MRI-Derived Apparent Diffusion Coefficient of Peri-Prostatic Adipose Tissue Is a Potential Determinant of Prostate Cancer Aggressiveness in Preoperative Setting: A Preliminary Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MRI Acquisition
2.3. MRI/TRUS Fusion Biopsy
2.4. Statistical Analyses
3. Results
3.1. Descriptive Characteristics of the Study Population
3.2. Association between PPAT-ADC and PCa Clinical and Pathological Biopsy Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; van den Bergh, R.C.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- García-Perdomo, H.A.; Gómez-Ospina, J.C.; Chaves-Medina, M.J.; Sierra, J.M.; Gómez, A.M.A.; Rivas, J.G. Impact of lifestyle in prostate cancer patients. What should we do? Int. Braz. J. Urol. 2022, 48, 244–262. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M. PI-RADS prostate imaging–reporting and data system: 2015, version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Sener, R. Diffusion MRI: Apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput. Med. Imaging Graph. 2001, 25, 299–326. [Google Scholar] [CrossRef]
- El Kady, R.M.; Choudhary, A.K.; Tappouni, R. Accuracy of apparent diffusion coefficient value measurement on PACS workstation: A comparative analysis. Am. J. Roentgenol. 2011, 196, W280–W284. [Google Scholar] [CrossRef]
- Barrett, T.; Rajesh, A.; Rosenkrantz, A.B.; Choyke, P.L.; Turkbey, B. PI-RADS version 2.1: One small step for prostate MRI. Clin. Radiol. 2019, 74, 841–852. [Google Scholar] [CrossRef]
- Tafuri, A.; Porcaro, A.B.; Shakir, A.; Migliorini, F.; Verratti, V.; Brunelli, M.; Cerruto, M.A.; Antonelli, A. Serum testosterone and obesity in prostate cancer biology: A call for health promotion in the ageing male. Aging Clin. Exp. Res. 2021, 33, 1399–1401. [Google Scholar] [CrossRef] [PubMed]
- Nassar, Z.D.; Aref, A.T.; Miladinovic, D.; Mah, C.Y.; Raj, G.V.; Hoy, A.J.; Butler, L.M. Peri-prostatic adipose tissue: The metabolic microenvironment of prostate cancer. BJU Int. 2018, 121 (Suppl. S3), 9–21. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Arnold, M.; Leitzmann, M.; Freisling, H.; Bray, F.; Romieu, I.; Renehan, A.; Soerjomataram, I. Obesity and cancer: An update of the global impact. Cancer Epidemiol. 2016, 41, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Karim-Kos, H.E.; Coebergh, J.W.; Byrnes, G.; Antilla, A.; Ferlay, J.; Renehan, A.G.; Forman, D.; Soerjomataram, I. Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur. J. Cancer 2015, 51, 1164–1187. [Google Scholar] [CrossRef]
- De Nunzio, C.; Albisinni, S.; Freedland, S.J.; Miano, L.; Cindolo, L.; Finazzi Agro, E.; Autorino, R.; De Sio, M.; Schips, L.; Tubaro, A. Abdominal obesity as risk factor for prostate cancer diagnosis and high grade disease: A prospective multicenter Italian cohort study. Urol. Oncol. 2013, 31, 997–1002. [Google Scholar] [CrossRef]
- Kelly, S.P.; Graubard, B.I.; Andreotti, G.; Younes, N.; Cleary, S.D.; Cook, M.B. Prediagnostic Body Mass Index Trajectories in Relation to Prostate Cancer Incidence and Mortality in the PLCO Cancer Screening Trial. J. Natl. Cancer Inst. 2017, 109, djw225. [Google Scholar] [CrossRef][Green Version]
- Freedland, S.J.; Branche, B.L.; Howard, L.E.; Hamilton, R.J.; Aronson, W.J.; Terris, M.K.; Cooperberg, M.R.; Amling, C.L.; Kane, C.J. Obesity, risk of biochemical recurrence, and prostate-specific antigen doubling time after radical prostatectomy: Results from the SEARCH database. BJU Int. 2018, 124, 69–75. [Google Scholar] [CrossRef]
- Gacci, M.; Russo, G.I.; De Nunzio, C.; Sebastianelli, A.; Salvi, M.; Vignozzi, L.; Tubaro, A.; Morgia, G.; Serni, S. Meta-analysis of metabolic syndrome and prostate cancer. Prostate Cancer Prostatic Dis. 2017, 20, 146–155. [Google Scholar] [CrossRef]
