Cataract Development by Exposure to Ultraviolet and Blue Visible Light in Porcine Lenses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Transmission Measurement
3.2. Dark Field Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.-C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef]
- Bourne, R.; Adelson, J.; Flaxman, S.; Briant, P.S.; Taylor, H.R.; Casson, R.J.; Bikbov, M.M.; Bottone, M.; Braithwaite, T.; Bron, A.; et al. Trends in Prevalence of Blindness and Distance and Near Vision Impairment over 30 Years and Contribution to the Global Burden of Disease in 2020. SSRN J. 2020. [Google Scholar] [CrossRef]
- Bourne, R.R.A.; Jonas, J.B.; Bron, A.M.; Cicinelli, M.V.; Das, A.; Flaxman, S.R.; Friedman, D.S.; Keeffe, J.E.; Kempen, J.H.; Leasher, J.; et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: Magnitude, temporal trends and projections. Br. J. Ophthalmol. 2018, 102, 575–585. [Google Scholar] [CrossRef]
- Stevens, G.A.; White, R.A.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; Resnikoff, S.; et al. Global prevalence of vision impairment and blindness: Magnitude and temporal trends, 1990–2010. Ophthalmology 2013, 120, 2377–2384. [Google Scholar] [CrossRef] [PubMed]
- Brian, G.; Taylor, H. Cataract blindness-challenges for the 21st century. Bull. World Health Organ. 2001, 79, 249–256. [Google Scholar] [PubMed]
- WHO. Global Initiative for the Elimination of Avoidable Blindness; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Lang, G.K. Augenheilkunde, 5th ed.; Georg Thieme Verlag KG: Stuttgart, Germany, 2014; ISBN 9783131028358. [Google Scholar]
- Thylefors, B.; Chylack, L.T.; Konyama, K.; Sasaki, K.; Sperduto, R.; Taylor, H.R.; West, S. A simplified cataract grading system. Ophthalmic Epidemiol. 2002, 9, 83–95. [Google Scholar] [CrossRef]
- Seddon, J.; Fong, D.; West, S.K.; Valmadrid, C.T. Epidemiology of risk factors for age-related cataract. Surv. Ophthalmol. 1995, 39, 323–334. [Google Scholar] [CrossRef]
- Kohnen, T.; Baumeister, M.; Kook, D.; Klaproth, O.K.; Ohrloff, C. Cataract surgery with implantation of an artificial lens. Dtsch. Ärzteblatt Int. 2009, 106, 695–702. [Google Scholar] [CrossRef]
- Hiller, R.; Sperduto, R.D.; Ederer, F. Epidemiologic associations with cataract in the 1971–1972 National Health and Nutrition Examination Survey. Am. J. Epidemiol. 1983, 118, 239–249. [Google Scholar] [CrossRef]
- Klopp, N.; Héon, E.; Billingsley, G.; Illig, T.; Wjst, M.; Rudolph, G.; Graw, J. Further genetic heterogeneity for autosomal dominant human sutural cataracts. Ophthalmic Res. 2003, 35, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Guo, X.; Xiao, X.; Yi, J.; Jia, X.; Hejtmancik, J.F. Clinical description and genome wide linkage study of Y-sutural cataract and myopia in a Chinese family. Mol. Vis. 2004, 10, 890–900. [Google Scholar]
- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White light-emitting diodes: History, progress, and future. Laser Photonics Rev. 2017, 11, 1600147. [Google Scholar] [CrossRef]
- Hessling, M.; Koelbl, P.; Lingenfelder, C. LED Illumination—A Hazard to the Eye? The increasing application of LEDs for lighting fosters fear of health consequences, which can be well assessed by comparing light sources. Opt. Photonik 2018, 13, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Zheludev, N. The life and times of the LED—A 100-year history. Nat. Photon. 2007, 1, 189–192. [Google Scholar] [CrossRef]
- Bauer, M.; Glenn, T.; Monteith, S.; Gottlieb, J.F.; Ritter, P.S.; Geddes, J.; Whybrow, P.C. The potential influence of LED lighting on mental illness. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2018, 19, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Directive_2006-25-EC: On the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC). Off. J. Eur. Union 2006, 114, 38–59.
