, 407, 117622. [Google Scholar] [CrossRef] - Dong, J.; Hu, Q.; Yu, M.; Han, Z.; Cui, W.; Liang, D.; Ma, H.; Pan, X. Numerical investigation on the influence of mixing chamber length on steam ejector performance. Appl. Therm. Eng.
**2020**, 174, 115204. [Google Scholar] [CrossRef] - Li, H.; Wang, X.; Ning, J.; Zhang, P.; Huang, H.; Tu, J. Numerical investigation of the nozzle expansion state and its effect on the performance of the steam ejector based on ideal gas model. Appl. Therm. Eng.
**2021**, 199, 117509. [Google Scholar] [CrossRef] - Daviault, S.G.; Ramadan, O.B.; Matida, E.A.; Hughes, P.M.; Hughes, R. Atomization performance of petroleum coke and coal water slurries from a twin fluid atomizer. Fuel
**2012**, 98, 183–193. [Google Scholar] [CrossRef] - Kuznetsov, G.V.; Strizhak, P.A.; Valiullin, T.R.; Volkov, R.S. Atomization behavior of composite liquid fuels based on typical coal processing wastes. Fuel Process. Technol.
**2022**, 225, 107037. [Google Scholar] [CrossRef] - Zhao, Z.; Zhou, J.; Huang, Z. Study of the flow characteristics for the air-atomized CWS nozzle. Energy Eng.
**2010**, 1–5+10. [Google Scholar] [CrossRef] - Zhang, Z. Numerical Simulation of Coal Water slurry Gasification process with Multi-channel Burner. Yunnan Chem. Technol.
**2019**, 46, 132–134. [Google Scholar]

**Figure 3.**Setting different AMR maximum refinement levels on structured grids will rapidly increase the number of meshes. This figure is only a schematic diagram. The actual meshes will be different due to the existence of Additional Refinement Layers.

**Figure 10.**Steam vortex violently interferes with the liquid surface and produces liquid deformation; Pathlines are colored with the velocity values to represent the flow tracks of steam; The blue Iso-surface represents the meshes with a liquid volume fraction of 0.5.

**Figure 13.**Variation curve of particle size distribution with the steam inlet absolute pressure. (

**a**) 1.0 MPa, (

**b**) 1.1 MPa, (

**c**) 1.2 MPa, (

**d**) 1.3 MPa, (

**e**) 1.4 MPa.

Symbols | Structural Parameters | Value (mm) |
---|---|---|

D_{1i} | First-stage steam inlet diameter | 6.596 |

D_{1m} | First-stage steam throat diameter | 4 |

D_{1o} | First-stage steam outlet diameter | 4.243 |

D_{2i} | Waste liquid internal diameter | 12.595 |

D_{2o} | Waste liquid external diameter | 16.433 |

D_{3i} | Second-stage steam internal diameter | 22.433 |

D_{3o} | Second-stage steam external diameter | 25.078 |

L_{1} | First-stage steam divergent tube length | 1.389 |

L_{4} | Mixing chamber length | 14 |

φ | Diaphragm thickness | 0.4 |

σ | Second-stage steam outlet width | 0.959 |

Models | Settings |
---|---|

Multiphase model | VOF-DPM |

VOF model | Explicit; Sharp Interface Modeling |

Surface Tension model | Continuum Surface Force (CSF) |

Secondary Breakup model | KH-RT |

Viscous model | SST k-ω |

Pressure–Velocity Coupling | PISO |

Pressure Discretization | PRESTO! |

Momentum Discretization | QUICK |

Volume Fraction Discretization | Geo-Reconstruct |

Momentum URF | 0.4 |

Turbulent Kinetic Energy URF | 0.6 |

Turbulent Dissipation Rate URF | 0.6 |

Adaptive Time Stepping | 1 × 10^{−8} s < Time Step Size < 2 × 10^{−7} s |

Absolute Total Pressure (Pa) | Temperature (K) | Dynamic Viscosity (cp) | Mass Flow Rate (kg/h) | |
---|---|---|---|---|

Steam | 1,128,177.2 | 457.21 | 0.01512 | / |

waste liquid | 501,325 | 423.15 | 1000 | 1500 |

Steam Absolute Pressure (MPa) | Steam Temperature (K) | Steam Dynamic Viscosity (cp) |
---|---|---|

1.0 | 453.03 | 0.01498 |

1.1 | 457.21 | 0.01512 |

1.2 | 461.11 | 0.14367 |

1.3 | 464.75 | 0.14079 |

1.4 | 468.19 | 0.01550 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ou, H.; Su, L.; Shi, Y.; Ruan, S. Investigation on High-Viscosity Chemical Waste Liquid Atomizer Based on VOF-DPM. *Energies* **2023**, *16*, 3109.
https://doi.org/10.3390/en16073109

**AMA Style**

Ou H, Su L, Shi Y, Ruan S. Investigation on High-Viscosity Chemical Waste Liquid Atomizer Based on VOF-DPM. *Energies*. 2023; 16(7):3109.
https://doi.org/10.3390/en16073109

**Chicago/Turabian Style**

Ou, Haoyu, Lei Su, Yang Shi, and Shijie Ruan. 2023. "Investigation on High-Viscosity Chemical Waste Liquid Atomizer Based on VOF-DPM" *Energies* 16, no. 7: 3109.
https://doi.org/10.3390/en16073109