- Porcaro, A.B.; Tafuri, A.; Sebben, M.; Processali, T.; Pirozzi, M.; Amigoni, N.; Rizzetto, R.; Shakir, A.; Cacciamani, G.E.; Brunelli, M.; et al. Body Mass Index and prostatic-specific antigen are predictors of prostate cancer metastases in patients undergoing robot-assisted radical prostatectomy and extended pelvic lymph node dissection. Minerva Urol. Nefrol. 2019, 71, 516–523. [Google Scholar] [CrossRef]
- Porcaro, A.B.; Tafuri, A.; Sebben, M.; Processali, T.; Pirozzi, M.; Amigoni, N.; Rizzetto, R.; Shakir, A.; Cerruto, M.A.; Brunelli, M.; et al. High body mass index predicts multiple prostate cancer lymph node metastases after radical prostatectomy and extended pelvic lymph node dissection. Asian J. 2020, 22, 323–329. [Google Scholar] [CrossRef]
- Tafuri, A.; Amigoni, N.; Rizzetto, R.; Sebben, M.; Shakir, A.; Gozzo, A.; Odorizzi, K.; De Michele, M.; Gallina, S.; Bianchi, A.; et al. Obesity strongly predicts clinically undetected multiple lymph node metastases in intermediate- and high-risk prostate cancer patients who underwent robot assisted radical prostatectomy and extended lymph node dissection. Int. Urol. Nephrol. 2020, 52, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Tafuri, A.; Rizzetto, R.; Amigoni, N.; Sebben, M.; Shakir, A.; Gozzo, A.; Odorizzi, K.; Gallina, S.; Bianchi, A.; Ornaghi, P.; et al. Predictors of Lymph Node Invasion in Patients with Clinically Localized Prostate Cancer Who Undergo Radical Prostatectomy and Extended Pelvic Lymph Node Dissection: The Role of Obesity. Urol. Int. 2021, 105, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, A.B.; Sebben, M.; Tafuri, A.; de Luyk, N.; Corsi, P.; Processali, T.; Pirozzi, M.; Rizzetto, R.; Amigoni, N.; Mattevi, D.; et al. Body mass index is an independent predictor of Clavien-Dindo grade 3 complications in patients undergoing robot assisted radical prostatectomy with extensive pelvic lymph node dissection. J. Robot. Surg. 2018, 13, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, A.B.; Tafuri, A.; Sebben, M.; Corsi, P.; Processali, T.; Pirozzi, M.; Amigoni, N.; Rizzetto, R.; Shakir, A.; Cacciamani, G.; et al. Surgeon volume and body mass index influence positive surgical margin risk after robot-assisted radical prostatectomy: Results in 732 cases. Arab. J. Urol. 2019, 17, 234–242. [Google Scholar] [CrossRef][Green Version]
- Moreira, A.; Pereira, S.S.; Costa, M.; Morais, T.; Pinto, A.; Fernandes, R.; Monteiro, M.P. Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells. PLoS ONE 2015, 10, e0123217. [Google Scholar] [CrossRef][Green Version]
- Sacca, P.A.; Creydt, V.P.; Choi, H.; Mazza, O.N.; Fletcher, S.J.; Vallone, V.B.F.; Scorticati, C.; Chasseing, N.A.; Calvo, J.C. Human periprostatic adipose tissue: Its influence on prostate cancer cells. Cell. Physiol. Biochem. 2012, 30, 113–122. [Google Scholar] [CrossRef]
- Onuma, M.; Bub, J.D.; Rummel, T.L.; Iwamoto, Y. Prostate cancer cell-adipocyte interaction: Leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J. Biol. Chem. 2003, 278, 42660–42667. [Google Scholar] [CrossRef][Green Version]
- Oberlin, D.T.; Casalino, D.D.; Miller, F.H.; Meeks, J.J. Dramatic increase in the utilization of multiparametric magnetic resonance imaging for detection and management of prostate cancer. Abdom. Radiol. 2017, 42, 1255–1258. [Google Scholar] [CrossRef]
- Siddiqui, M.M.; Rais-Bahrami, S.; Turkbey, B.; George, A.K.; Rothwax, J.; Shakir, N.; Okoro, C.; Raskolnikov, D.; Parnes, H.L.; Linehan, W.M.; et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015, 313, 390–397. [Google Scholar] [CrossRef][Green Version]
