# A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- 1.
- This work designed a robust direct FOC method of induction generator-based DRWP systems;
- 2.
- A new robust control to reactive and active power ripples minimization for direct FOC method is designed;
- 3.
- Synergetic sliding mode controllers to minimize error tracking reactive and active power references of induction generator-based DRWP systems;
- 4.
- Using the proposed technique and modified SVM technique minimizes the THD of voltage and torque ripple of the induction generator-based DRWP systems.

## 2. DRWP Model

_{AR}, P

_{MR}the aerodynamic mechanical power of the auxiliary and main rotors.

_{AR}, T

_{MR}the aerodynamic torque of the auxiliary and main rotors.

_{MR}, R

_{AR}: Blade radius of the auxiliary and main rotors, λ

_{AR}, λ

_{MR}: the tip-speed ratio of the main and auxiliary rotors, and w

_{AR}, w

_{MR}: the mechanical speed of the auxiliary and main rotors. The C

_{p}is given:

_{1}is the wind speed on an auxiliary rotor.

_{MR}is the speed of the unified wind on main rotor.

_{T}: the trust coefficient (C

_{T}= 0.9).

## 3. Synergetic Sliding Mode Control Theory

_{eq}(t)) with the synergetic control.

_{eq}) and the other stabilizing (u

_{n}). Equation (9) represents the principle of the SMC method [27].

## 4. Direct FOC Method with SSMC Controllers

_{r}= Q

_{s}* − Q

_{s}and the active power error S

_{a}= P

_{s}* − P

_{s}. The linear sliding surfaces shown in (22) and (23) are used as input to the SSMC controller method control law. Stator reactive and active power SSMC method are used to influence, respectively, the direct and quadrature rotor voltage components as in (24) and (25):

## 5. Numerical Simulation

^{®}of MathWorks). In addition, a comparison study between the SSMC controllers with the traditional PI controllers was carried out in terms of torque, current, active and reactive power ripple minimization, wind speed changing, trajectory tracking, and robustness to induction generator parameter variations.

#### 5.1. First Test

#### 5.2. Second Test

## 6. Conclusions

- (1)
- As in the direct FOC-SSMC method, active and reactive power should not be estimated; the direct FOC-SSMC method causes filter design and converter simplicity. It also improves the transient effectiveness of the controller.
- (2)
- Direct FOC method gives more THD value and power ripple. There is no improved system effectiveness in comparison with the direct FOC-SSMC method.
- (3)
- Although the robustness of the designed method causes the use of the proposed nonlinear controllers, its characteristics, as stated in part six, such as improved dynamic and transient performance, make it a suitable controller for variable speed dual-rotor wind power production.