- Jaadane, I.; Boulenguez, P.; Chahory, S.; Carré, S.; Savoldelli, M.; Jonet, L.; Behar-Cohen, F.; Martinsons, C.; Torriglia, A. Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic. Biol. Med. 2015, 84, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Heßling, M.; Kölbl, P.S.; Singh, P.; Deuchler, S.; Sinning, D.; Koch, F.H.J.; Lingenfelder, C. Gefahr durch LED-Licht?: Eine vergleichende Untersuchung. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 2019, 116, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Seregard, S.; Algvere, P.V. Photochemical damage of the retina. Surv. Ophthalmol. 2006, 51, 461–481. [Google Scholar] [CrossRef] [PubMed]
- Behar-Cohen, F.; Martinsons, C.; Viénot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D. Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Prog. Retin. Eye Res. 2011, 30, 239–257. [Google Scholar] [CrossRef]
- Kamari, F.; Hallaj, S.; Dorosti, F.; Alinezhad, F.; Taleschian-Tabrizi, N.; Farhadi, F.; Aslani, H. Phototoxicity of environmental radiations in human lens: Revisiting the pathogenesis of UV-induced cataract. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2065–2077. [Google Scholar] [CrossRef] [PubMed]
- Michael, R. Development and Repair of Cataract Induced by Ultraviolet Radiation; Karger: Berlin, Germany, 2000; ISBN 3-8055-7044-9. [Google Scholar]
- McCarty, C.A.; Taylor, H.R. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev. Ophthalmol. 2002, 35, 21–31. [Google Scholar] [CrossRef]
- Lerman, S. Chemical and physical properties of the normal and aging lens: Spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses. Am. J. Optom. Physiol. Opt. 1987, 64, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Gakamsky, A.; Duncan, R.R.; Howarth, N.M.; Dhillon, B.; Buttenschön, K.K.; Daly, D.J.; Gakamsky, D. Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of Cataract at the Molecular Level. Sci. Rep. 2017, 7, 40375. [Google Scholar] [CrossRef]
- Wegener, A.R. In vivo studies on the effect of UV-Radiation on the eye lens in animals. Doc. Ophthalmol. 1995, 88, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Söderberg, P.G.; Ayala, M.; Löfgren, S. The effect of exposure time on maximum acceptable dose for avoidance of ultraviolet radiation-induced cataract. Ophthalmic Res. 2005, 37, 197–201. [Google Scholar] [CrossRef]
- Jose, J.G. Posterior Cataract induction by UV-B Radiation in Albino Mice. Exp. Eye Res. 1986, 42, 11–20. [Google Scholar] [CrossRef]
- Ayala, M.N.; Michael, R.; Söderberg, P.G. Influence of Exposure Time for UV Radiation-Induced Cataract. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3539–3543. [Google Scholar]
- Söderberg, P.G.; Michael, R.; Merriam, J.C. Maximum acceptable dose of ultraviolet radiation: A safety limit for cataract. Acta Ophthalmol. Scand. 2003, 81, 165–169. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, H.; Löfgren, S.; Tian, X.; Lou, M.F. Ultraviolet radiation-induced cataract in mice: The effect of age and the potential biochemical mechanism. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7276–7285. [Google Scholar] [CrossRef]
- Beswick, H.T.; Harding, J.J. Conformational changes induced in bovine lens alpha-crystallin by carbamylation. Relevance to cataract. Biochem. J. 1984, 223, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Fuentealba, D.; Friguet, B.; Silva, E. Advanced glycation endproducts induce photocrosslinking and oxidation of bovine lens proteins through type-I mechanism. Photochem. Photobiol. 2009, 85, 185–194. [Google Scholar] [CrossRef]
- Schmitt-Gräff, A.; Pau, H.; Spahr, R.; Piper, H.M.; Skalli, O.; Gabbiani, G. Appearance of alpha-smooth muscle actin in human eye lens cells of anterior capsular cataract and in cultured bovine lens-forming cells. Differentiation 1990, 43, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Benedek, G.B. Observation of protein diffusivity in intact human and bovine lenses with application to cataract. Investig. Ophthalmol. 1975, 14, 449–456. [Google Scholar]