- Rouviere, O.; Puech, P.; Renard-Penna, R.; Claudon, M.; Roy, C.; Mege-Lechevallier, F.; Decaussin-Petrucci, M.; Dubreuil-Chambardel, M.; Magaud, L.; Remontet, L.; et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): A prospective, multicentre, paired diagnostic study. Lancet. Oncol. 2019, 20, 100–109. [Google Scholar] [CrossRef]
- Oishi, M.; Shin, T.; Ohe, C.; Nassiri, N.; Palmer, S.L.; Aron, M.; Ashrafi, A.N.; Cacciamani, G.E.; Chen, F.; Duddalwar, V. Which patients with negative magnetic resonance imaging can safely avoid biopsy for prostate cancer? J. Urol. 2019, 201, 268–277. [Google Scholar] [CrossRef]
- Tafuri, A.; Iwata, A.; Shakir, A.; Iwata, T.; Gupta, C.; Sali, A.; Sugano, D.; Mahdi, A.S.; Cacciamani, G.E.; Kaneko, M. Systematic Biopsy of the Prostate can Be Omitted in Men with PI-RADS™ 5 and Prostate Specific Antigen Density Greater than 15%. J. Urol. 2021, 206, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Yang, X.Y.; Lee, H.J.; Law, Y.M.; Huang, H.H.; Lau, W.K.; Lee, L.S.; Ho, H.S.; Tay, K.J.; Cheng, C.W. Multiparametric MRI-ultrasonography software fusion prostate biopsy: Initial results using a stereotactic robotic-assisted transperineal prostate biopsy platform comparing systematic vs targeted biopsy. BJU Int. 2020, 126, 568–576. [Google Scholar] [CrossRef] [PubMed]
- van Roermund, J.G.; Hinnen, K.A.; Tolman, C.J.; Bol, G.H.; Witjes, J.A.; Bosch, J.L.; Kiemeney, L.A.; van Vulpen, M. Periprostatic fat correlates with tumour aggressiveness in prostate cancer patients. BJU Int. 2011, 107, 1775–1779. [Google Scholar] [CrossRef]
- Allott, E.H.; Howard, L.E.; Song, H.J.; Sourbeer, K.N.; Koontz, B.F.; Salama, J.K.; Freedland, S.J. Racial differences in adipose tissue distribution and risk of aggressive prostate cancer among men undergoing radiotherapy. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2404–2412. [Google Scholar] [CrossRef][Green Version]
- Tan, W.P.; Lin, C.; Chen, M.; Deane, L.A. Periprostatic Fat: A Risk Factor for Prostate Cancer? Urology 2016, 98, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Sun, L.J.; Qi, J.; Yang, Z.G.; Huang, T.; Huo, R.C. Periprostatic adiposity measured on magnetic resonance imaging correlates with prostate cancer aggressiveness. Urol. J. 2014, 11, 1793–1799. [Google Scholar] [PubMed]
- Verma, S.K.; Nagashima, K.; Yaligar, J.; Michael, N.; Lee, S.S.; Xianfeng, T.; Gopalan, V.; Sadananthan, S.A.; Anantharaj, R.; Velan, S.S. Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy. J. Lipid Res. 2017, 58, 289–298. [Google Scholar] [CrossRef][Green Version]
- Steidle, G.; Eibofner, F.; Schick, F. Quantitative diffusion imaging of adipose tissue in the human lower leg at 1.5 T. Magn. Reson. Med. 2011, 65, 1118–1124. [Google Scholar] [CrossRef]
Characteristic | Overall n = 132 1 | Negative PBx n = 56 (42%) 1 | ISUP Grade Group 1 PCa n = 46 (35%) 1 | ISUP Grade Group > 1 PCa n = 30 (23%) 1 | p-Value 2 |
---|---|---|---|---|---|
Age (years) | 72 (65, 76) | 68 (61, 75) | 72 (66, 76) | 74 (71, 78) | 0.002 |
BMI (Kg/m2) | 26.2 (23.9, 28.0) | 26.4 (24.3, 29.0) | 25.9 (23.9, 27.4) | 25.4 (23.9, 28.5) | 0.4 |
Positive DRE | 57 (44%) | 14 (25%) | 22 (50%) | 21 (70%) | <0.001 |
PSA (ng/mL) | 7.2 (5.1, 10.0) | 7.0 (5.0, 9.9) | 7.0 (5.3, 10.0) | 8.4 (6.0, 12.0) | 0.2 |
Prostate volume (ml) | 45 (33, 68) | 58 (43, 84) | 38 (31, 53) | 42 (26, 60) | <0.001 |
PSA density (ng/mL2) | 0.15 (0.09, 0.25) | 0.11 (0.06, 0.15) | 0.18 (0.08, 0.28) | 0.22 (0.12, 0.50) | <0.001 |
Number of lesions | 0.9 | ||||
1 | 74 (56%) | 32 (57%) | 25 (54%) | 17 (57%) | |