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Marques, G.; Iacchetti, M.F. Sensorless Frequency and Voltage Control in the Stand-Alone DFIG-DC System. IEEE Trans. Ind. Electron.
**2016**, 64, 1949–1957. [Google Scholar] [CrossRef] - Iacchetti, M.F.; Marques, G.; Perini, R. Torque Ripple Reduction in a DFIG-DC System by Resonant Current Controllers. IEEE Trans. Power Electron.
**2014**, 30, 4244–4254. [Google Scholar] [CrossRef][Green Version] - Kaloi, G.S.; Baloch, M.H.; Kumar, M.; Soomro, D.M.; Chauhdary, S.T.; Memon, A.A.; Ishak, D. An LVRT Scheme for Grid Connected DFIG Based WECS Using State Feedback Linearization Control Technique. Electronics
**2019**, 8, 777. [Google Scholar] [CrossRef][Green Version] - Worku, M.Y.; Hassan, M.; Abido, M.A. Real Time-Based under Frequency Control and Energy Management of Microgrids. Electronics
**2020**, 9, 1487. [Google Scholar] [CrossRef] - Tian, P.; Hao, Z.; Li, Z. Doubly-Fed Induction Generator Coordination Control Strategy Compatible with Feeder Automation. Electronics
**2019**, 9, 18. [Google Scholar] [CrossRef][Green Version] - Hu, J.; Huang, Y.; Wang, D.; Yuan, H.; Yuan, X. Modeling of Grid-Connected DFIG-Based Wind Turbines for DC-Link Voltage Stability Analysis. IEEE Trans. Sustain. Energy
**2015**, 6, 1325–1336. [Google Scholar] [CrossRef] - Kroplewski, P.; Morawiec, M.; Jąderko, A.; Odeh, C. Simulation Studies of Control Systems for Doubly Fed Induction Generator Supplied by the Current Source Converter. Energies
**2021**, 14, 1511. [Google Scholar] [CrossRef] - Mondal, S.; Kastha, D. Improved Direct Torque and Reactive Power Control of a Matrix-Converter-Fed Grid-Connected Doubly Fed Induction Generator. IEEE Trans. Ind. Electron.
**2015**, 62, 7590–7598. [Google Scholar] [CrossRef] - Mossa, M.A.; Echeikh, H.; Diab, A.A.Z.; Quynh, N.V. Effective Direct Power Control for a Sensor-Less Doubly Fed Induction Generator with a Losses Minimization Criterion. Electronics
**2020**, 9, 1269. [Google Scholar] [CrossRef] - Benbouhenni, H. Twelve Sectors DPC Control Based on Neural Hysteresis Comparators of the DFIG Integrated to Wind Power. Tec. Ital.-Ital. J. Eng. Sci.
**2020**, 64, 347–353. [Google Scholar] [CrossRef] - Prasad, R.M.; Mulla, M.A. A Novel Position-Sensorless Algorithm for Field-Oriented Control of DFIG with Reduced Current Sensors. IEEE Trans. Sustain. Energy
**2018**, 10, 1098–1108. [Google Scholar] [CrossRef] - Benbouhenni, H. Reducing current and torque ripples in DVC control of DFIG operation at constant switching frequency for wind generation application. Majlesi J. Energy Manag.
**2019**, 8, 47–55. [Google Scholar] - Benbouhenni, H. Intelligence indirect vector control of a DFIG based wind turbines. Majlesi J. Electr. Eng.
**2019**, 13, 27–35. [Google Scholar] - Benbouhenni, H. Comparative study between different vector control methods applied to DFIG wind turbines. Majlesi J. Mechatron. Syst.
**2018**, 7, 15–23. [Google Scholar] - Prasad, R.M.; Mulla, M.A. Mathematical Modeling and Position-Sensorless Algorithm for Stator-Side Field-Oriented Control of Rotor-Tied DFIG in Rotor Flux Reference Frame. IEEE Trans. Energy Convers.
**2019**, 35, 631–639. [Google Scholar] [CrossRef] - Dahri, N.; Ouassaid, M.; Yousfi, D.A. FOC based robust fuzzy logic controller for a wind energy conversion system to overcome mechanical parameter uncertainties. In Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4–6 November 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Ba-Razzouk, A.; Cheriti, A.; Olivier, G.; Sicard, P. Field-oriented control of induction motors using neural-network decouplers. IEEE Trans. Power Electron.
**1997**, 12, 752–763. [Google Scholar] [CrossRef] - Malinowski, M.; Jasinski, M.T.; Kazmierkowski, M.P. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM). IEEE Trans. Ind. Electron.
**2004**, 51, 447–454. [Google Scholar] [CrossRef] - Hea-Gwang, J.; Won-Sang, K.; Kyo-Beum, L.; Byung-Chang, J.; Seung-Ho, S. A sliding-mode approach to control the active and reactive powers for A DFIG in wind turbines. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 120–125. [Google Scholar] [CrossRef]
- Amrane, F.; Chaiba, A. A novel direct power control for grid-connected doubly fed induction generator based on hybrid artificial intelligent control with space vector modulation. Rev. Sci. Techni. Electrotechn. Energ.