- Artigas, C.; Navea, A.; López-Murcia, M.-M.; Felipe, A.; Desco, C.; Artigas, J.-M. Spectral transmission of the pig lens: Effect of ultraviolet A+B radiation. J. Fr. Ophtalmol. 2014, 37, 773–779. [Google Scholar] [CrossRef]
- Olsen, T.W.; Sanderson, S.; Feng, X.; Hubbard, W.C. Porcine sclera: Thickness and surface area. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2529–2532. [Google Scholar]
- Middleton, S. Porcine ophthalmology. Vet. Clin. North Am. Food Anim. Pract. 2010, 26, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Oriowo, O.M.; Cullen, A.P.; Chou, B.R.; Sivak, J.G. Action spectrum and recovery for in vitro UV-induced cataract using whole lenses. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2596–2602. [Google Scholar]
- ICNIRP. ICNIRP statement-Protection of workers against ultraviolet radiation. Health Phys. 2010, 99, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Dillon, J.; Zheng, L.; Merriam, J.C.; Gaillard, E.R. The Optical Properties of the Anterior Segment of the Eye: Implications for Cortical Cataract. Exp. Eye Res. 1999, 68, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Hessling, M.; Spellerberg, B.; Hoenes, K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths—A review on existing data. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [PubMed]
- Reiss, S.; Sperlich, K.; Hovakimyan, M.; Martius, P.; Guthoff, R.F.; Stolz, H.; Stachs, O. Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy. IEEE Trans. Biomed. Eng. 2012, 59, 2348–2354. [Google Scholar] [CrossRef]
- Li, W.-C.; Spector, A. Lens epithelial cell apoptosis is an early event in the development of UVB-induced cataract. Free Radic. Biol. Med. 1996, 20, 301–311. [Google Scholar] [CrossRef]
- Linetsky, M.; Ortwerth, B.J. The generation of hydrogen peroxide by the UVA irradiation of human lens proteins. Photochem. Photobiol. 1995, 62, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Andley, U.P.; Clark, B.A. The effects of near-UV radiation on human lens beta-crystallins: Protein structural changes and the production of O2− and H2O2. Photochem. Photobiol. 1989, 50, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Makdoumi, K.; Hedin, M.; Bäckman, A. Different photodynamic effects of blue light with and without riboflavin on methicillin-resistant Staphylococcus aureus (MRSA) and human keratinocytes in vitro. Lasers Med. Sci. 2019, 34, 1799–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Dong, J.; Yin, H.; Zhang, G. Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: An in vitro study. Lasers Med. Sci. 2020, 35, 1329–1339. [Google Scholar] [CrossRef]
- Liebmann, J.; Born, M.; Kolb-Bachofen, V. Blue-light irradiation regulates proliferation and differentiation in human skin cells. J. Investig. Derm. 2010, 130, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Opländer, C.; Hidding, S.; Werners, F.B.; Born, M.; Pallua, N.; Suschek, C.V. Effects of blue light irradiation on human dermal fibroblasts. J. Photochem. Photobiol. B Biol. 2011, 103, 118–125. [Google Scholar] [CrossRef]
- Evans, J.W. Anatomy and Histology of the Eye and Orbit in Domestic Animals. Arch. Neurol. 1961, 5, 693. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haag, R.; Sieber, N.; Heßling, M. Cataract Development by Exposure to Ultraviolet and Blue Visible Light in Porcine Lenses. Medicina 2021, 57, 535. https://doi.org/10.3390/medicina57060535
Haag R, Sieber N, Heßling M. Cataract Development by Exposure to Ultraviolet and Blue Visible Light in Porcine Lenses. Medicina. 2021; 57(6):535. https://doi.org/10.3390/medicina57060535
Chicago/Turabian StyleHaag, Robin, Nicole Sieber, and Martin Heßling. 2021. "Cataract Development by Exposure to Ultraviolet and Blue Visible Light in Porcine Lenses" Medicina 57, no. 6: 535. https://doi.org/10.3390/medicina57060535
APA StyleHaag, R., Sieber, N., & Heßling, M. (2021). Cataract Development by Exposure to Ultraviolet and Blue Visible Light in Porcine Lenses. Medicina, 57(6), 535. https://doi.org/10.3390/medicina57060535