>1 | 58 (44%) | 24 (43%) | 21 (46%) | 13 (43%) | |
PIRADS | <0.001 | ||||
3 | 33 (25%) | 27 (49%) | 3 (6%) | 3 (10%) | |
4 | 58 (44%) | 18 (33%) | 32 (70%) | 8 (27%) | |
5 | 40 (31%) | 10 (18%) | 11 (24%) | 19 (63%) | |
Periprostatic adipose tissue ADC | 876 (654, 1112) | 1003 (773, 1299) | 972 (559, 1103) | 656 (455, 952) | <0.001 |
Percentage of positive core | 9 (0, 41) | - | 28 (13, 47) | 50 (34, 72) | <0.001 |
D’Amico risk group | <0.001 | ||||
Low | 36 (48%) | - | 36 (82%) | 0 (0%) | |
Intermediate | 28 (38%) | - | 8 (18%) | 20 (67%) | |
High | 10 (14%) | - | 0 (0%) | 10 (33%) |
Characteristic | PPAT-ADC ≤ 876 n = 66 (50%) 1 | PPAT-ADC > 876 n = 66 (50%) 1 | p-Value 2 |
---|---|---|---|
Age (years) | 72 (62, 77) | 72 (65, 76) | 0.9 |
BMI (Kg/m2) | 26.00 (24.20, 27.70) | 26.20 (23.90, 28.33) | 0.6 |
Positive DRE | 33 (51%) | 24 (37%) | 0.11 |
PSA (ng/mL) | 8.0 (5.2, 11.8) | 6.9 (5.2, 9.5) | 0.3 |
Prostate volume (mL) | 41 (31, 66) | 45 (36, 70) | 0.3 |
PSA density (ng/mL2) | 0.18 (0.11, 0.33) | 0.12 (0.08, 0.18) | 0.053 |
PIRADS | 0.032 | ||
3 | 15 (23%) | 18 (25%) | |
4 | 24 (36%) | 34 (52%) | |
5 | 27 (41%) | 13 (23%) | |
ISUP grade group | 0.048 | ||
1 | 20 (50%) | 26 (72%) | |
>1 | 20 (50%) | 18 (28%) | |
Percentage of positive core | 0.25 (0.00, 0.50) | 0.06 (0.00, 0.30) | 0.049 |
Characteristic | Beta | 95% CI 1 | p-Value |
---|---|---|---|
PSA | −3.17 | −5.70, −0.64 | 0.014 |
PSA density | −131.12 | −242.63, −19.60 | 0.022 |
Prostate volume | 1.01 | −1.35, 3.55 | 0.4 |
PIRADS | |||
3 | Ref | - | |
4 | −49.18 | −214.24, 115.88 | 0.6 |
5 | −180.54 | −358.56, −2.52 | 0.047 |
ISUP grade group | |||
Negative PBx | Ref | - | |
1 | −158.79 | −300.36, −17.22 | 0.028 |
2 | −294.68 | −538.92, −50.43 | 0.018 |
3 | −351.28 | −595.52, −107.03 | 0.005 |
4–5 | −506.08 | −750.32, −261.83 | <0.001 |
Percentage positive cores | −570.54 | −789.64, −351.44 | <0.001 |
Univariable | Multivariable | |||
---|---|---|---|---|
OR (95% CI) 1 | p-Value | OR (95% CI) 1 | p-Value | |
PPAT-ADC | ||||
>876 | Ref | — | Ref | — |
≤876 | 3.02 (1.19, 7.99) | 0.022 | 3.24 (1.17, 9.46) | 0.026 |
Age (years) | 1.05 (0.99, 1.13) | 0.1 | 1.04 (0.97, 1.12) | 0.3 |
BMI (Kg/m2) | 1.02 (0.87, 1.21) | 0.8 | 1.03 (0.87, 1.24) | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafuri, A.; Panunzio, A.; Greco, F.; Maglietta, A.; De Carlo, F.; Di Cosmo, F.; Luperto, E.; Rizzo, M.; Cavaliere, A.; De Mitri, R.; et al. MRI-Derived Apparent Diffusion Coefficient of Peri-Prostatic Adipose Tissue Is a Potential Determinant of Prostate Cancer Aggressiveness in Preoperative Setting: A Preliminary Report. Int. J. Environ. Res. Public Health 2022, 19, 15996. https://doi.org/10.3390/ijerph192315996
Tafuri A, Panunzio A, Greco F, Maglietta A, De Carlo F, Di Cosmo F, Luperto E, Rizzo M, Cavaliere A, De Mitri R, et al. MRI-Derived Apparent Diffusion Coefficient of Peri-Prostatic Adipose Tissue Is a Potential Determinant of Prostate Cancer Aggressiveness in Preoperative Setting: A Preliminary Report. International Journal of Environmental Research and Public Health. 2022; 19(23):15996. https://doi.org/10.3390/ijerph192315996
Chicago/Turabian StyleTafuri, Alessandro, Andrea Panunzio, Federico Greco, Antonella Maglietta, Francesco De Carlo, Federica Di Cosmo, Elia Luperto, Mino Rizzo, Arturo Cavaliere, Rita De Mitri, and et al. 2022. "MRI-Derived Apparent Diffusion Coefficient of Peri-Prostatic Adipose Tissue Is a Potential Determinant of Prostate Cancer Aggressiveness in Preoperative Setting: A Preliminary Report" International Journal of Environmental Research and Public Health 19, no. 23: 15996. https://doi.org/10.3390/ijerph192315996