**2016**, 61, 263–268. [Google Scholar] - Bizon, N.; Bizon, N. Optimal operation of fuel cell/wind turbine hybrid power system under turbulent wind and variable load. Appl. Energy
**2018**, 212, 196–209. [Google Scholar] [CrossRef] - Farahani, E.M.; Hossein Zadeh, N.; Mehran, M.E. Comparison of dynamic responses of dual and single rotor wind turbines under transient conditions. In Proceedings of the 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET), Kandy, Sri Lanka, 6–9 December 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Benbouhenni, H. Application of STA methods and modified SVM strategy in direct vector control system of ASG integrated to dual-rotor wind power: Simulation studies. Int. J. Smart Grid
**2021**, 5, 62–72. [Google Scholar] - Yahdou, A.; Djilali, A.B.; Boudjema, Z.; Mehedi, F. Improved Vector Control of a Counter-Rotating Wind Turbine System Using Adaptive Backstepping Sliding Mode. J. Eur. Systèmes Autom.
**2020**, 53, 645–651. [Google Scholar] [CrossRef] - Bizon, N. Optimization of the Fuel Cell Renewable Hybrid Power Systems, 1st ed.; Springer: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Habib, B. Synergetic control theory scheme for asynchronous generator based dual-rotor wind power. J. Electr. Eng. Electron. Control Comput. Sci.
**2021**, 7, 19–28. [Google Scholar] - Huynh, V.; Minh, B.; Amaefule, E.; Tran, A.-T.; Tran, P. Highly Robust Observer Sliding Mode Based Frequency Control for Multi Area Power Systems with Renewable Power Plants. Electronics
**2021**, 10, 274. [Google Scholar] [CrossRef] - Resa, J.; Cortes, D.; Marquez-Rubio, J.F.; Navarro, D. Reduction of Induction Motor Energy Consumption via Variable Velocity and Flux References. Electronics
**2019**, 8, 740. [Google Scholar] [CrossRef][Green Version] - Nicola, M.; Nicola, C.-I. Sensorless Fractional Order Control of PMSM Based on Synergetic and Sliding Mode Controllers. Electronics
**2020**, 9, 1494. [Google Scholar] [CrossRef] - Roshan, K.P.; Veeranna, K.; Antony, S.; Kumaravel, S.; Ramchand, R. A Low Cost Development Tool for Educating Electric Machines. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 6305–6310. [Google Scholar] [CrossRef]
- Ihedrane, Y.; El Bekkali, C.; Bossoufi, B. Direct and indirect field oriented control of DFIG-generators for wind turbines variable-speed. In Proceedings of the 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), Marrakech, Morocco, 28–31 March 2017; pp. 27–32. [Google Scholar] [CrossRef]
- Touaiti, B.; Ben Azza, H.; Jemli, M. Direct voltage control of stand-alone DFIG in wind energy applications. In Proceedings of the 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 21–23 December 2015; pp. 672–677. [Google Scholar] [CrossRef]
- Djilali, L.; Sanchez, E.N.; Belkheiri, M. Neural sliding mode field oriented control for DFIG based wind turbine. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, Canada, 5–8 October 2017; pp. 2087–2092. [Google Scholar] [CrossRef]
- Samir, A.; Ahmad, T.A.; Djalel, D. A Novel Actuator Fault-tolerant Control Strategy of DFIG-based Wind Turbines Using Takagi-Sugeno Multiple Models. Int. J. Control. Autom. Syst.
**2018**, 16, 1415–1424. [Google Scholar] - Dekali, Z.; Baghli, L.; Boumediene, A. Indirect power control for a grid connected double fed induction generator based wind turbine emulator. In Proceedings of the 2019 International Conference on Advanced Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Listwan, J. Application of Super-Twisting Sliding Mode Controllers in Direct Field-Oriented Control System of Six-Phase Induction Motor: Experimental Studies. Power Electron. Drives
**2018**, 3, 23–34. [Google Scholar] [CrossRef][Green Version] - Benbouhenni, H.; Boudjema, Z.; Belaidi, A. Using four-level NSVM technique to improve DVC control of a DFIG based wind turbine systems. Period. Polytech. Electr. Eng. Comput. Sci.
**2019**, 63, 144–150. [Google Scholar] [CrossRef][Green Version] - Sriprang, S.; Nahid-Mobarakeh, B.; Takorabet, N.; Pierfederici, S.; Kumam, P.; Bizon, N.; Taghavi, N.; Vahedi, A.; Mungporn, P.; Thounthong, P. Design and control of permanent magnet assisted synchronous reluctance motor with copper loss minimization using MTPA. J. Electr. Eng.
**2020**, 71, 11–19. [Google Scholar] [CrossRef] - Hounthong, P.; Sikkabut, S.; Poonnoy, N.; Mungporn, P.; Yodwong, B.; Kumam, P.; Bizon, N.; Pierfederici, S.; Poonnoi, N.; Nahidmobarakeh, B. Nonlinear Differential Flatness-Based Speed/Torque Control with State-Observers of Permanent Magnet Synchronous Motor Drives. IEEE Trans. Ind. Appl.
**2018**, 54, 2874–2884. [Google Scholar] [CrossRef] - Yusoff, N.A.M.; Razali, A.M.; Karim, K.A.; Sutikno, T.; Jidin, A. A Concept of Virtual-Flux Direct Power Control of Three-Phase AC-DC Converter. Int. J. Power Electron. Drive Syst. (IJPEDS)
**2017**, 8, 1776–1784. [Google Scholar] [CrossRef][Green Version] - Amrane, F.; Chaiba, A.; Babes, B.E.; Mekhilef, S. Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller. Rev. Roum. Sci. Tech. Electrotechn. Energ.
**2016**, 61, 319–324. [Google Scholar] - Boudjema, Z.; Meroufel, A.; Djerriri, Y.; Bounadja, E. Fuzzy sliding mode control of a doubly fed induction generator for energy conversion. Carpathian J. Electron. Comput. Eng.
**2013**, 6, 7–14. [Google Scholar] - Boudjema, Z.; Taleb, R.; Djerriri, Y.; Yahdou, A. A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system. Turk. J. Electr. Eng. Comput. Sci.
**2017**, 25, 965–975. [Google Scholar] [CrossRef][Green Version]

Parameter | Value |
---|---|

Pn | 1.5 MW |

Vn | 380 V |

p | 2 |

Rs | 0.012 Ω |

Rr | 0.021 Ω |

Ls | 0.0137 H |

Lr | 0.0136 H |

Lm | 0.0135 H |

J | 1000 Kg.m^{2} |

fr | 0.0024 Nm.s/rad |

f | 50 Hz |

Reference | Technique | THD (%) |
---|---|---|

Ref. [40] | VFDPC | 4.19 |

DPC | 4.88 | |

Ref. [41] | FOC | 3.7 |

Ref. [42] | SMC | 3.05 |

Ref. [43] | Robust DTC control | 0.98 |

Proposed techniques | DFOC | 1.45 |

DFOC-SSMC | 0.50 |

Performance Criteria | Classical Technique | Proposed Technique |
---|---|---|

Simplicity of calculations | + | + |

Improvement of transient performance | - | + |

Improvement of dynamic response | - | + |

Simplicity of converter and filter design | + | + |

Negligible parameter effects on system performance | - | + |

Robustness | - | + |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Benbouhenni, H.; Bizon, N.
A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines. *Energies* **2021**, *14*, 4437.
https://doi.org/10.3390/en14154437

**AMA Style**

Benbouhenni H, Bizon N.
A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines. *Energies*. 2021; 14(15):4437.
https://doi.org/10.3390/en14154437

**Chicago/Turabian Style**

Benbouhenni, Habib, and Nicu Bizon.
2021. "A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines" *Energies* 14, no. 15: 4437.
https://doi.org/10.3390/en14154437